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All totally symmetric colored graphs
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In this paper we describe all edge-colored graphs that are fully symmetric with respect to colors and transitive on
every set of edges of the same color. They correspond to fully symmetric homogeneous factorizations of complete
graphs. Our description completes the work done in our previous paper, where we have shown, in particular, that
there are no such graphs with more than 5 colors. Using some recent results, with a help of computer, we settle all
the cases that was left open in the previous paper.
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1 Introduction
A k-colored graph G = (V, ψ) on a set of vertices V is the complete graph on V together with a function ψ
from the set of edges onto the set of colors {0, 1, . . . , k−1}. The automorphism groupAut(G) of G is the
set of permutations of V preserving the colors of the edges. The extended automorphism group Ext(G)
is the set of permutations of V preserving the partition into the colors. Obviously, Aut(G) is a normal
subgroup of Ext(G). Moreover, the factor group Ext(G)/Aut(G) may be considered as one acting on
the set of colors, and as such is called the symmetry group of colors of G.

A graph G is called edge-transitive if Aut(G) acts transitively on each set of the edges of the same
color, and is called arc-transitive (or strongly edge-transitive) if Aut(G) acts transitively on each set of
ordered pairs of vertices corresponding to a set of edges of the same color. It is called color-symmetric, if
Ext(G) acts as the symmetric group on the set of colors. If G is both color-symmetric and edge-transitive
(complete) graph, then it is called totally symmetric, or TSC-graph, in short. In the previous paper [11],
we have proved that TSC-graphs may occur only for less than 6 colors. In this paper we give a complete
description of such graphs. In particular, we have proved that such graphs are arc-transitive. For two
colors these are self-complementary symmetric graphs, which have been recently described by Peisert
[23]. Our result may be viewed as a natural generalization of Peisert’s result.

Problems closely related to the subject of this paper have been studied under various names. In [25],
T. Sibley classifies edge colored graphs with 2-transitive extended automorphism group Ext(G) (he calls
this group the automorphism group, and only mention Aut(G) calling it the group of isometries). Colored
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graphs with transitive Aut(G) have been considered by Chen and Teh in [6]; they call them point-color
symmetric graphs. Ashbacher [1] uses the name rainbows for such structures. Various highly-symmetrical
structures in this class have been intensively studied using results based on the classification of finite
simple groups (see e.g. [2, 4, 12, 15, 19, 22, 24].

The most interesting colored graphs arise from factorizations of complete graphs, that is partitions of
the edges into factors that correspond to spanning subgraphs (not necessarily connected). Isomorphic
factorizations, coloring the edges of a graph so that the colored subgraphs are isomorphic, have been in-
troduced and studied in a series of papers by Harary, Robinson and Wormald (cf. [13, 14]). A factorization
of a complete graph is homogeneous if there are subgroups H < G ≤ Sn such that H is vertex-transitive
and fixes each factor setwise, and G permutes the factors transitively (in particular, the factors are isomor-
phic). TSC-graphs correspond to those factorizations where H is edge-transitive and G permutes factors
symmetrically. Recently, in [18], Li, Lim and Praeger have classified all homogeneous factorizations
with H being edge-transitive. Their result helped us to finish our study and get the following complete
description of totally symmetric colored graphs.

Theorem. If G is an edge-transitive color-symmetric k-colored complete graph, then G is arc-transitive
and k ≤ 5. Moreover, one of the following cases holds:

(i) k = 5 and G = F5(42) or G = H5(34);

(ii) k = 4 and G = F4(32);

(iii) k = 3 and G belongs to an infinite family of generalized Paley graphs GP3(q) or G = G3(52) or
G = G3(112);

(iv) k = 2 and G belongs to an infinite family of Paley graphs PG(q) or Peisert graphs PG∗(q), or else
G = G(232).

All graphs mentioned in the theorem are defined in the next section. The result is an improvement on a
theorem in [11], which is also presented here for convenience as Theorem 2.1.

We note that this description is something much stronger than just a classification. In a sense one may
say that our description is contained in the results classifying finite simple groups, rank 3-groups, and
homogeneous factorizations. A good example of what makes a difference here is that (as we shall see in
the remainder of the paper) all classifications show the possibility of existence of a 5-colored TSC-graph
on 28 vertices. Only combining suitable knowledge with heavy computations has allowed to learn that
such an object, in fact, does not exists.

