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The competition number of a generalized line
graph is at most two
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In 1982, Opsut showed that the competition number of a line graph is at most two and gave a necessary and sufficient
condition for the competition number of a line graph being one. In this paper, we generalize this result to the compe-
tition numbers of generalized line graphs, that is, we show that the competition number of a generalized line graph is
at most two, and give necessary conditions and sufficient conditions for the competition number of a generalized line
graph being one.
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1 Introduction
The notion of a competition graph was introduced by Cohen [1]as a means of determining the smallest
dimension of ecological phase space. Thecompetition graphC(D) of a digraphD is a graph which has
the same vertex set asD and an edge between two distinct verticesu andv if and only if there exists a
vertexx in D such that(u, x) and(v, x) are arcs ofD. Roberts [12] observed that any graphG together
with sufficiently many isolated vertices is the competitiongraph of an acyclic digraph. Thecompetition
numberk(G) of a graphG is defined to be the smallest nonnegative integerk such thatG together withk
isolated vertices added is the competition graph of an acyclic digraph. It is not easy in general to compute
k(G) for an arbitrary graphG, since Opsut [8] showed that the computation of the competition number
of a graph is an NP-hard problem. It has been one of the important research problems in the study of
competition graphs to compute the exact values of the competition numbers of various graphs. For some
special graph families, we have explicit formulae for computing competition numbers: IfG is a chordal
graph without isolated vertices, thenk(G) = 1; If G is a nontrivial triangle-free connected graph then
k(G) = |E(G)| − |V (G)| + 2 ([12]). For more recent results on graphs whose competitionnumbers are
calculated exactly, see [3, 4, 5, 6, 7, 9, 10, 11, 13].
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The line graphL(H) of a graphH is the simple graph defined byV (L(H)) = E(H) and ee′ ∈
E(L(H)) if and only if e ande′ have a vertex in common ande 6= e′. A graphG is called aline graphif
there exists a graphH such thatG is isomorphic to the line graph ofH . A cliqueS of a graphG is a set
of vertices ofG such that the subgraph induced byS is a complete graph (the empty set is also considered
a clique). A vertexv in a graphG is calledsimplicial if the neighborhood ofv in G is a clique ofG. In
1982, Opsut [8] showed the following theorem.

Theorem 1.1 ([8]) For a line graphG, k(G) ≤ 2 and the equality holds if and only ifG has no simplicial
vertex.

In this paper, we investigate the competition number of a generalized line graph which was introduced
by Hoffman [2] in 1970. For a positive integerm, the cocktail party graphCP (m) is the complete
multipartite graph withm partite sets all of which have the size two:

V (CP (m)) =
⋃

l∈[m]

{xl, yl}

E(CP (m)) = {xixj | i, j ∈ [m], i < j} ∪ {yiyj | i, j ∈ [m], i < j}
∪{xiyj | i, j ∈ [m], i 6= j}

where [m] denotes them-set {1, 2, . . . ,m}. Note thatCP (1) is the graph with two vertices and no
edge. Avertex-weighted graph(H, f) is a pair of a graphH and a non-negative integer-valued function
f : V (H) → Z≥0 on the vertex set ofH . The generalized line graphL(H, f) of a vertex-weighted
graph(H, f) is the graph obtained from the disjoint union of the line graphL(H) of the graphH and the
cocktail party graphsQv := CP (f(v)) wherev ∈ V (H) with f(v) > 0 by adding edges between all the
vertices inQv ande ∈ V (L(H)) such thate is incident tov in H (see Figure 1). For a graphH , if f is a
zero function (i.e.f(v) = 0 for anyv ∈ V (H)), then the generalized line graph of(H, f) is the same as
the line graph ofH . A graphG is called ageneralized line graphif there exists a vertex-weighted graph
(H, f) such thatG is isomorphic to the generalized line graph of(H, f).

In this paper, we show the following result.

Theorem 1.2 The competition number of a generalized line graph is at mosttwo.

