
DiscreteMathematicsandTheoretical ComputerScience3, 1999,95–107

Partially Persistent Search Trees with
Transcript Operations †

Kim S.Larsen‡

Departmentof MathematicsandComputerScience,Universityof SouthernDenmark,
Main Campus:OdenseUniversity, Campusvej55,DK–5230OdenseM, Denmark,
kslarsen@imada.sdu.dk

received1 st June1998, revised21 th May1999, accepted21 th May 1999.

Whendictionariesarepersistent,it is naturalto introducea transcriptoperationwhich reportsthestatuschangesfor
agivenkey over time. We discusswhenandhow a timeandspaceefficient implementationof this operationcanbe
provided.

Keywords: Datastructures,Searchtrees,Persistence,Complexity.

1 Introduction
Whenbalancedbinarysearchtreesaremadepartially persistentusingthenode-copyingmethod[5], the
possibility of searchingefficiently for information in the past is addedto the system. The operations
of updatingthepresentversionandsearchingin thepresentaswell asin thepastareasymptoticallyas
efficientasin thecorrespondingnormal(non-persistent)binarysearchtree.

In databaseapplications,it is sometimesdesirableto producetranscriptsof informationchangeover
time. If wewish to obtainatranscriptof informationrelatedto somekey k from versionnumberv1 to v2,
thiscanbeobtainedby independentsearchoperationsin all versionsin thatinterval in timeO

�
ph� , where

h is themaximumheightof thesearchtreein thatinterval, andp � v2 � v1 � 1 is thenumberof versions
betweenv1 andv2. We discusswhenandhow this canbereducedto O

�
h � p� by maintainingoneextra

pointerwith a versionnumberin eachnode,without changingtheasymptoticcomplexity of any of the
existing operations.

In databaseapplications,searchtreesareusually leaf-oriented,which meansthat all keys residein
the leaves,andinternalnodescontainroutersguiding thesearchto thecorrectleaf. Leavesareoftenof
anothertypethantheinternalnodes,andcontainextrapointersor spaceconsumingvaluesassociatedwith

† A preliminaryversionof this paperappearedin theproceedingsof the15thSymposiumon TheoreticalAspectsof Computer
Science1998(STACS’98),LectureNotesin ComputerScience,Vol. 1373,pages309-319,Springer-Verlag,1998.

‡This work wascarriedout while the authorwasvisiting the Departmentof ComputerSciences,University of Wisconsinat
Madison.Supportedin partby SNF(Denmark),in partby NSF(U.S.)grantCCR-9510244,andin partby the ESPRIT Long Term
ResearchProgrammeof theEU underprojectnumber20244(ALCOM -I T).

1365–8050 c
�

1999Maisondel’InformatiqueetdesMathématiquesDiscr̀etes(MIMD), Paris,France



96 Kim S.Larsen

their keys. We remainfaithful to this model,andthe extra pointerwhich is introducedonly appearsin
internalnodes.Leaveswill containnoextra informationcomparedto thesingleversionscenario.

Thecomplexity of thetranscriptoperationturnsout to dependonhow oftenleavescangetnew parents
duringrebalancing.We introducetheconceptof searchtreeswith limited leaf actionasa necessaryand
sufficientconditionfor abalancedsearchtreeschemeto beequippedwith anefficienttranscriptoperation
usingthemethodoutlinedin thispaper.

Themostinterestingcaseto consideris thecasewhereO
�
ph� is large,i.e., therearea largenumberof

versions.For thecasewherewe changeto a new versionwhenever a fixedconstantnumberof updates
hasbeencarriedout (or earlier),weshow thatthetranscriptoperationcanbecomputedin timeO

�
h � p� ,

whereh is the heightof the treein versionv1. If updatesin the given treetaketime O
�
h� , they remain

O
�
h� . As in [5], spaceconsumptionis linearin thenumberof changesmadeto thestructure.
Among the balancedsearchtree schemeswhich turn out to have limited leaf action are red-black

trees[7] and treaps[3], for instance. So, hereupdatingbecomesO
�
logn� (for treaps,expectedtime)

andtranscriptsO
�
logn � p� (for treaps,thelogn partis expectedtime).

In thenext section,we first defineleaf-orientedsearchtrees,thenwe extendthemto becomepartially
persistent,andfinally, we includethe transcriptadditions.In thefollowing sections,we discusscorrect-
ness,complexity, andfuturework.

