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Let ���
	���
 denote the sum of the digits in the base- � representation of � . In a celebrated paper, Thue showed that the
infinite word 	�� � 	���
����
����
��
��� is overlap-free, i.e., contains no subword of the form �
���
��� , where � is any finite
word and � is a single symbol. Let �� "! be integers with �$#%� , !&#(' . In this paper, generalizing Thue’s result, we
prove that the infinite word )��+* ,.- /.	����0	���
1���
�2!3
 �
��� is overlap-free if and only if !4#5� . We also prove that
)6��* , contains arbitrarily long squares (i.e., subwords of the form ��� where � is nonempty), and contains arbitrarily
long palindromes if and only if !87%� .
Keywords: sum of digits, overlap-free sequence, palindrome

1 Introduction
At the beginning of the 20th century, the Norwegian mathematician Axel Thue initiated the study of what
is now called combinatorics on words with his results on repetitions in words [18, 19, 6, 8]. We say a
nonempty word 9 is a square if it can be written in the form :�: for some word : . Examples include the
words chercher in French and murmur in English. We say that 9 is an overlap if it can be written in
the form ;<:�;<:=; for some word : and single symbol ; . Examples include the words entente in French
and alfalfa in English. Thue explicitly constructed an infinite word on two symbols that is overlap-
free, that is, contains no subword that is an overlap. He also constructed an infinite word on three symbols
that is square-free, that is, contains no subword that is a square.

Thue’s constructions are based on what is now called the Thue-Morse sequence

>@?5A+BDCFE1A+B � EGA+B � E3HIH�H<?JC �F� C � CKC �K� CFC � C �K� CLH+H�H�M

There are many alternative ways to define this sequence (see, for example, [3]), one being as the fixed
point, starting with

C
, of the morphism N B�C<EO?PC �

, N B � E%? � C
. One can also define

>
in terms of

sums of digits. We define Q0R B�SGE to be the sum of the digits in the base- T representation of
S

. ThenA+BUSGEV? QIW BUSGEYX[Z�\ � for all
SO]^C

. Thue proved that
>

is overlap-free.
Since Thue’s pioneering work, many other investigators have studied overlap-free words and their gen-

eralizations. For example, Thue’s construction was rediscovered by Morse, who used it in a construction_
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in differential geometry [14]. The Dutch chess master Max Euwe rediscovered Thue’s construction in
connection with a problem about infinite chess games [10].

Fife [12] described all infinite overlap-free binary sequences; also see [7]. Séébold proved the beautiful
and remarkable result that

>
is essentially the only infinite overlap-free binary sequence which is generated

by iterating a morphism [17].
It is natural to wonder if Thue’s overlap-free construction is either unique in some sense, or a particular

case of a more general construction. In this note we show that t is a particular case of a more general
construction involving sums of digits. We will prove

Theorem 1 Let T ] �
, � ] �

be integers. Then the sequence
> R�� ��� ? B Q R B�SGE X[Z�\ � E��	��
 over the

alphabet � � ?�
�C�� � �IM�M�M�� ��� ��� is overlap-free if and only if � ] T .

In contrast to Theorem 1 we also show that
> R�� � always contains arbitarily long squares.

We also consider the occurrence of palindromes in
> R�� � . A palindrome is a word (such as kayak or

radar) that is equal to its reversal. We prove that
> R�� � contains arbitrarily long palindromes if and only

if ��� � .
Some combinatorial properties of

> R�� � were previously studied by Morton and Mourant [15], who
proved among other things that

> R�� � is ultimately periodic if and only if ��� B T � � E .
We observe that overlaps, squares, and palindromes in sequences have several applications. For exam-

ple, in number theory they aid in proving the transcendence of real numbers whose base � expansion or
continued fraction expansion have “repetitions” [11, 4, 16, 2], while in statistical physics they are useful
for studying the spectrum of certain discrete Schrödinger operators [9, 13, 1, 5].

2 Some useful lemmas
In this section we introduce some notation and prove some useful lemmas.

Lemma 2 For any T ] � � � ] �
, the sequence

> R�� � is the fixed point, starting with
C
, of the morphism� R�� � defined by � R�� � B ; E ? ; B ;�� � E B ;�� � E3H�H�H B ;��(T � � E where the sums are taken modulo � .

Proof. Left to the reader.