This paper is organized as follows. Section 2 is the main partof this paper. Subsection 2.1 gives some
observations on the competition graphs of acyclic digraphswhich will be used in this paper. Subsection
2.2 shows that the competition number of a generalized line graph is at most two. In Subsection 2.3,
we investigate generalized line graphs whose competition numbers are one, and give some sufficient
conditions and necessary conditions. Section 3 gives some concluding remarks.

2 Main Results
2.1 Preliminaries
For a digraphD and a vertexv of D, N+

D (v) andN−
D (v) denotes the out-neighborhood and the in-

neighborhood ofv, respectively, i.e.,N+
D (v) := {x ∈ V (D) | (v, x) ∈ A(D)} andN−

D (v) := {x ∈
V (D) | (x, v) ∈ A(D)}. A digraph is said to beacyclic if it contains no directed cycles. An ordering
v1, . . . , v|V (D)| of the vertices of a digraphD is called anacyclic orderingof D if (vi, vj) ∈ A(D) implies
i < j. It is well-known that a digraph is acyclic if and only if it has an acyclic ordering.
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Fig. 1: A vertex-weighted graph(H, f), wheref : V (H) → Z≥0 is defined byf(v1) = 2, f(v3) = 3, f(v5) = 1,
f(v2) = f(v4) = f(v6) = 0, and its generalized line graphL(H,f)

For a cliqueS of a graphG and an edgee of G, we say thate is covered byS if both of the endvertices
of e are contained inS. An edge clique coverof a graphG is a family of cliques ofG such that each edge
of G is covered by some clique in the family. Theedge clique cover numberθE(G) of a graphG is the
minimum size of an edge clique cover ofG. A vertex clique coverof a graphG is a family of cliques of
G such that each vertex ofG is contained in some clique in the family. Thevertex clique cover number
θV (G) of a graphG is the minimum size of a vertex clique cover ofG. For a graphG and a vertexv of
G, θV (NG(v)) is the vertex clique cover number of the subgraph ofG induced by the neighbors ofv in
G. Opsut [8] showed the following lower bound for the competition number of a graph (see also [14] for
a generalization of this inequality).

Proposition 2.1 ([8]) For any graphG, k(G) ≥ minv∈V (G) θV (NG(v)).

For a positive integerk, we denote byIk the edgeless graph onk vertices, i.e., the graph withk vertices
and no edges. The following lemma which comes from an easy observation is elementary but useful.

Lemma 2.2 LetG be a graph with at least two vertices and letk be an integer such thatk ≥ k(G). Then
there exists an acyclic digraphD such that

(a) C(D) = G ∪ Ik,

(b) D has an acyclic orderingv1, . . . , v|V (G)|, v|V (G)|+1, . . . , v|V (G)|+k, whereV (G) = {v1, . . . ,
v|V (G)|} andV (Ik) = {v|V (G)|+1, . . . , v|V (G)|+k}, and

(c) N−
D (v1) = N−

D (v2) = ∅.
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Proof: By the definition of the competition number of a graph, there exists an acyclic digraphD1 satis-
fying (a). LetD2 be the digraph obtained fromD1 by deleting all the arcs outgoing from any vertices in
Ik. Then we can check thatD2 is an acyclic digraph satisfying (a) and (b). Since there is no arc outgoing
from any vertex inIk, there is an acyclic orderingv1, v2, . . . , v|V (G)|, v|V (G)|+1, . . . , v|V (G)|+k of D2

such thatV (G) = {v1, v2, . . . , v|V (G)|} andV (Ik) = {v|V (G)|+1, . . . , v|V (G)|+k}. By the definition of
an acyclic ordering of a digraph, it holds thatN−

D2
(v1) = ∅ andN−

D2
(v2) ⊆ {v1}. If N−

D (v2) = {v1},
then letD be the digraph obtained fromD2 by deleting the arc(v1, v2). Otherwise, letD = D2. ThenD
is an acyclic digraph satisfying (a), (b), and (c). Thus the statement holds. ✷

The competition number of a cocktail party graph is given by Kim, Park and Sano [6].

Proposition 2.3 ([6]) The competition number of a cocktail party graphCP (m) with m ≥ 2 is equal to
two.