2 Transcript Trees
Whensearchtreesareusedin databaseapplications,thetreesareusuallyleaf-oriented. This meansthat
only the leavescontainkeys. The internalnodescontainrouters,which areof thesametypeasthekeys
andwhichdirect thesearchesto thecorrectlocationasusualin a searchtree.However, routersneednot
bepresentaskeys in thetree.Thismeansthatwedonothave to updaterouterswhenever adeletiontakes
place.For aninternalnode,thekeys in its left subtreearesmallerthanor equalto its router, andthekeys
in its right subtreearelarger. A leaf-orientedtreeis alwaysa full tree,i.e., every internalnodehastwo
children.Thissimplifiesthedeletionoperation.

Searching and Updating

To inserta key k in thetree,searchfor k asusual.An unsuccessfulsearchendsup in a leaf,sayl . A new
internalnodeu is createdin placeof l , andl anda new leaf l � containingthekey k aremadethechildren
nodesof u. The onecontainingthe smallerkey will be the left child. The routerof u is a copy of the
key containedin its left child. Thus,therearenew pointersin thenew node,but only onepointerin the
existing structureis changed.SeeFigure1 on thefollowing page.

To deletea key k from thetree,first searchfor k asusualin a searchtree.If thekey is foundin theleaf
l , its parentis replacedby thesibling nodeof l . Again, a nodeandits pointersaredeleted,but only one
pointeris changed.SeeFigure2 on thenext page.

Theinsertionanddeletionoperationsarecalledupdateoperations.It is easyto provethatwhile arouter
r is presentin thetree,nonew nodewith thesameroutercanbecreated.This is importantsinceotherwise
rotationscouldviolatethesearchtreeinvariant.

We assumethatsomeschemefor maintainingbalancedsearchtreeswill beused.Thus,thenodescon-
tain additionalfields for registeringheights,colors,or otherbalanceinformation.Theupdateoperations
may manipulatethesefields, andtherewill be a collectionof rebalancingoperations,which after each



Partially PersistentSearch Treeswith TranscriptOperations 97

27

42

27

33

33 42

Fig. 1: Insertionof 33 into a leaf-orientedtree.

27

A

33

B

42

A B

27

Fig. 2: Deletionof 42 in a leaf-orientedtree.

update,by manipulatingthefieldsandapplyingrotations,will makesurethat thebalanceconstraints,if
violatedby theupdate,areagainfulfilled. We discussthis in greaterdetaillater.

However, we requirethat any rebalancingoperationcanbeexpressedasa constantnumberof single
rotationscarriedoutasdescribednow (seeFigure3 onthefollowingpage).

Thesinglerotationcanbeeitherright (in thedirectionof thearrow) or left (in theoppositedirectionof
thearrow). We give therequirementsfor a right rotation;theotheris similar. Assumethat theparentof
v is a nodew, andassumewithout lossof generalitythatit pointsto v via its left pointer. Thencarryout
v� left:=u � right; u � right:=v; w� left:=u.

This couldbedonedifferently. However, thewholepoint is thatnodesmustkeeptheir identity since
we introducenew pointerswhichshouldaim at thecorrectnodes,evenwhenthesearemovedaroundby
rebalancingoperations.Balanceinformationcanbe updatedby the rebalancingoperationsin any way
desired.

Note that this requirementis no (real) restriction. This is exactly the way singlerotationsarealways
performed,anddoublerotationsarealwaysexpressedsuchthat theresultof oneequalstheresultof two
consecutive single rotations. In fact, any binary searchtreecanbe constructedfrom any otherbinary
searchtreewith thesamekeysby applyingasequenceof singlerotations.Wedonotknow of any scheme
whichdoesnotconformto this requirement,excepttheoneswhichapplysomeform of globalrebuilding
asin [2, 6].



98 Kim S.Larsen

v

u

A B

C

u

A

v

B C

Fig. 3: Singlerotation(to theright).

Partial Persistence
Wenow makethesearchtreepartiallypersistentusingthenode-copyingmethod[5]. A partially persistent
structureis a structurewhichsupportsmultiple versions,suchthatall versionscanbeaccessed,but only
thenewestversioncanbemodified. We assumethatversionsarenumberedusingconsecutive integers.
All nodeshave afield statingunderwhichversionthey werecreated.Thestructurehasanumberof entry
pointers(pointersto rootsof differentversions)whichalsohave versionnumbers.