Remark. Lemma 2 shows that
> R�� � is a T -automatic sequence. For T ? � ? �

, we get the well-known
fact that the Thue-Morse infinite word is the fixed point, starting with

C
, of the morphism defined byC! C �

,
�  � C

.

Let T ] � , S%] �
be integers. Then we define " R BUSGE to be the exponent of the highest power of T which

divides
S

. More precisely, " R B�SGE ? ; if T$# � S but T�#�%'& �( S .

Lemma 3 For all integers T ] �
and

S)� S+* ] �
we have

" R B�S � S * E-, ? X/.10 B " R B�SGE�� " R BUS2*�E E�� if " R BUSGE�3? " R B�S2*�E ;] "
R B�SGE�� if "
R BUSGE ? "
R B�S2*�E . (1)
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Proof. Left to the reader.

Remark. Note that if T is a prime number, then we have "<R BUS S2*�E ? "
R B�SGE � "
R B�S2* E , but this is not
necessarily true if T is not prime.

Lemma 4 Any block of
� T consecutive values of the sequence

B "<R BUSGE E �	� & contains an occurrence of the
value

�
.

Proof. Any T consecutive numbers contains some multiple of T , say � . We have "�R B � E ] �
. If "KR B � EV? �

,
we are done. Otherwise "FR B � �(T EV? �

by Lemma 3.

The link between "KR BUSGE and Q R B�SGE is given by the following lemma.

Lemma 5 Let T ] � , SO] �
be integers. Then

Q R B�SGE � Q R B�S � � EV? � � B T � � E " R BUSGE+M
Proof. Let "
R B�SGE ? ; . Then the base- T expansion of

S
can be written in the form 9��

#� ��� �C H�HIH C
for

some word 9 and some single digit � , where � 3? C
. Then the base- T expansion of

S � �
is 9 B � �

� E #� ��� �B T � � E[H�HIH B T � � E . It follows that Q0R BUSGE � Q R B�S � � EV? � � B T � � E ; .

We now turn to the properties of overlaps. If ;F:=;<:�; is an overlap, then we call 	 ? � ;<: � its period.
If 9 ? ; & ;�W HIH�H ;�
 is a word over � � ?�
�C$� � �IM�MIM�� ��� ��� , then we define � B 9 E ?.B�
 &������ 
 ; � EYX[Z�\� . Given a word 9 ? ; & ;�W H�HIH ;�
 , we define its word of first differences

� 9 ? B ;�W � ; & E H�H�H B ;�
 � ;�
�� & E��
where the differences are taken mod � . We can also extend

�
to infinite words.

Lemma 6 Let � be a finite or infinite word over

 C�� � ��MIM�M�� � � ��� . The word � contains an overlap ;<:�;<:�;

if and only if the word
� � contains a square ��� such that � B � E�� C B�X[Z�\ � E .

Proof. Suppose � ? Q 
 Q & Q W H�HIH .
If � contains an overlap of period 	 beginning at position � of � . Let : ? : 
 : & HIH�H : W�� ? Q�� H�HIH Q�� % W��

be this overlap. Then : �
? : � % � for

C � ��� 	 . Then : � � : � � & ? : �1% � � : � % �!� & for
� � ��� 	 , so

letting � ?.B : & � : 
0E B : W � : & E3HIH�H B : � � : �!� & E , we get
� : ? ��� . Furthermore, � B � EV? : � � : 
@? C

.
For the converse, suppose

� � contains a square ��� . Then there exist integers � ] C
, 	 ] �

, such that
Q � %"� %+& � Q � %"� ? Q � %"� %+&�% � � Q � %"�1% � BUX[Z�\ � E for

C �#�%$ 	 . By telescoping cancellation, it follows that

Q � %�& %+& � Q � ? Q � %�& %+& % � � Q � % � B�X[Z�\ � E (2)

for
C �(')$ 	 . If, as the hypothesis states, we have � B � E��JC BUX[Z�\ � E , then

Q � % � � Q � �JC B�X[Z�\ � E+M (3)

Together Eqs. (2) and (3) imply that Q � %�& � Q � %�& % � B�X Z�\ � E for
C �*' � 	 . But this implies that �

contains at overlap of period 	 � � , beginning at index � .
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3 Proof of the main theorem
We are now ready to prove Theorem 1.

