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The Centerpoint Theorem states that, for any set S of n points in Rd, there exists a point p in Rd such that every closed
halfspace containing p contains at least rn{pd� 1qs points of S. We consider generalizations of the Centerpoint
Theorem in which halfspaces are replaced with wedges (cones) of angle α. In R2, we give bounds that are tight for
all values of α and give an Opnq time algorithm to find a point satisfying these bounds. We also give partial results
for R3 and, more generally, Rd.
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1 Introduction
Let S be a set of n points in Rd. The halfspace depth [14] of a point p with respect to S is defined as

Dπpp, Sq � mint|hX S| : h is a closed halfspace that contains pu .

The Centerpoint Theorem, which is a simple consequence of Helly’s Theorem [6], states that for any point
set S of size n there exists a point whose halfspace depth is at least rn{pd� 1qs. Furthermore, for every
n ¡ 0, there exists a point set S in Rd of size n for which no point in Rd has halfspace depth greater than
rn{pd� 1qs.

In this paper we consider a generalization of halfspace depth that we call α-wedge depth. Let r be a ray
with endpoint q. An α-wedge with apex q and axis r is the point q plus the set of all points p such that the
angle(i) between pq and r is at most α{2. The α-wedge depth of a point p with respect to a point set S is
defined as

Dαpp, Sq � mint|hX S| : h is an α-wedge with apex pu .
:Partially supported by projects MECMTM2006-01267 and Gen. Cat. 2005SGR00692.
;Partially supported by grants from NSERC, the Ontario Ministry of Research and Innovation, and the E. Bower Carty Memorial

Foundation.
(i) We use the convention that the angle between two line segments (or, in this case, a ray and a line segment) with an endpoint in

common is the smaller of the two angles occuring at the common point.
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Several authors have studied α-wedge depth and related notions. The set of point in S with α-wedge
depth 1 are called unoriented α-maxima by Avis et al [2] who study their computational and combinatorial
properties. Abellenas et al [1] study pα, kq-sets in the plane. These are the subsets of S that can be
separated from the remainder of S by an α-wedge. In particular, every pα, kq set defines a locus of points
whose α-wedge depth is at most k. Several authors have studied the use of α-floodlights (α-wedges) for
illuminating regions of the plane [7, 13].

In the current paper, we consider bounds on the points of maximum α-wedge depth. Define the function
fdαpnq as follows:

fdαpnq � min
 
maxtDαpp, Sq : p P Rdu : S � Rd , |S| � n

(

That is, fdα defines, for each n, the maximum value k for which every point set S of size n is guaranteed
to define a point whose α-wedge depth with respect to S is at least k. The Centerpoint Theorem states
that fdπpnq � rn{pd� 1qs. In this paper we prove the following Theorem about 2-dimensional point sets:

Theorem 1

f2
αpnq �

$''&
''%

1 if α   π
rn{3s if π ¤ α   4π{3
rn{2s if 4π{3 ¤ α   2π
n if α � 2π .

Furthermore, for any α and any point set S of size n, a point p such that Dαpp, Sq ¥ f2
αpnq can be found

in Opnq expected time.

We also prove some partial results about fdα for dimensions d ¥ 3. The remainder of the paper is
organized as follows. In Section 2 we fully characterize f2

α. In Section 3 we give a partial characterization
of fdα. In Section 4 we refine this characterization for the special case d � 3. Finally, in Section 5 we
summarize and conclude with open problems.

2 Proof of Theorem 1
In this section we prove a sequence of lemmata that immediately imply Theorem 1.

Lemma 1 If α   π then f2
αpnq � 1 and a point p such that Dαpp, Sq ¥ 1 can be found in Op1q time.

Proof: To prove the lower bound, we observe that for any non-empty point set S, every point p P S
satisfies Dαpp, Sq ¥ 1, so f2

αpnq ¥ 1. This proves the lower bound and gives an Op1q time algorithm for
finding p.

For the upper bound, consider a set S of points that are all on the x-axis. For any point p on or above the
x axis, the α-wedge whose axis is vertical and upwards intersects the x axis in at most one point, therefore
Dαpp, Sq ¤ 1. For any point p below the x axis, the α-wedge whose axis is vertical and downwards does
not intersect the x axis at all, so Dαpp, Sq � 0. In either case, Dαpp, Sq ¤ 1 so f2

αpnq ¤ 1. l

Lemma 2 If π ¤ α   4π{3 then f2
αpnq � rn{3s and a point p such that Dαpp, Sq ¥ rn{3s can be found

in Opnq time.
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Fig. 1: The existence of three concurrent halving lines that meet at angles of π{3.