For balancedsearchtrees,the node-copyingmethodcanbeusedin a simplifiedform [5]. We usean
extendedversionof thatsimplifiedform. We retainwhat is referredto asthecopypointer, equipit with
a versionnumber, andupdateit asin the original method. For completeness,andbecausewe build on
topof thisbasicmethod,wedescribeit here,but emphasizethataverysimilardescriptionhasbeengiven
in [5].

Therearethreetypesof informationin abalancedsearchtree:keys,pointers,andbalanceinformation.
As informationconsidered,we areonly interestedin the keys. Sincewe can only updatethe newest
version,balanceinformationis not neededfor older versions.We alwaysrebalanceafter anupdate,so
whenwe switch to a new version,the older versionswill remainbalancedforever. So, only keys and
pointersfrom old versionsmustbekept,andit is safeto overwriteold balanceinformation.

Whenwe inserta new key, wecreateanentirelynew nodeto put it in. So,nokey informationis being
changed.Instead,it is onepointerin onenodethat is beingchangedto includethenew node.Similarly,
whenwedeletea key, this is doneby changingonepointerto cut out thenode,in which thekey resides.
So,weonly needto discusspointerupdates;not key updates.

To avoid copyingtoo many nodesevery time a pointermustbe changed,nodeshave oneextra field
for a pointerupdate.So,nodesin thetreehave fields: key, left, right, vn, extra, andcopy, where“vn” is
shortfor “versionnumber”. The field extra is composite,andhasthe following fields: ptr, dir, andvn
for recordingthenew pointer, whichpointerit replaces(dir is Leftor Right), andin whichversionit was
done(“ptr” is shortfor “pointer” and“dir” is shortfor “direction”). Thefield copyis alsocompositewith
fieldsptr andvn.

An updatein thenewestversioni is handledasdescribednow. We explain theactionwhich mustbe
takenfor onepointerchange.If anupdate(or a rebalancingoperation)involvesseveralpointerchanges,
theprocedureis repeated.

If the nodeu in which the updateis madehasversionnumberi, the updateoverwritesthe existing
pointer. Otherwise,if theextrafield hasversionnumberi and its directionfield indicatesthepointerto be



Partially PersistentSearch Treeswith TranscriptOperations 99

updated,thepointerin theextrafield is overwritten.
If neithercaseapplies,therearetwopossibilitiesdependingonwhetheror nottheextrafieldhasalready

beenused.If it hasnot, theupdateis madethere,alsosettingthedirectionfield andsettingtheversion
numberto i.

Otherwise,a new nodev mustbemade.This is theonly case,wheretheproceduredoesnot terminate
immediately. Thekey andthenewestleft andright pointersfrom u arecopiedinto v, i.e., thepointerin
theextra field of u andthepointerfrom u which wasnot overwrittenin theextra field. Thenv’s version
numberis setto i andits extra andcopyfieldsto nil. Finally, thecopyfield in u is setto point to v, and
its versionnumberis setto i. Thus,copypointerslink togethersequencesof nodeswhich arebasically
the“same”nodeat differenttimes. Now, the parentof u mustbeupdatedto point to v instead.This is
donerecursivelyusingthemethodjustoutlined,i.e., theeffectsof anupdatecontinueupin thetreealong
theupdatepathfor aslong astherearenodeswheretheextra field hasalreadybeenusedby anearlier
version,or hasbeenusedin theoppositedirectionof theupdatepathby thecurrentversion. If theroot
is copied,thena new entrypointerto thenew root with versionnumberi is created.For anexample,see
Figure4. Nodes,extra pointers(in themiddle),andcopypointers(dashed)have versionnumbers.Thick
linesindicatepartsof thetreewhichwerepresentbeforetheoperation.Thecurrentversionnumberis 3.

3

3

42

77

18 18

20

20 21

2

3 3

3

1

1

1

3
3

Fig. 4: Inserting21.

Searchingbecomesslightly morecomplicatedafter thesechanges.Searchingstartsby following an
entrypointer. Therewill not necessarilybe anentry pointerfor eachversion. Instead,whenaccessing
version j , theentrypointerwith thelargestversionnumberi, i � j , shouldbeused.

At eachnode,a decisionto continuethe searchto the left or the right mustbe made. As usual,this
decisionis madeby comparingthekey to befoundwith therouter(key) in thenode.However, whenthe
decisionhasbeenmadeto proceedto the left, for instance,thenthenewestleft pointerno newer than j
mustbefollowed,i.e., if theleft pointerhasbeenupdatedin theextrafield andtheversionnumberof the
extra field is at most j , thenthepointerin theextra field shouldbefollowed.Otherwise,theoriginal left
pointeris taken.