Proof. Fix integers T ] � and � ] �
, and let

> R�� � ? A+BDCFEGA+B � E1A+B � E�HIH�H
. Note that

A+B T S � � E�� Q R B T S � � E�� Q R BUSGE � � B�X[Z�\ � E (4)

for
C � � $ T . If � ] T , it then follows that

Every symbol contained in �
?5A+B T SGEGA+B T S � � E[H�HIH A+B T S �(T � � E

appears exactly once in � . (5)

We call such a subword � (of length T , starting at a position in
> R�� � which is congruent to

C
, modulo

T ) a T -aligned subword. It follows from Eq. (4) that every symbol in a T -aligned subword is completely
determined once the value of a single such symbol is known.

?��
: Assume � $ T . We will prove that the sequence

> R�� � contains an overlap of period � . In fact,
the subword A+B T � � B � � � E E1A+B T � � � E3H�HIHGA+B T � � ��� � E
is the overlap

C � H�HIH B � � � EGC � H�HIH B � � � E C .
Since T ] � � � , the base- T expansion of T � � � , with � � � ] � ] �

, is of the form� � &� ��� �B T � � E�HIH�HIB T � � E B T � � E6M
Then

Q R B T � � � EV? B ��� � E�B T � � E � T � � � � � � B�X[Z�\ � E
for � � � ] � ] �

. Thus
A+B T � � B � � � E E[HIH�H A+B T � � � EV?JC � H�H�H B � � � EGC .

Similarly, the base- T expansion of T � � � , C � � � � � � , is of the form

� �� ��� �C H�HIH C � M

Thus Q R B T � � � EV? � � � for
C � � � ��� � . Thus

A+B T � E3HIH�H1A+B T � � � � � EV? � � HIH�H B � � � EGC . The
result follows.

� ? : If
> R�� � has an overlap, then it has an overlap of shortest period 	 . Let

A+B � E A+B � � � E3HIH�HGA+B � � 	 � � EGA+B � � 	 E3HIH�HGA+B � � � 	 � � EGA+B � � � 	 E
be such an overlap. Note 	 ] �

. By the definition of overlap, we have
A+B � � � E ? A+B � �#	 � � E forC � � � 	 .

Case 1: T � 	 . In this case, write 	 ? T 	 * , where 	 * is a positive integer, and, using the division theorem,
write � ? T�� * � � where

C � � $ T .



Sums of Digits, Overlaps, and Palindromes 5

Since
A+B � � � EV? A+B � � 	 � � E for

C �#� � 	 , we have, by considering only those � that are multiples of
T , that

A+B � � T ' * E ?JA+B � � 	 �(T ' * E for
C � ' * � 	 ( T . Hence

A+B T�� * � � �(T ' * E ? A+B T � * � � � T!	 * �^T ' * E
for

C �(' * � 	 * . Hence
A+B T B � * � ' * E � � EV? A+B T B � * � 	 * � ' * E � � E for

C � ' * � 	 * . Hence
A+B � * � ' * E � � �A+B � * � 	 * � ' * E � � BUX[Z�\ � E , and so

A+B � * � ' * E �&A+B � * � 	 * � ' *�E B�X[Z�\ � E for
C � ' * � 	 * . But thenA+B � * E%H�H�H2A+B � * � � 	 * E is an overlap of period 	 * ? 	 ( T $ 	 , contradicting our assumption that 	 was

minimal.

Case 2: T �( 	 . In this case there are three subcases to consider, based on the size of 	 : (a) 	 $ T ; (b)
T $ 	 $ � T ; (c) 	 � � T .

Case 2(a): 	 $ T . Let ' ?�� �R�� . Then T ' ? � ��� where
C � � $ T . There are two cases to consider,

(i) � � 	 and (ii) � � 	 .
Case 2(a)(i): If � � 	 , then 9 ? A+B �)��� E HIH�H1A+B �)��� � 	 E is a subword of

A+B T ' E HIH�H1A+B T ' �OT � � E , and
9 contains two identical symbols, namely

A+B � ��� E and
A+B � �	� � 	 E , which contradicts observation (5).

Case 2(a)(ii): If � � 	 , then 9 ? A+B � E HIH�HYA+B � � 	 E is a subword of
A+B T B '!� � E E H�H�HYA+B T ' � � E , and 9

contains two identical symbols, namely
A+B � E and

A+B � � 	 E , again contradicting observation (5).