Proof: For the lower bound, we observe that every α-wedge containing p also contains a halfspace con-
taining p. Therefore, the Centerpoint Theorem implies that f2

αpnq ¥ rn{3s. This proves the lower bound
and the algorithm of Jadhav and Mukhopadhyay [10] gives an Opnq time algorithm for finding p.

For the upper bound, consider the following point set. Start with three rays originating at the origin such
that each pair of rays meet at an angle of 2π{3. Place rn{3s or tn{3u points on each ray, as appropriate,
so that the total number of points is n. For any point p P R2, there exists a 4π{3-wedge whose apex is at
p and whose interior intersects only one of the three rays (the axis of this wedge is parallel to this ray).
This 4π{3 wedge contains an α-wedge that contains p and intersects only one of the three rays, therefore
Dαpp, Sq ¤ rn{3s. Since the choice of p is arbitrary, this implies that f2

αpnq ¤ rn{3s. l

The next part of the proof uses the notion of halving lines. A halving line in direction d of a finite point
set S, |S| � n, is a line ` parallel to d such that each of the 2 closed halfplanes bounded by ` contains at
least rn{2s points of S. We will use the convention that, if n is even, then the closest point of S to the left
of ` is at the same distance from ` as the closest point of S to the right of `. In this way, a halving line is
uniquely defined by its direction. The following lemma was proven by Fekete and Meijer [8, Lemma 2]
in a different context. However, for completeness, we include a proof because an understanding of the
existence proof is required for the algorithm described in Lemma 4.

Lemma 3 For any point set S there exists three concurrent halving lines of S such that the angle(ii)

between any pair of lines is π{3.

Proof: To prove the existence of these three halving lines we start with one vertical halving line, `1, and
the other two halving lines, `2 and `3, forming angles of π{3 with `1, `2 having positive slope and `3
having negative slope (Figure 1.a). If these three halving lines are concurrent then the construction is
complete.

Otherwise, assume without loss of generality that `1 is directed downwards and that `2 X `3 is to its
right. Imagine continuously rotating the three lines while maintaining the invariant that they are all halving
lines and that the angle between any two is π{3. After having rotated the lines by an angle of π, the three
halving lines are identical to their initial configuration except that the direction of `1 is reversed, so now

(ii) We use the convention that the angle between a pair of lines is the smaller of the two angles defined by the two lines.
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`2 X `3 is to the left of `1 (Figure 1.c). We conclude that at some point during this process `2 X `3 must
have been on `1 (Figure 1.b), at which point the three lines were concurrent. This completes proof. l

Lemma 4 Three halving lines satisfying the conditions of Lemma 3 can be found in Opnq time.

Proof: To find the three halving lines we apply the prune-and-search paradigm in much the same way as
the algorithm of Lo, Matoušek, and Steiger [11] for finding planar ham-sandwich cuts. By the standard
“computational geometry duality” [5, Section 1.3.3], our problem is to find three points on the median
level of n lines such that these points are collinear and their x-coordinates satisfy a certain equation.

More precisely, given a set S� of n lines (that are dual to the points of S), let

hkpxq � minty : px, yq is on or above at least k lines of S�u
and let h � hrn{2s. The set of all points px, yq satisfying y � hkpxq is called the k-level of S� or, for
k � rn{2s, the median level. The dual of our problem is to find a value x such that the three points
px, hpxqq, pg1pxq, hpg1pxqqq and pg2pxq, hpg2pxqqq are collinear. Here g1pxq � tanparctanpxq � π{3q
and g2pxq � tanparctanpxq � π{3q which captures the condition that each pair of halving lines form an
angle of π{3. [Informally, the continuity argument in the proof of Lemma 3 is equivalent to the observa-
tion that, if the sequence of points xp�8, hp�8qq, pg1p�8q, hpg1p�8qq, pg2p�8q, hpg2p�8qqy form
a right (respectively left) turn then the points xp8, hp8qq, pg1p8q, hpg1p8qq, pg2p8q, hpg2p8qqy form a
left (respectively right) turn, so there must be some x P p�8,8q such that px, hpxqq, pg1pxq, hpg1pxqqq
and pg2pxq, hpg2pxqqq are collinear.]