Thefollowing result,or moregeneralones,areprovenin [5].

Theorem 1 Whenthenode-copyingmethodis appliedto a pointerstructurefor which thereis anupper
boundp on thenumberof pointersthatcanpoint to any onenode,thenif nodesin thepersistentversion
areequippedwith at leastp extra pointers,thefollowingholds.



100 Kim S.Larsen

	 The asymptoticcomplexity of searchingin any versionin the persistentstructureis equalto the
asymptoticcomplexity of searchingin thestandardstructurecorrespondingto thatversion.

	 The persistenceactionscarriedout afteronepointerchangeareperformedin amortizedconstant
time.

	 Whensearchingin thenewestversion,only thelastnodein a copysequencecanbeaccessed.

Notethatin connectionwith thetreeswe usehere,only theparentof a nodecanpoint to thatnode,so
oneextra field suffices.Also, sinceweuseonly a constantamountof new spacein eachstep,spaceusage
perpointerupdateis alsoamortizedconstant.

With thedefinitionsin thissection,thestructureis no longera tree,but a directedacyclic graph.How-
ever, wewill keepreferringto it asa tree.

Transcript Facilitating Additions
In thissection,weextendtheupdatingandrebalancingproceduresevenfurther. Wefirst describeourgoal
informally andthenwegive theexactdescriptionof theprocedures,thepropertiesof whichwill beused
in thecorrectnessproof later.

The generalidea is that if we want to keeptrack of somekey k, then we positionourselves at the
internalnodeunderwhich k is found(or would beinserted).Whenchangingversion,from v1 to v2 say,
theinternalnodewith thatpropertymaybedeleted,or aninsertionor rotationmayhave theeffect thatit
is now anothernodewhichhasthegivenproperty.

Therefore,whenever we makean updateor a rotation,we alsobuild a path from the nodewith the
givenpropertyin versionv1 to theonewith thatpropertyin versionv2, suchthatlater, duringa transcript
operation,it will befastto getto thatnew node.We makesurethepathis protectedin thesensethatno
laterpointerupdatescanalterit.

Theresultis a treeasin [5] with extra pointersandcopiesof nodescreatingprotectedpathswhich run
throughthetree(over time)at thelevelsjust above theleaves.

We now turn to the concreteadditions. Note first that whenan internalnodeis deleted,no pointer
updatescaneverbeappliedto it again.Thismeansthatits copypointerwill neverbeused.In otherwords,
we arefree to useit for otherpurposes(this is safesincethe copy pointeris never usedin searching).
Additionally, whenan insertionor a rotationis carriedout, we may trigger a copyingof a nodewhich
wouldnot have beenmadeat thattime in theoriginalmethod.This meansthat in contrastto [5], wecan
have severalcopiesof a nodewith thesameversionnumber. Thesearetheonly changeswearemaking.
Whenever the copy pointeris set,its versionnumberis alsoset,andit is set to the newest(that is, the
current)version. Fromnow on, we will not mentionthe versionnumberwhendiscussingthesettingof
thecopypointer.

For deletion,therearetwo cases.First assumethat both of the childrenof the internalnodeu to be
deletedareleaves.Thedeletionis performed,andthecopypointerof u is setto point to thenewestcopy
of theparentof u.

Now assumethat the internalnodeto bedeletedhasonly oneleaf amongits two children. After the
deletionhasbeenperformed,thecopypointerof u is setasfollows. If theleafis its left child, thenits copy
pointeris setto point to its in-order internal successor(the left-mostinternalnodein its right subtree).
Thiscaseis illustratedin Figure5 onthefollowingpage.Notethatpersistenceactionswill continueabove
thenodewith key 7, but this is notshown. Similarly, if theleaf is its right child, thenits copypointeris set



Partially PersistentSearch Treeswith TranscriptOperations 101

7

8

7

9

Fig. 5: Deletingthekey 8 from a transcripttree.

to pointto its in-orderinternalpredecessor(theright-mostinternalnodein its left subtree).Thesuccessor
(or predecessor)is foundby a searchin thenewestversionof thestructurestartingat theinternalnodeto
bedeleted.

For insertion,we do the following. As describedearlier, we first searchfor the correctleaf, andthe
only pointerin theexisting structurewhichis changedis theonein theinternalnodev whichpointsto the
leafin question.Wemaketheinsertionasusualfor leaf-orientedtrees,applyingthenecessarypersistence
actions,i.e.,v maybecopied.Whenthis is completed,we triggera new copyof v, or of thecopyof v, if
v hasalreadybeencopiedduringtheinsertion.This lastcaseis illustratedin Figure6. Notethatsincethe
nodewith key 27 is copied,otheractionswill takeplacefurtherup in thetree,but this is not shown.