In both cases we get a contradiction, so there cannot be an overlap with 	 $ T .

Case 2(b): T $ 	 $ � T . As in Case 2(a), let ' ?
� �R � . Suppose the overlap is

A+B � E H�HIH A+B � � � 	 E6M
Define : �

?5A+B � � � E for
C � � � � 	 , and note

: �
? : � %"� for

C �#� � 	 M (6)

Set � ? T ' � � , so that � & ? :
� H�HIH :
� % R�� & is a T -aligned subword of
> R�� � and

C � � $ T . There are
two cases to consider: (i)

C � � � 	 � T ; and (ii) � � 	 � T .

Case 2(b)(i):
C � � � 	 � T . If further � � � 	 ��� T�� �

, then define

� ?
���

� ��� �: 
 H�H�H :
� � &
���

� ��� �:
� H�HIH :
� % R�� &
���

� ��� �:
� % R H�HIH :�� % � H�HIH :�� % W R�� &
���

� ��� �:�� % W R H�H�H :
� % R % � HIH�H :�� %�� R�� &
���

� ��� �:
� %�� R H�H�H :�W � M
(7)

Note that � & , �@W , and � � are all T -aligned subwords.
Otherwise, if

� 	 ��� T�� � $ � � 	 � T , define

� ?
� �

� ��� �: 
VH�HIH : � � &
� �

� ��� �: � H�HIH : � % R�� &
� �

� ��� �: � % R HIH�H : � % � HIH�H : � % W R � &
� �

� ��� �: � % W R H�HIH : � % R % � HIH�H : W � M (8)

Note that � & and � W are both T -aligned subwords, and � � is a prefix of a T -aligned subword.
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Suppose :�� � � BUX[Z�\ � E . Then, from the fact that � & is a T -aligned subword, :�� % R�� & � � �5T �� BUX[Z�\ � E . Then from (6) we get :�� % R % � � & � � � T � � BUX[Z�\ � E . Since � � is a T -aligned subword or
prefix of one, we get

:�� % R % � � � � T B�X[Z�\ � E+M (9)

From : � � � BUX[Z�\ � E and (6) we get : � % � � � BUX[Z�\ � E . Since � W is a T -aligned subword, we get
: � % R � � �(T � 	 B�X[Z�\ � E . From (6) we get

:
� % R % � � � � T � 	 BUX[Z�\ � E6M (10)

Now combining Eqs. (9) and (10) gives
� � T � � � T � 	 BUX[Z�\ � E or 	 �8C BUX[Z�\ � E , so ��� 	 . If

	 ] � � , then since � ] T we get 	 ] � T , a contradiction. Hence 	 ? � .
In this case by examining � & we get

: �
� � � � � � BUX[Z�\ � E for � � � $ � � T M (11)

Now :�� ? :
� % � , so by examining �@W we get : �
� � � � � � � 	 B�X[Z�\ � E for � � T �#�%$ � � � T . But

	 ? � , so
: �
� � � � � � BUX[Z�\ � E for � � T �#�%$ � � � T M (12)

Now
� T � 	 , so (11) and (12) together cover all residue classes mod 	 , and so we get

: �
� � � � � � B�X[Z�\ � E for

C �#� � � 	 M (13)

Now consider � ? � �
. By Lemma 6, � must be a square. From (13) we get � ?

W �� ��� �� HIH�H �
. But by

Lemma 5
� ? B � � B T � � E " R B � � � E E[H�HIH B � � B T � � E " R B � � � 	 E E �

where both sides are considered modulo � . Now 	 � T , so by Lemma 4, there exists an index � ,
� � � � � � � � � 	 such that "
R B � EV? �

. Then
B � � B T � � E "KR B � E E X[Z�\ � ? �

, so
� � T � � B�X Z�\ � E .

Hence
� � T � C[BUX[Z�\ � E and hence ��� T � � . Then since T ] �

, we have T � � ] � and so T � � .
But � ? 	 and hence T � 	 . This contradicts the assumption of case 2(b) that T $ 	 , and hence this case
cannot occur.