Each iteration in the algorithm of Lo et al [11] constructs, in time linear in |S�|, a trapezoid T that is
guaranteed to contain a ham-sandwich point(iii) and that intersects at most 2n{3 lines of S�. The lines
in S� not intersecting T are then discarded and the algorithm recurses on the remaining lines. Since
a constant fraction of the lines are discarded in each iteration, the running time of the algorithm is a
geometrically decreasing series and is therefore Op|S�|q.

In our setting, we are searching for 3 points, so at each iteration we construct three trapezoids T , T1

and T2 such that each trapezoid intersects at most δm lines, for an arbitrarily small constant δ   1{3. We
then discard from S� any line not intersecting any of the three trapezoids and recurse on the remaining
lines. Each iteration (described below) takes Op|S�|q time and decreases the size of S� by a factor of 3δ,
so the entire algorithm runs in Op|S�|q � Opnq time.

Because the algorithm is recursive the subproblems it solves are slightly more general than the original
problem. Given a set S� of lines, two x-coordinates x1 and x2 and three integers k, k1 and k2, the
algorithm finds an x-coordinate x P rx1, x2s such that the three points px, hkpxqq, pg1pxq, hk1pg1pxqqq
and pg2pxq, hk2pg2pxqqq are collinear. Such a value x is guaranteed a priori to exist. Note that, for our
initial recursive call we set x1 � �8, x2 � 8, and k � k1 � k2 � rn{2s.

All that remains is to show how to implement a single iteration of the algorithm in Op|S�|q time. To
begin, we create a set X of x-coordinates that initially contains the values x1 and x2. Next we add to X
an additional Op1q values so that, for any two consecutive elements of X , the arrangement of our m lines
contains at most pδmq2{16 vertices that have x-coordinates between these two elements of X . These
additional values can be found in Op|S�|q time using (e.g.) the algorithm of Matoušek [12] (or much
more simply by random sampling). Finally, for each value x P X we add the values g�1

1 pxq and g�1
2 pxq

(iii) A ham-sandwich point is the dual of a ham-sandwich line.
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to X . This last step guarantees that, for any two consecutive elements x11 and x12 of X , the arrangement of
the lines in S� contains at most pδmq2{16 vertices whose x coordinates are in the range rg1px11q, g1px12qs
(respectively rg2px11q, g2px12qs).

Now, using Op|X|q � Op1q applications of a linear time selection algorithm (e.g., [3]) we can find,
in Op|S�|q time, two consecutive elements x11 and x12 of X such that x11, x

1
2 P rx1, x2s and a solution

to our problem lies in the interval rx11, x12s. Consider the trapezoid T whose four corners are given by
px11, hk�tδm{4upx11qq and px12, hk�tδm{4upx12qq. A simple argument [11] shows that this trapezoid intersects
at most δm lines of S� and that the k-level of S� does not intersect the top or bottom sides of this trape-
zoid. Similarly, there are trapezoids T1 and T2 defined by the four points pg1px11q, hk1�tδm{4upg1px11qqq
and pg1px12q, hk1�tδm{4upg1px12qqq and the four points pg2px11q, hk1�tδm{4upg2px11qqq and
pg2px12q, hk1�tδm{4upg2px12qqq, respectively. The inclusion of the elements of the form g�1

1 pxq and g�1
2 pxq

in the set X guarantees that, neither T1 nor T2 intersect more than δm lines in S� and the k1-level (re-
spectively k2-level) of S� does not intersect the top or bottom sides of T1 (respectively T2).

Altogether, this means that there are at least m � 3δm lines in S� that do not intersect any of the
trapezoids T , T1 or T2. When we recurse, we discard these lines, set x1 � x11, x2 � x12, and subtract from
k (respectively k1 and k2) the number of discarded lines that pass below T (respectively T1 and T2). This
completes the description of the algorithm and the proof of the lemma. l

Lemma 5 If 4π{3 ¤ α   2π then f2
αpnq � rn{2s and a point p such that Dαpp, Sq ¥ rn{2s can be

found in Opnq time.