27 27 27

33

33 42

Fig. 6: Insertionof key 33 into a transcripttree.

Theactionstakenfor a rotationaresimilar to thosefor insertions.First, therotationis carriedout,and
all thenecessarypersistenceactionsaretaken.Thenif theright child of u (refer to Figure3 on page98)
beforetherotationwasa leaf,wetriggeranew copyof thenewestversionof nodeu. In general,to make



102 Kim S.Larsen

a descriptionwhich coversleft aswell asright rotations,if themiddlesubtreeis a leaf,we triggera new
copy. An exampleof this is givenin Figure7. In thatexample,no extra pointerswerein usebeforethe
rotation.Notethatpersistenceactionsdueto thecopyingwill continueup in thepartof thetreeabove u
(notshown).

v

uu

Fig. 7: Right rotationin a transcripttree.

The Transcript Operation

Thetranscriptoperationcannow bedefined. It takesa key k andtwo versionnumbersv1 andv2 (with
v1 � v2) asparametersandprints the historyof k betweenthesetwo versions.More precisely, a line is
printedfor every version,statingwhetheror not k is in the tree. In a practicalapplication,therewould
mostlikely bevaluesassociatedwith eachkey, andthosecouldbeprintedaswell (thesemightnot bethe
sameevery timek appearsin thetree).

Theimplementationis givenin Figure8 onpage107.Weexplain theingredientsbelow.
We have mostlyusedstandardnotationin thealgorithms,but we commenton a few points. We have

usedanenumerationtypewith thetwo valuesLeft andRight. BooleanexpressionsareevaluatedC-style,
i.e., they areevaluatedfrom left to right andassoonasthe final valueof the whole expressioncanbe
deduced,evaluationis aborted. Whenwe usethe expression(b ? e1 : e2), the booleanexpressionb is
evaluatedfirst. If it evaluatesto true,thentheresultof thewholeexpressionis theresultof evaluatinge1.
Otherwise,it is theresultof evaluatinge2. In orderto avoid too many details,we assumethatthe treeis
alwaysnon-empty.

We assumethatwehave a functionLeaf which decidesif a nodeis a leaf, anda functionEntry which
givena versionnumber, returnstheentrypointerto beused.

ThefunctionFind findstheparentof agivenkey in agivenversion.This is simplyasearch,exceptthat
we returntheparentof thekey. The leaf in the directionwe would searchto find k (or rather, to check
whetheror not k is in the treeat the time) is referredto asthe leaf possiblycontainingk. Find callsGo
which takesonestepdown in thetreeby goingleft or right asappropriate.Assumingthatwearelocated
at the parentof the leaf possiblycontainingk, Statusreturnsthe informationas to whetheror not k is
present.

Transcriptworksby repeatedlycalling Advance. ThefunctionAdvanceis calledwith a key k, a node
u, anda versionnumberi. Exceptfor thefirst call, theassumptionis thattheinformationreturnedby the



Partially PersistentSearch Treeswith TranscriptOperations 103

previouscall to Advancewasfrom u in versioni � 1, i.e.,u wastheinternalnodewhichcouldhave a leaf
child containingk. Advancefindsthenext similarnodein versioni, andreturnsinformationon thestatus
of k at thattime,aswell asthenode.

3 Correctness
Theonly non-trivial operationis thefunctionAdvance. We mustarguethatit alwaysadvances(sotermi-
nationis guaranteed)andnot toomuch(suchthatinformationis overlooked).

Whensearchingthroughversioni by startingat theentrypointer, onewill seeversioni asit appeared
whenwe switchedto the next version. However, the currentversioncankeepchangingright until we
switch.Thiscomplicatesthesearchby Advanceevenafterwehave switchedto anew versionbecausewe
donot entervia theentrypointer. Thus,wemayseepartsof versioni which weretemporary, andwhich
wouldneverbefoundwhenentering“correctly”. Thisis thereasonfor thewhile loopin functionAdvance.
Whenever we useFind, we aresearchingin versioni asit appearedat somepoint; not necessarilyin its
final appearance.For instance,severaldeletionscouldbemadein thesameversionsoit maybenecessary
to follow thecopypointerseveraltimes.