Case 2(b)(ii): � � 	 � T . If further � � � 	 � � T�� � , define

� ?
���

� ��� �: 
 H�H�H :
� % R�� � HIH�H :�� � &
���

� ��� �:
� H�H�H : � H�H�H :
� % R�� &
���

� ��� �:�� % R H�HIH :
� % � H�HIH :
� % W R�� &
���

� ��� �:�� % W R HIH�H :�W � (14)

Note that � & is a T -aligned subword, and from the inequality � � � 	 � � T�� � , we get � � � T � � � � 	 ,
so � W is also a T -aligned subword. Note that � � may be empty.

Otherwise, if � � � 	 � � T�� �
, define

� ?
���

� ��� �: 
 H�HIH : � % R�� � H�HIH : � � &
���

� ��� �: � H�HIH : � H�HIH : � % R�� &
���

� ��� �: � % R HIH�H : � % � HIH�H : W�� (15)

In this case � & is a T -aligned subword, and � W is a prefix of a T -aligned subword.
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Suppose :�� � � BUX[Z�\ � E . Then since � & is a T -aligned subword, we have

: � � � � 	 � � B�X Z�\ � E+M (16)

Now :
� ? :�� % � , and �@W is a T -aligned subword or prefix of one, so :�� % R � � �OT � 	 BUX[Z�\ � E . Now
� �^T � 	 ] C , so :
� % R � � lies in � 
 , and

:�� % R ? :�� % R�� � � � �(T � 	 B�X Z�\ � E+M (17)

Then � 
 is the suffix of a T -aligned subword, so from Eq. (17) we get : 
 � � � � BUX[Z�\ � E . Then
: � ? : 
 , so

: � � � � � BUX[Z�\ � E6M (18)

Combining the congruences (16) and (18), we get
� � 	 � � � � � � BUX[Z�\ � E . Hence 	 �JC B�X[Z�\ � E ,

and so � � 	 . As before, if 	 ] � � , then since � ] T we get 	 ] � T , a contradiction. Hence 	 ? � .
Now, by examining � & we get

: �
� � � � � � BUX[Z�\ � E for � � � $ � � T M (19)

Similarly, by examining � 
 we get

: �
� � � � � � B�X[Z�\ � E for

C �#�%$ � M (20)

Combining (19) and (20), we get

: �
� � � � � � BUX[Z�\ � E for

C �#��$ � � T M (21)

By assumption for this case, we have 	 $ � �(T , so all residue classes mod 	 , are covered, and we have

: �
� � � � � � B�X[Z�\ � E for

C �#� � � 	 M (22)

The rest of the proof proceeds as in Case 2(b)(i). The argument there shows this case cannot occur.

Case 2(c): 	 � � T . Consider the word
� >

. Then from Lemma 4 there must be an � , � � ��$ � �)	 such
that "KR B � EV? �

. Then by Lemma 6 we know
� >

contains a square. Then by Lemma 5 we have

� � B T � � E "
R B � E�� � � B T � � E "
R B � � 	 E BUX[Z�\ � E6M
Hence

T � � � B T � � E "
R B � � 	 E B�X[Z�\ � E+M
It follows that "KR B � � 	 E ] �

, for if "KR B � � 	 EV?JC
we would have T � � �JC$BUX[Z�\ � E , and so T � � ] �

and T � � , a contradiction.
Now "
R B � EV? �

and "
R B � �)	 E ] �
. It follows from Lemma 3 that T � 	 . But in Case 2 we assumed T �( 	 ,

a contradiction.
The proof of Theorem 1 is now complete.
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4 Squares in the sequence
�
T � �

It is easy to show the following theorem about the existence of arbitrarily long squares in the sequence> R�� � .

Theorem 7 The sequence
> R�� � contains arbitrarily long squares. More precisely we have

(a) The sequence
> R�� � contains the square of a single letter if and only if ��� \ B T � � � � EV? �

.

(b) For all integers T ] � , � ] �
, the sequence

> R�� � contains arbitrarily long squares.

Proof.
(a) By Lemma 6, there exists a square ;�; with ;�� � � in the sequence

> R�� � if and only if there exists
an integer

S ] �
such that

B T � � E "KR B�SGE � � BUX[Z�\ � E . Since "
R B�SGE can take any integer value, this is
equivalent to ��� \ B T � � � � EV? �

.

(b) If � $ T , then in Theorem 1 we proved the existence of overlaps, hence squares. Now the image of
a square by � R�� � is a longer square. Iterating � R�� � and using the fact that

> R�� � is a fixed point of � R�� �
gives arbitrarily long squares.