Proof: For the lower bound, consider the three halving lines whose existence is given by Lemma 3.
These three halving lines naturally define six π{3-wedges. Observe that if we take p to be the common
intersection point of the three halving lines then any α-wedge with apex p contains at least 3 consecutive
π{3-wedges and therefore contains at least rn{2s points of S Therefore, f2

αpnq ¥ rn{2s, and the point p
such that Dαpp, Sq ¥ rn{2s can be found in Opnq time using Lemma 4.

For the upper bound, we consider a point set in which the points have been clustered into two groups of
size tn{2u and rn{2s. Each of the two groups is contained in a unit ball and the distance between the two
groups is very large, say r. Now, observe that any point p P R2 must be at distance at least r{2 from at
least one of the two groups. This means that, if r is sufficiently large, then there exists a p2π � αq-wedge
whose apex is p and that contains this group in its interior. The complementary α-wedge contains p and
does not contain any points of this group. Therefore, Dαpp, Sq ¤ rn{2s. Since p was chosen arbitrarily,
we conclude that f2

αpnq ¤ rn{2s. l

Proof of Theorem 1: The theorem follows immediately from Lemma 1, Lemma 2 and Lemma 5. l

3 Some Results for Rd

In this section, we consider α-wedge depth in Rd, and prove some bounds on the function fdα. The
following lemma results from exactly the same arguments used in the proofs of Lemma 1, Lemma 2 and
Lemma 5 (namely points on a line, the Centerpoint Theorem, and 2 small clusters of points, respectively).
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Lemma 6 fαd satisfies the following:

fdαpnq � 1 if α   π
fdαpnq ¥ rn{pd� 1qs if α ¥ π
fdαpnq ¤ rn{2s if α   2π

The following technical lemma is needed for proving an upper bound that generalizes the construction
in Lemma 2.

Lemma 7 Let T be a regular d-simplex whose center is at the origin. Then, for any d vertices of T , there
is a 2 arccosp1{dq-wedge whose apex is at the origin and that contains these d vertices of S.

Proof: Without loss of generality, we can consider the regular d-simplex whose vertices are e1, . . . , ed, pp1�?
d� 1q{dqpe1 � � � � � edq where ei is the ith coordinate unit vector in Rd. The center of this simplex is

the point c � ?
d� 1{pd2 � dqpe1 � � � � � edq. Consider the ray r that originates at c and contains the

point e1�� � �� ed. The angle between r and ei, for any 1 ¤ i ¤ d is easily determined to be arccosp1{dq
using the famous formula

>uv � arccos
�

u � v
}u}}v}




for the angle between two vectors u and v. Thus, the d-vertices e1, . . . ed are contained in the 2 arccosp1{dq-
wedge whose axis is r, as required. l

The next lemma is a generalization of Lemma 2. Notice that 2pπ � arccosp1{dqq approaches π from
above as d increases. This means that, for sufficiently large d, the upper bound in the following lemma
only holds for α   π � ε.

Lemma 8 If α   2pπ � arccosp1{dqq then fdαpnq ¤ rn{pd� 1qs.

Proof: We use a generalization of the point set used in the proof of Lemma 2. Let T be a regular d-simplex
whose center is at the origin and consider the d � 1 rays originating at the origin and each containing a
different vertex of T . On each of these rays, place rn{pd� 1qs or tn{pd� 1qu points, as appropriate, to
produce a point set S of size n. We claim, as in the proof of Lemma 2, that for any point p P R2, there is
a 2 arccosp1{dq-wedge whose apex is p and that contains d of the d� 1 rays that contain the points of S.

To see why this is so, letC1, . . . , Cd�1 be the closed cones obtained by taking the conical hull(iv) of each
facet of T . Notice that these cones cover Rd and that each cone contains d of the d � 1 rays that contain
S. Furthermore, if the cone Ci contains the point �p then, by Lemma 7, there is a 2 arccosp1{dq-wedge
whose apex is at p and that contains Ci.

If we consider the complementary 2pπ � arccosp1{dqq-wedge then the interior of this wedge does not
intersect Ci and hence intersects only 1 of the d� 1 rays that contain S. This 2pπ � arccosp1{dqq-wedge
contains an α-wedge that contains p and contains at most rn{pd� 1qs points of S, as required. l

Next we consider lower bounds. The following lemma, which is a generalization of a 3-dimensional
result of Fekete and Meijer [8] is used to find centerpoints.