Thereasonfor triggeringa nodecopyingin connectionwith insertionsandrotationsis that theparent
of the leaf possiblycontainingk changes.By triggeringa copyingof the nodewhich usedto be the
parent,weensurethatno lateroperationscanpreventusfrom accessingthenew parent.Thus,webuild a
protectedpathfrom theparentof theleafpossiblycontainingk in oneversionto the(possiblynew) parent
in thenext.

Theorem 2 If we areat thenodeu equalto Find
�
Entry

�
i � 1��
 k 
 i � 1� , i � 1, thenAdvance

�
k 
 u 
 i � will

bringusto v equalto Find
�
Entry

�
i �
 k 
 i � .

Proof AssumingthatAdvancebringsus from u to v, it follows a pathin the tree;this is not necessarily
a direct pathfrom onenodeto a descendantsincecopy pointerscanalsobe followed. We call this the
advancepath. Theproof is by induction.However, westrengthentheinductionhypothesisby addingthat
nopointerchangescanbemadeto nodeson theadvancepathexceptthelast.

We prove by inductionin thenumberof modificationsin thetreeby versioni or greaterthatAdvance
will find thenodev. Actually, sincenodesarenever physicallydeleted,andpointersareonly overwritten
if createdby theversionperformingtheupdate,updatesin versionsgreaterthani cannotaffect thepath,
soit is sufficient to considerupdatesby versioni.

Thebasecaseis whenno modificationshave takenplace. In thatcase,thestartnodeu andendnode
v areidentical,so Advancewill certainlyfind v (immediatelyafter switchingto versioni, searchingin
versioni is identical to searchingin versioni � 1). Additionally, the advancepathconsistsof a single
node(which is thenlast),sothesecondpartof thehypothesisfollowstrivially.

Assumethatsomeoperationchangestheadvancepath. By induction,thechangeis madeby altering
or addinga pointerin thelastnodeonthepath.We considertheoperationsin turn.

Assumethataninsertionchangedtheadvancepath,andassumewithout lossof generalitythattheleaf
possiblycontainingk (beforethe insertion)is to the left. If the insertionis alsomadeto the left, the
advancepathwill continuefirst by eitherfollowing theleft pointer(if thenodein questionis from version
i), theextra pointer, or, if thatwasalreadyused,by following thecopypointerandthenthe left pointer.
This bringsus to the new internalnodewhich, by the insertion,hasbecomethe new parentof the leaf
possiblycontainingk.



104 Kim S.Larsen

Sincea new copyis triggeredasthelastactiontakenduringaninsertion,andsinceupdatesarealways
performedin thenewestnodes,noneof thepointersdescribedin theabove canever bealtered.Thus,it is
still thecasethatnopointerchangescanbemadeto nodeson theadvancepathexceptthelast.

If theinsertionis madeto theright, thenonly thecopypointerwill befollowed(possiblytwice)andwe
areagainat thecorrectlocation.

Now, weassumethatadeletionmakesachangeto thelastnodeu ontheadvancepath.If u is theinternal
nodewhich is deleted,thecopy pointeris setto point to thecorrectnext location(sincethe locationis
actuallyfoundby a searchin thenewestversion),andsincea deletednodecannever beaccessedby an
updatingoperationagain,nochangescanbemadeto nodeson theadvancepathexceptthelast. If u is the
parentof theinternalnodeto bedeleted,theadvancepathis eithernot changed(if theextra pointerwas
usedfor theupdate),or thecopypointerfrom u to thenewestversionof u becomespartof theadvance
path.

Finally, we must considerrebalancingoperations. As required,they consistof a numberof single
rotation. Thus,we only needto consideronesinglerotation. Assumethat a singlerotation(Figures3
on page98 and7 on page102)makesa changeto the lastnodeon theadvancepath. If v in Figure3 on
page98 is thelastnode,sinceit keepsit leaf (C), thepathis eithernot changedor it is extendedwith one
copypointer. For the nodeu, the situationis similar if A is the leaf possiblycontainingk. So,assume
thatB is the leaf in question.This is exactly thecasewherea copyof u is triggeredafter therotationas
shown in Figure7 onpage102. Thus,thenew pointerin u leadingto thenew parentof theleaf possibly
containingk cannotbealteredagain.Thus,exceptfor thenew lastnode(v), nodeson theadvancepath
cannotbechanged. ��

4 Complexity
Themostinterestingcaseto consideris theonewheretherearemany versions,sincethatis whensearch-
ing from anentrypointerthrougheachversionwould bevery time consuming.We assumethataftera
fixedconstantnumberof updates(or earlier)andthe rebalancingoperationscausedby the updates,we
changeto a new version.We considerthebehavior of Advanceunderthatrestriction.