Suppose now that � ] T . Then the first
� T � � terms of the sequence

> R�� � are

C � � � H�H�H B T � � E � � � H�HIH B T � � E
which contains a square of length

� T � � . The images of this square under iterates of � R�� � are arbitrarily
large squares.

Remark. It would be interesting to determine the largest (fractional) power that occurs in the sequence> R�� � . For � ] T , we already know that
�

is sharp.

5 Palindromes in
�
T � �

In this section we examine the occurrence of palindromes in
> R�� � .

Theorem 8 The sequence
> R�� � with T ] �

, � ] �
contains arbitrarily long palindromes if and only if� � � .

Proof.
?��

: Suppose that the sequence
> R�� � contains some palindrome of even length larger than or

equal to � . Then it must contain the word �6;�; � for some ; � ��� � � . If ;�; is contained in the image by� R�� � of some letter in � � , then � ? �
. Otherwise the first ; must be the last letter of the image by � R�� �

of some letter, and the second ; must be the first letter of the image by � R�� � of some letter. It follows that� � ; � � B�X[Z�\ � E and � � ;�� � BUX[Z�\ � E . Hence
� � C B�X[Z�\ � E and this gives � � � .

Now suppose that the sequence
> R�� � contains a palindrome of odd length larger than or equal to 	 ,

say � �6; ��� , with ; � � � �
��� � . If �+;	� is a subword of the image by � R�� � of some letter in � � , then
; � �'� � BUX[Z�\ � E and � � ; � � BUX[Z�\ � E , hence

� � C BUX[Z�\ � E . Hence again � � � . If �+;	� is not a
subword of the image by � R�� � of some letter in � � , then we have two possibilities according to whether
T ] � or T ? �

.
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If T ] � , then either � �6; is a suffix of the image by � R�� � of some letter, and ��� a prefix of the image
by � R�� � of some letter, or � � is a suffix of the image by � R�� � of some letter, and ; ��� a prefix of the
image by � R�� � of some letter. In the first case we have � � ; � � BUX[Z�\ � E , � � ; � � BUX[Z�\ � E , and
� � �2� � B�X Z�\ � E , hence

� � C BUX[Z�\ � E . In the second case � � � � � B�X Z�\ � E , � � ; � � BUX[Z�\ � E ,
and � � ;�� � B�X[Z�\ � E , hence

� � C B�X[Z�\ � E . This gives ��� � in both cases.
If T ? �

, then either the first � is the last letter of the image by � R�� � of some letter, �6; is the image
by � R�� � of some letter, and ��� is the image by � R�� � of some letter, or � � is the image by � R�� � of some
letter, ; � is the image by � R�� � of some letter, and the second � is the first letter of the image by � R�� �
of some letter. In the first case, we must have ; � � � � B�X[Z�\ � E and � � � � � BUX[Z�\ � E , hence
� �6; ��� ? B � � � E � B � � � E � B � � � E

which is an overlap, hence � $ T ? �
from Theorem 1 and this

is impossible. In the second case, we must have � � � � � BUX[Z�\ � E and � � ; � � BUX[Z�\ � E , hence
; � � B�X[Z�\ � E . This gives � �6; ��� ? � B � � � E � B � � � E � which is again an overlap, and we conclude as
just above.
� ? : Now let us suppose that � � �

. If � ? �
, then

> R�� � ? CFCKC HIH�H
and hence trivially contains

arbitrarily large palindromes.
Now assume � ? �

. If T is odd, then
> R�� � ? C � C � C � C � H�H�H

and hence trivially contains arbitrarily
long palindromes.

If T is even, the sequence
> R�� � is a fixed point of the morphism defined on


�C$� ���
by� R�� � BDCFE ? B�C � E R � W� R�� � B � E ? B � CFE R � W

and an easy induction shows that � W &R�� � BDCFE is a palindrome of length T W & .
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[18] A. Thue. Über unendliche Zeichenreihen. Norske vid. Selsk. Skr. Mat. Nat. Kl. 7 (1906), 1–22.
Reprinted in Selected Mathematical Papers of Axel Thue, T. Nagell, editor, Universitetsforlaget,
Oslo, 1977, pp. 139–158.
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