2.2 Proof of Theorem 1.2
In this subsection, we show that the competition number of a generalized line graph is at most two.

For two vertex-disjoint graphsG andH and a cliqueK of G, we define the graphG⋉K H by

V (G⋉K H) := V (G) ∪ V (H)

E(G⋉K H) := E(G) ∪ E(H) ∪ {uv | u ∈ K, v ∈ V (H)}

(see Figure 2).
From Lemma 2.2, we introduce a notion of top-two of a graph as follows.

Definition 1 For a graphG, a set{u, v} of two distinct verticesu andv of G is called atop-twoof G if
there exists an acyclic digraphD such thatC(D) = G ∪ Ik(G) andD has an acyclic ordering whose first
and second vertices areu andv. ✷

Note that any graph with at least two vertices always has at least one top-two. If a graphG has no
edges, then any pair of two vertices ofG is a top-two ofG.

Proposition 2.4 LetG andH be graphs with at least two vertices such thatV (G)∩V (H) = ∅ and letK
be a clique ofG. Suppose that there exists an acyclic digraphD′ such thatC(D′) = G∪ {u1, u2} where
{u1, u2} is a top-two ofH . If eitherH has no edges orH has no isolated vertices, then there exists an
acyclic digraphD satisfying the following:
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(i) C(D) =

{

(G⋉K H) ∪ I2 if H has no edges,
(G⋉K H) ∪ I|k(H)| if H has no isolated vertices,

and

(ii) D has an acyclic ordering whose first|V (G)|+ 2 terms induce the digraphD′.

Proof: Suppose thatH has no edges. LetV (H) = {u1, u2, . . . , um}, wherem ≥ 2. We define a digraph
D by V (D) := V (G) ∪ V (H) ∪ {um+1, um+2} and

A(D) := A(D′) ∪
(

m
⋃

i=1

{(x, ui+2) | x ∈ K ∪ {ui}}
)

whereum+1 andum+2 are new vertices. Then, it is easy to see thatD is an acyclic digraph satisfying (i)
and (ii).

Suppose thatH has no isolated vertices. Letk := k(H). By the assumption that{u1, u2} is a top-two
of H , there exists an acyclic digraphD′′ such thatC(D′′) = H ∪ Ik and the two verticesu1 andu2 in
D′′ satisfyN−

D′′(u1) = N−
D′′(u2) = ∅. LetD be the digraph defined byV (D) := V (D′) ∪ V (D′′) and

A(D) := A(D′) ∪ A(D′′) ∪ A∗ where

A∗ := {(u, v) | u ∈ K, v ∈ V (D′′) \ {u1, u2}}.

Since the ordering obtained by attaching an acyclic ordering of D′′ at the end of an acyclic ordering of
D′ gives an acyclic ordering ofD, D is acyclic and satisfies (ii). SinceH has no isolated vertices, each
vertex inH has an out-neighbor inD′′. Therefore, each edge ofG ⋉K H between a vertex inK and a
vertex ofH is an edge ofC(D) which results fromA∗. ThusC(D) = (G⋉K H)∪ Ik and soD satisfies
(i). ✷

For any vertexv of a graphH , let KH(v) denote the set of the edges incident tov in H . Note that
KH(v) forms a clique of the line graph ofH for each vertexv in a graphH and{KH(v) | v ∈ V (H)} is
an edge clique cover of the line graph ofH .

Theorem 2.5 Let (H, f) be a vertex-weighted graph. For any edgee = uv of H , there exists an acyclic
digraphD such thatC(D) = L(H, f) ∪ I2 and thatN−

D (z1) = KH(u) andN−
D (z2) = KH(v), where

V (I2) = {z1, z2}.