Complexity of Transcript

Sincea copypointerwhich is setup duringa deletionpointsto a nodewhich wasin the treeat thetime
(thoughit maybefrom anolderversion),any additionalcopypointersfrom theremustbeat leastasnew.
This is alsothecasefor copypointerscreatedby insertions.Sincethereareonly a constantnumberof
updates,the function Advancecanfollow suchpointersat mosta constantnumberof timesto get from
oneversionto thenext.

Rebalancingdoesnot necessarilybehave that well. In the following, we considerrestrictionson the
behavior of rebalancingwhich leadto thebestpossiblecomplexities.

A rotationasdescribedearlierwhich triggersa copyingof a node,becausethemiddlesubtreeis a leaf
l , is referredto asanexpensiverotation,andtherotationis saidto beexpensive dueto theleaf l .

Definition 1 A balancedbinary searchtreeschemeis said to have limited leaf action if thereexists a
constantc suchthatfor any leaf l andany update,thenumberof expensive rotationsdueto l , which are
carriedout in responseto theupdate,is boundedby c. ��



Partially PersistentSearch Treeswith TranscriptOperations 105

If a balancedsearchtreeschemehaslimited leaf action, thenAdvancewill find the correctnodein
constanttime,since,referringto theproofof Theorem2 onthepagebefore,theadvancepathis extended
with only a constantnumberof edgesfor eachinsertion,deletion,andexpensive rotation,andwechange
versionaftera boundednumberof updates.Thus,thecomplexity of thetranscriptoperationis O

�
logn �

p� , wheren is thenumberof elementsin thestartversionfor thereporting.
It is now interestingto determinewhichschemeshave limited leafaction.Red-blacktrees[7] do,since,

asit is pointedout in [5], rebalancingafteranupdateconsistsof atmostthreerotations(singleor double).
Theremainingrebalancingoperationsarerecolorings.

Also treaps[3] have limited leaf action. Only singlerotationsareusedin treaps,andin a sequence
of rotationsfollowing aninsertion,it is alwaysthesamenodewhich is thebottom-mostnodeof thetwo
internalnodesin therotation.It is easyto show thatafterit haslostatmosttwo leaf children,its children
aregoingto beinternalnodesfrom thatpointon. Deletionscanbeviewedasreverseinsertions.

AVL-trees[1] andBB[α]-trees[9, 4, 8] alsohave limited leaf action. As soonasonegetsjust some
fixed constantdistanceup towardsthe root from the placeof an update,thenthe relationshipbetween
heightsandsizes,respectively, of subtreesimpliesthatnoneof theinvolvedsubtreescanbeleaves.

Other Complexity Considerations

Searchingin atranscripttreeis clearlyof thesameasymptoticcomplexity asin [5].
For updates,the additionsonly increasethe complexity by a constantfactor, sincethe work carried

out in connectionwith pointerupdatingandtriggeringof copies,by Theorem1 on page99, is amortized
constantper pointerchange.Thoughsettingthe copy pointer in connectionwith a deletionrequiresa
search,this action is takenin connectionwith an update,so the total complexity of updatesremains
boundedby theheightof thetree.

If the transcriptoperationis implementedusingbinary searchtreeswithout balanceconstraints,the
complexity of thetranscriptoperationbecomesO

�
h � p� , whereh is theheightof thefirst versionfrom

whichwereport,andupdatesbecomeO
�
h� , whereh is theheightof thetreeat thetimeof theupdate.

From the discussionabove, it alsofollows that searchtreeswherethe numberof pointerchangesin
responseto an updateis amortizedconstantwill usespaceonly linear in the numberof updates.This
appliesto red-blacktreesandBB[α]-trees,for instance.Theexpectednumberof rotationscarriedout in
responseto anupdatein a treapis two, sospaceconsumptionfor treapsis expectedlinear.

5 Concluding Remarks
The statusof a key is not necessarilychangedin every version. Thus,whenfollowing a copy pointer,
we may skip over a large numberof versions.This canbeexploited to give a runningtime which can
sometimesbesignificantlybetter. Thealgorithmwould thenonly print a line whenever thestatusof the
key hadchanged.It wouldbeinterestingto investigatethisbehavior moreclosely;boththeoretically, but
alsoempiricallyundersomeaverageuseof searchtrees.