Lemma 9 If α ¥ π � 2 arccosp1{?dq then fdαpnq ¥ rn{2s.
(iv) The conical hull of a point set S is defined as conepSq �

!°
pPS αpp : αp ¡ 0 for all p P S

)
.



Centerpoint Theorems for Wedges 51

Proof: Let h1, . . . , hd be any d orthogonal halving hyperplanes of S and let the point p be the point
common to h1, . . . , hd . Consider any α-wedge whose apex is p and suppose that the axis of this wedge is
the ray r. We claim that one of the planes hi makes an angle of at least π{2�arccosp1{?dq with r. To see
this, observe that the (positive and negative) normal vectors of the halving planes form a set of 2d points
on the unit sphere in Rd. In fact, they are the vertices of generalized octahedron. Placing spherical caps of
angle arccosp1{?dq gives a covering of the sphere, and hence r forms an angle of at most arccosp1{?dq
with at least one of the normals. Therefore, r forms an angle of at least π{2 � arccosp1{?dq with the
corresponding halving plane hi.

Therefore, the α-wedge with axis r contains hi and so contains one of the two halfspaces bounded by
hi. Since this is true for any α-wedge containing p we conclude that Dαpp, Sq ¥ rn{2s, as required. l

Theorem 2 The function fdα satisfies

fdαpnq � 1 if α   π
fdαpnq � rn{pd� 1qs if π ¤ α   2pπ � arccosp1{dqq

rn{2s ¥ fdαpnq ¥ rn{pd� 1qs if 2pπ � arccosp1{dqq ¤ α ¤ π � 2 arccosp1{?dq
fdαpnq � rn{2s if π � 2 arccosp1{?dq ¤ α   2π

Notice that, as d Ñ 8, 2pπ � arccosp1{dqq Ñ π and π � arccosp1{?dq Ñ 2π. Thus, Theorem 2
leaves a considerable gap in our knowledge.

4 Some Results for R3

Since we have been unable to fully determine fdα for all values of d, we concentrate our efforts in this
section on the special case d � 3. We begin by restating Theorem 2 with d � 3.

Corollary 1 The function f3
α satisfies

f3
αpnq � 1 if α   π (α   180�)
f3
αpnq � rn{4s if π ¤ α   2pπ � arccosp1{3qq

rn{2s ¥ f3
αpnq ¥ rn{4s if 2pπ � arccosp1{3qq ¤ α   π � 2 arccosp1{?3q
f3
αpnq � rn{2s if π � 2 arccosp1{?3q ¤ α ¤ 2π

We first show that the situation is more complex in R3 than in R2. That is, the function f3
α does not

change immediately from rn{4s to rn{2s at the threshold value α � 2pπ � arccosp1{3qq.
Lemma 10 If α   2pπ � arccosp1{?5qq (α   233.13�) then f3

αpnq ¤ 2 rn{5s.

Proof: Hardin, Sloane, and Smith [9] describe a covering of the unit sphere by 5 spherical caps whose
angular radius(v) is arccosp1{?5q. Let the centers of these 5 caps be denoted by v1, . . . , v5. (These are
the vertices of a regular triangular bipyramid.) For the lower bound point set, we place rn{5s or tn{5u, as
appropriate, points on each of the 5 rays from the origin through v1, . . . , v5, to produce set of n points.

The convex hull of v1, . . . , v5 has 6 equilateral triangular faces. In particular, none of the faces are
obtuse. Thus, in each face there is a point whose radial projection onto the unit sphere is contained in

(v) The angular radius of a point set S is maxt=pOq : p, q P Su where O is the origin.
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three of the spherical caps. Stated another way, for each face f , there is a 2 arccosp1{?5q-wedge with
apex at the origin that contains f .

At this point, the remainder of the proof is exactly as in the proof of Lemma 8. Take the conical hull
of each face of the convex hull, and determine some conical hull h that contains �p. Then there is a
2 arccosp1{?5q-wedge with apex at p and that contains h so therefore contains at least 3 tn{5u points of
S. The complementary p2π � 2 arccosp1{?5qq-wedge contains an α-wedge that contains p and at most
n� 3 tn{5u ¤ 2 rn{5s points of S so Dαpp, Sq ¤ 2 rn{5s, as required. l

Next we give an improvement on the value of α required to achieve f3
αpnq ¥ rn{2s.

Lemma 11 If α ¥ 3π{2 (α ¥ 270�) then f3
αpnq ¥ rn{2s.