Proof: Let G := L(H, f) for convenience. First, we consider the case wheref is a zero function. We
show the theorem by induction on the number of edges ofH . If H has at most one edge, then the statement
is checked easily. Assume that the statement is true for any graph withm − 1 edges wherem ≥ 2. Let
H be a graph withm edges. It is sufficient to consider the case whereH is connected. Take an edge
e = uv of H . Sincem ≥ 2 andH is connected, there exists an edgee′ incident toe in H . Without loss
of generality, we may assume that the vertexu is also an endvertex ofe′. Let H ′ be the graph obtained
from H by deleting the edgee. ThenL(H ′) is the graph obtained fromL(H) by deleting the vertex
e. SinceH ′ hasm − 1 edges, by the induction hypothesis, there exists an acyclicdigraphD′ such that
C(D′) = L(H ′) ∪ {z1, e} andN−

D′(z1) = KH′(u).
Now we define a digraphD by V (D) := V (D′) ∪ {z2} = V (L(H)) ∪ {z1, z2} and

A(D) := A(D′) ∪ {(e, z1)} ∪ {(e′′, z2) | e′′ ∈ KH(v)}.
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Then the ordering of the vertices inD obtained from an acyclic ordering ofD′ by adding the vertexz2
to it as the last term is an acyclic ordering ofD, and soD is acyclic. By the definitions ofD andH ′,
N−

D (z2) = KH(v) andN−
D (z1) = N−

D′(z1) ∪ {e} = KH′(u) ∪ {e} = KH(u). It is easy to see that
C(D) = L(H) ∪ {z1, z2}. Thus the theorem holds whenf is a zero function.

Second, we consider the case wheref is not a zero function. Letv1, v2, . . . , vn be the vertices ofH
such thatf(vi) > 0. For eachi ∈ {0} ∪ [n], we define a graphGi by

G0 := L(H) and Gi := Gi−1 ⋉KH(vi) Qvi (i ∈ [n]),

whereQvi = CP (f(vi)). Note thatGn = G.
Take an edgee = uv of H . Sincef(v1) 6= 0, Qv1 has at least two vertices. ThenQv1 has a top-two

{z1, z2}. SinceG0 is a line graph, by the above argument on the case off = 0, there exists an acyclic
digraphD0 such thatC(D0) = G0 ∪ {z1, z2} andN−

D0
(z1) = KH(u) andN−

D0
(z2) = KH(v).

SinceQv1 has no edges orQv1 is connected, it follows from Propositions 2.3 and 2.4 that there exists
an acyclic digraphD1 such thatC(D1) = G1∪I2 andD1 has an acyclic ordering whose first|V (G0)|+2
terms induce the digraphD0. ThenN−

D1
(z1) = N−

D0
(z1) = KH(u) andN−

D1
(z2) = N−

D0
(z2) = KH(v).

From repeating the process, we can obtain an acyclic digraphDn such thatC(Dn) = Gn ∪ I2 and
N−

Dn
(z1) = KH(u) andN−

Dn
(z2) = KH(v). LetD := Dn. SinceGn = G, the theorem holds. ✷

Proof of Theorem 1.2: It immediately follows from Theorem 2.5 that the competition number of a
generalized line graph is at most two. ✷

2.3 Generalized line graphs with competition number one

In the following, we show some necessary conditions and sufficient conditions for the competition number
of a connected generalized line graph being one. Theorem 1.1says that the competition number of a
connected line graph is one if and only if it has a simplicial vertex.

Since the case of the generalized line graphL(H, f) of a vertex-weighted graph(H, f) with a zero
functionf is reduced to Theorem 1.1, we consider the case wheref is a nonzero function. In this subsec-
tion, when we consider the generalized line graphL(H, f) of a vertex-weighted graph(H, f), we denote
the cocktail party graphCP (f(v)) added toL(H) by Qv for each vertexv of H in cases where this
notation will not cause confusion.

First, we give necessary conditions for the competition number of a connected generalized line graph
being one.

Lemma 2.6 If a graphG has competition number one, thenG has a simplicial vertex or an isolated
vertex.

Proof: If G has no simplicial vertex and no isolated vertex, then the competition number ofG is at least
two by Proposition 2.1. Thus the lemma holds. ✷

Theorem 2.7 Let G be the generalized line graph of a connected vertex-weighted graph(H, f) with a
nonzero functionf . If k(G) = 1, then at least one of the following holds:

(i) f(v) = 1 for some vertexv ofH ,
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Fig. 3: A vertex-weighted graph(H,f), wheref : V (H) → Z≥0 is defined byf(v1) = f(v2) = 0, f(v3) = 2,
f(v4) = 1, and its generalized line graphL(H,f)

(ii) There exists a vertexv ofH such thatf(v) = 0 andKH(v) contains a simplicial vertex ofG.