A chronologicaltranscriptinvolving morethanonekey couldbeproducedby merging separatetran-
scripts.However, Transcripthasbeenexpressedvia Advancewhich reportsonechangeat a time. Thus,
thetotal chronologicaltranscriptcanbeproduceddirectly by maintaininga priority queuewith anentry
for eachkey andtheversionnumberasthepriority. This is more“on-line”, i.e., it wouldstartprintingout
thetranscriptearlier.



106 Kim S.Larsen

If the numberof pointersis not a concern,thenthereis an easiersolution: decidethat the standard
searchtree shouldhave all the parentsof leaves connectedin a doubly linked list. By [5], we obtain
theoptimalasymptoticamortizedcomplexities. However, morepointersareneeded.Thedoubly linked
list usesadditionalpointers,but sincenodescannow have morethanonepredecessor(therearenow 3),
nodesmustbe equippedwith predecessorpointers(see[5]) suchthat all nodesreferringto an updated
nodecan themselves be updated. Additionally, theremust be more extra fields correspondingto the
numberof predecessors(theamortizedconstantresultsfrom [5] dependon this). Thoughtheamortized
time complexity would be the same,the worst casecomplexity of anupdatewould be Ω

�
n� insteadof

O
�
logn� obtainedby a balancedtranscripttree.This happenswhenall theextra fieldsin all thenodesin

thedoublylinked list have beenused.In thatcase,every nodein thelist mustbecopied.

References
[1] G. M. Adel’son-Vel’skĭı andE. M. Landis,An Algorithm for theOrganisationof Information,Dok-

lady AkadamiiNaukSSSR, in Russian,146, 263–266,1962; englishtranslationin SovietMath.
Doklady, 3, 1259–1263,1962.

[2] A. Andersson,Improving Partial Rebuilding by Using SimpleBalanceCriteria, In FrankDehne,
Jörg-Rüdiger Sack,and Nicola Santoro(eds.),1st Wokshopon Algorithmsand Data Structures,
LectureNotesin ComputerScience,Vol. 382,393–402.Springer-Verlag,1989.

[3] C. R. AragonandR. G. Seidel,RandomizedSearchTrees,In Proceedingsof the30thAnnualIEEE
Symposiumon theFoundationsof ComputerScience, 540–545,1989.

[4] N. Blum andK. Mehlhorn,On theAverageNumberof RebalancingOperationsin Weight-Balanced
Trees,TheoreticalComputerScience, 11,303–320,1980.

[5] J.R.Driscoll, N. Sarnak,D. D. Sleator, andR.E.Tarjan,MakingDataStructuresPersistent,Journal
of ComputerandSystemSciences, 38,86–124,1989.

[6] I. GalperinandR.L. Rivest,ScapegoatTrees,In 4thACM-SIAMSymposiumonDiscreteAlgorithms,
165–174,1993.

[7] L. J. GuibasandR. Sedgewick, A DichromaticFramework for BalancedTrees,In Proceedingsof
the19thAnnualIEEESymposiumon theFoundationsof ComputerScience, 8–21,1978.

[8] K. Mehlhorn,SortingandSearching, volume1 of DataStructuresandAlgorithms, Springer-Verlag,
1986.

[9] J. Nievergelt andM. Reingold,Binary SearchTreesof BoundedBalance,SIAMJournal on Com-
puting, 2:1,33–43,1973.



Partially PersistentSearch Treeswith TranscriptOperations 107

func Go(u: Node,dir: Dir, i: Version):Node
if u.extra �� nil and u.extra.dir � dir and u.extra.vn � i then

return u.extra.ptr
else

return (dir � Left ? u.left : u.right)

func Find(u:Node,k: Key, i: Version):Node
v : � (k � u.key ? Go(u,Left, i) : Go(u,Right, i))
return (Leaf(v)? u : Find(v, k, i))

func Status(u:Node,k: Key, i: Version):Bool
dir : � (k � u.key ? Left : Right)
if u.extra �� nil and u.extra.dir � dir and u.extra.vn � i then

return u.extra.ptr.key � k
else

return (dir � Left ? u.left.key : u.right.key) � k

func Advance(k:Key, u: Node,i: Version): � Bool, Node�
u : � Find(u,k, i)
while u.copy �� nil and u.copy.vn � i do

u : � Find(u.copy.ptr, k, i)
return � Status(u,k, i), u�

proc Transcript(k:Node,v1, v2: Version)
u : � Entry(v1)
for i : � v1 to v2 do

� s,u� : � Advance(k,u, i)
print i, k, s

Fig. 8: Thetranscriptoperation.