Proof: Fekete and Meijer [8] show that, for every set S of n points in R3, there exists 3 mutually or-
thogonal halving planes of S that partition R3 into 8 octants such that the number of points in opposite
octants is equal. If we take p to be the common intersection point of these 3 halving planes and let w be
any α-wedge whose apex is p then we find that, if some octant Q is not entirely contained in w then the
octant �Q is entirely contained in w. (This is because for any q P Q and r P �Q, =qOr ¥ π{2.) Thus,
for every point of S not in w there is a point of S that is in w, so Dαpp, Sq ¥ rn{2s, as required. l

The following theorem summarizes the above results.

Theorem 3 The function f3
α satisfies

f3
αpnq � 1 if α   180�

f3
αpnq � rn{4s if π ¤ α   2pπ � arccosp1{3qq

r2n{5s ¥ f3
αpnq ¥ rn{4s if 2pπ � arccosp1{3qq ¤ α   2pπ � arccosp1{?5qq

rn{2s ¥ f3
αpnq ¥ rn{4s if 2pπ � arccosp1{?5qq ¤ α   3π{2
f3
αpnq � rn{2s if 3π{2 ¤ α   2π

5 Conclusions
We have completely determined the function f2

α and given a linear-time algorithm for finding a point p
such that Dαpp, Sq ¥ f2

αp|S|q. Our main new algorithmic result is a linear-time algorithm for finding 3
concurrent halving lines, each pair of which forms an angle of π{3. These triples of halving lines were
used by Fekete and Meijer [8] to show that the cost of a minimum Steiner star of an n point set in R2 is at
most 2{?3 times the cost of the maximum matching of the same set. Our algorithm gives an Opnq time
construction of a Steiner star matching this bound.

Fekete and Meijer also prove that, in R3, the ratio between the minimum Steiner star and the maximum
matching is at most

?
2 by showing the existence of 3 orthogonal halving planes with the property that

the number of points in opposite orthants is equal. They prove this by taking an arbitrary halving plane Π,
projecting the points onto Π, and finding two orthogonal halving lines in Π such that opposite quadrants
have the same number of projected points above and below Π. The existence of these two halving lines is
guaranteed by a simple continuity argument. A (simpler) variant of the algorithm from Lemma 3 can be
used to find these two orthogonal halving lines and hence find three orthogonal halving planes in Opnq
time. Again, this gives an Opnq time algorithm to construct the Steiner star achieving this bound.

We conclude with a list of open problems:
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1. Given a point set S in R2, what is the complexity of finding a point p P R2 that maximizes
Dαpp, Sq? For α � π, i.e., halfplane depth, Chan has recently given an Opn log nq time algo-
rithm [4].

2. Our understanding of the function fdα is still incomplete for d ¥ 3.

3. In R2, we are able to find 3 concurrent halving lines whose sides are parallel to the edges of an
equilateral triangle. The same technique can be used in Rd, if d is even, to show that there always
exists d � 1 concurrent halving hyperplanes whose sides are parallel to the edges of a regular d-
simplex. (The proof involves continuously rotating the d-simplex until each of its vertices has been
reflected through the origin; this works in even dimensions because reflection through the origin
can be implemented as a sequence of rotations.) A different proof can be used to prove the same
result for R3. Does this result hold in Rd for all values of d?

4. In R2 any pair of orthogonal halving lines partitions the plane into four quadrants such that the
number of points in opposite quadrants is equal. In R3, Fekete and Meijer [8] showed the existence
of 3 orthogonal halving planes with the same property. This raises the following question: Given a
set S of n points in Rd is it the case that we can always find an arrangement of dmutually orthogonal
halving hyperplanes of S such that cells with opposite sign vectors in the arrangement contain the
same number of points of S?

5. Given a set S of n points in Rd, for d ¥ 3, what is the complexity of finding a point p P Rd such
that p ¥ fdαpnq? This problem is still open even for the case α � π, though the algorithm of Jadhav
and Mukhopadhyay [10] settles the problem for d � 2 and α � π.

6. In this paper we have only considered α-wedges. This is mainly because, for d � 2, these are more
or less the only interesting scale-invariant objects. However, in higher dimensions, one can define
many scale-invariant shapes. In general, for any shape F , one can study the properties of F -depth:

DF pp, Sq � min thX S : h is an F that contains pu .
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