Proof: Assume thatk(G) = 1. Suppose that (i) does not hold. Thenf(u) 6= 1 for any vertexu ∈
V (H). As k(G) = 1 andG is connected,G has a simplicial vertexx by Lemma 2.6. SinceV (G) =
⋃

u∈V (H) (KH(u) ∪Qu), the simplicial vertexx is contained inKH(v)∪Qv for somev ∈ V (H). Since
f(v) 6= 1, eitherf(v) = 0 or f(v) ≥ 2. If f(v) ≥ 2, then any vertex inKH(v) ∪ Qv is not simplicial,
which is a contradiction. Thereforef(v) = 0. Thus the simplicial vertexx is contained inKH(v). Hence
(ii) holds. ✷

Remark 2.8 The conditions (i) and (ii) in Theorem 2.7 are not sufficient conditions for generalized line
graphs to have competition number one. ✷

Example 2.9 Let (H, f) be the vertex-weighted graph whereH is the graph defined byV (H) = {v1, v2,
v3, v4} andE(H) = {v1v2, v2v3, v3v4} andf : V (H) → Z≥0 is defined byf(v1) = f(v2) = 0,
f(v3) = 1, f(v4) = 2 (see Figure 3). Then, the generalized line graph of(H, f) satisfies both (i) and (ii)
of Theorem 2.7. But, the competition number ofL(H, f) is two.

To see this, we recall a result by Kim [3] which states that thedeletion of some pendant vertices from
a connected graph does not change its competition number if the resulting graph has at least two vertices.
LetG′ be the graph obtained fromL(H, f) by deleting the two vertices inQv4 and the vertexv1v2. Then,
k(G′) = k(L(H, f)). SinceG′ contains neither an isolated vertex nor a simplicial vertex, k(G′) ≥ 2 by
Lemma 2.6. By Theorem 1.2,k(L(H, f)) = 2. ✷

Next, we show the following result which gives sufficient conditions for generalized line graphs to have
competition number one.

Theorem 2.10 LetG be the generalized line graph of a connected vertex-weighted graph(H, f) where
H has at least one edge andf is a nonzero function. Then,k(G) = 1 if one of the following holds:

(i) f(u) = f(v) = 1 for some edgee = uv ofH ,

(ii) f(v) ≤ 1 for any vertexv ofH .
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Proof: Note thatG is a connected graph with at least two vertices, sinceH is a connected graph with at
least one edge andf is a nonzero function. Thereforek(G) ≥ 1. It is sufficient to show that there exists
an acyclic digraphD such thatC(D) = G ∪ I1.

Suppose that (i) holds. Then,f(u) = f(v) = 1 for some edgeuv of H and therefore bothQu

andQv are the edgeless graphI2 on two vertices. LetV (Qu) = {qu, q′u} andV (Qv) = {qv, q′v}.
Let f0 : V (H) → Z≥0 be the function defined byf0(u) = f0(v) = 0 andf0(x) = f(x) for any
x ∈ V (H) \ {u, v}. Let G0 be the generalized line graph of(H, f0). ThenG0 is isomorphic to the
graph obtained fromG by deleting the four verticesqu, q′u, qv, andq′v. By Theorem 2.5,k(G0) ≤ 2
and there exists an acyclic digraphD0 such thatC(D0) = G0 ∪ {qv, z}, wherez is a new vertex, and
KH(u) = N−

D0
(qv) andKH(v) = N−

D0
(z). LetD be a digraph defined byV (D) := V (G) ∪ {z} and

A(D) := A(D0) ∪ {(qu, q′u), (q′u, qv), (qv, q′v), (q′v, z)}
∪{(x, q′u) | x ∈ KH(u)} ∪ {(x, q′v) | x ∈ KH(v)}.

ThenD is acyclic andC(D) = G ∪ {z}. Thereforek(G) ≤ 1.
Next, suppose that (ii) holds. Thenf(v) ≤ 1 for any vertexv of H . LetS := {v ∈ V (H) | f(v) = 1}.

Sincef is not a zero function, the setS is not empty. LetS := {u1, u2, . . . , ut}, wheret := |S| > 0.
ThenQui

= CP (1) = I2 and letV (Qui
) = {q2i−1, q2i} for i ∈ [t]. By Theorem 2.5, there exists an

acyclic digraphD0 such thatC(D0) = L(H)∪{z, q2t} wherez is a new vertex andN−
D0

(z) = KH(u1).
Let v1, v2, . . . , vn, q2t, z be an acyclic ordering ofD0. If t = 1 then letR := ∅, and if t > 1 then let

R :=

t−1
⋃

i=1

{(x, q2i) | x ∈ KH(ui+1) ∪ {q2i+1}}.

LetD be the digraph defined byV (D) := V (D0) ∪ {q1, . . . , q2t−1} = V (G) ∪ {z} and

A(D) := A(D0) ∪ {(q1, z)} ∪
(

t
⋃

i=1

{(x, q2i−1) | x ∈ KH(ui) ∪ {q2i}}
)

∪R.

ThenD is acyclic since the orderingv1, v2, . . . ,vn, q2t, q2t−1, q2, q1, z of the vertices ofD is an acyclic
ordering ofD. In addition, it follows from the definitions ofD andG thatC(D) = G ∪ {z}. Therefore
k(G) ≤ 1.

Thusk(G) = 1, and hence the theorem holds. ✷

Remark 2.11 Each of the conditions (i) and (ii) in Theorem 2.10 is not necessary conditions for general-
ized line graphs to have competition number one. ✷

Example 2.12 Let (H, f) be the vertex-weighted graph whereH is the graph defined byV (H) =
{v1, v2, v3, v4} andE(H) = {v1v2, v1v3, v1v4} and f : V (H) → Z≥0 is the function defined by
f(v1) = f(v2) = f(v3) = 0 andf(v4) = 2 (see Figure 4). Then, the generalized line graph of(H, f)
has the competition number one but(H, f) satisfies neither (i) nor (ii) of Theorem 2.10.
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Fig. 4: A vertex-weighted graph(H,f), wheref : V (H) → Z≥0 is defined byf(v1) = f(v2) = f(v3) = 0 and
f(v4) = 2, and its generalized line graphL(H,f)

Let V (Qv4) = {q1, q2, q3, q4} andE(Qv4) = {q1q2, q2q3, q3q4, q4q1}. To seek(L(H, f)) = 1, we
define a digraphD by

V (D) := V (L(H, f)) ∪ {z} = E(H) ∪ V (Qv4) ∪ {z},
A(D) := {(q1, q2), (q4, q2), (v1v2, q2)} ∪ {(q1, q3), (q2, q3), (v1v2, q3)}

∪{(q2, v1v3), (q3, v1v3), (v1v2, v1v3)} ∪ {(q3, v1v4), (q4, v1v4), (v1v2, v1v4)}
∪{(v1v2, z), (v1v3, z), (v1v4, z)}

wherez is a new vertex. Then we can easily check thatC(D) = L(H, f)∪{z}, and thatD is acyclic since
the orderingq1, q4, v1v2, q2, q3, v1v3, v1v4, z is an acyclic ordering ofD. Thereforek(L(H, f)) ≤ 1,
SinceL(H, f) is connected,k(L(H, f)) ≥ 1. Hencek(L(H, f)) = 1. ✷

3 Concluding Remark
In this note, we showed that the competition number of a generalized line graph is at most two, which
is an extension of a result on the competition number of a linegraph. In addition, we tried to charac-
terize generalized line graphs whose competition numbers are one, and then found necessary conditions
and sufficient conditions for the competition number of a generalized line graph being one. However,
these conditions are not necessary-and-sufficient conditions, so it still remains open to give a complete
characterization of generalized line graphs whose competition numbers are one.
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