The paper is organized as follows. In Section 2 we classify and give definitions of totally symmetric
graphs. In Section 3, we summarize and recall results needed in our proof. Then, in the three following
sections we consider 4-, 5- and 3-colored TSC-graphs, respectively, which are the cases (ii), (i), and (iii) of
the theorem above. The 2-colored TSC-graphs, as we have already mentioned, are described completely
in [23]. Finally, in Section 7 we present computations that allowed to settle the most complicated cases
that arose during consideration in Section 5.

2 Definitions of TSC-graphs
We assume that the reader is familiar with general terminology of finite fields, vector spaces and permuta-
tion groups (as used, e.g., in [3, 8]). We start from 2-colored graphs, which correspond naturally to simple
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graphs (with non-edges treated as the second color). In this paper simple graphs are identified with their
2-colored equivalents. Whenever we consider a finite field Fq (q = pr), by ω we denote a fixed primitive
root of Fq .

2.1 Simple graphs.
Totally symmetric 2-colored graphs correspond to simple graphs that are symmetric and self-complementary.
They have been fully described in [23]. Recall first that the Paley graph PG(q), where q = 1(mod 4),
is one whose vertex set is Fq , and two distinct elements are adjacent, if their difference is a square in Fq

(i.e., if it is of the form ω2k). If in addition, p = 3(mod 4) (and consequently, r is even), then the Peisert
graph PG∗(q) is one whose vertex set is Fq , and two elements are adjacent, if their difference is of the
form ωj , where j = 0, 1(mod 4). The constructions above do not depend on the choice of the primitive
root. Moreover, PG(q) is isomorphic with PG∗(q) only if q = 9. For details see [23].

An exceptional self-complementary symmetric graph G(232) has a rather complicated definition. It can
be found in [23].

2.2 Generalized Paley graphs
Following the definition of Paley graphs we define now their 3-colored counterparts. Let p = 2(mod 3),
q = pr, and q = 1(mod 3) (which is equivalent to r being even). Let GP3(q) denote 3-colored graph
whose vertex set is Fq , and the edge between two distinct elements has color i (i = 0, 1, 2) if their
difference is of the form ω3m+i. It is not difficult to see that this definition does not depend on the choice
of the primitive root (see. [11]), and the graph may be viewed as the orbital graph of the subgroup of the
affine group generated by translations and multiplication by ω3. In [18] such graphs appear as cyclotomic
partition Cyc(q, k) of Kq and k = 3. In general, graphs corresponding to such partitions are color-
transitive. The case specified here (k = 3, p = 2(mod 3), r even) is the only one with k > 2, when they
are color-symmetric.

Following [18] we define also generalized Paley graphs with more colors. Namely, for each k > 2 and
q = 1(modk), and such that either p = 2 or (q − 1)/k is even we define GPk(q) as k-colored graph
whose vertex set is Fq , and the edge between two distinct elements has color i (i = 0, . . . , k − 1) if their
difference is of the form ωkm+i. This correspond to cyclotomic partitions Cyc(q, k) in [18]. We note that
our usage of the term ”generalized Paley graph” is slightly different: we mean the resulting colored graph,
while Li at al. [18] mean the simple Caley graph occurring as the factor of the partition. We needed to
write a special computer program to make sure that for k > 3 there is no TSC-graph in this family (see
Section 7).

2.3 Graphs determined by directions in vector space.
We consider now finite vector spacesF d

q constructed from finite fieldsFq . For d > 1, byFk(qd) we denote
the k-colored graph defined on F d

q , with k = (qd − 1)/(q − 1), whose colors are determined naturally
by k independent directions in the space. Scalar multiplication and addition (translations) preserve colors
and move vector (0, v) to any vector in the direction generated by (0, v). This shows that Fk(qd) is
arc-transitive. Linear automorphisms of F d

q act transitively on directions, which shows that Fk(qd) is
color-transitive.

One may check directly that three of these graphs, F5(42), F4(32), F3(22) are color-symmetric. The
last graph is isomorphic to GP3(22) and its automorphism group is abstractly isomorphic to the Klein
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four-group. This group is the only known permutation group that is orbit closed but is not a relation group
(that is, closed in its action on the subsets of the underlying set Ω, and not the automorphism group of any
hypergraph on Ω; [7, 16]; note that Corollary 5.3 in [7] has wrong proof).

2.4 Exceptional 3-colored TSC-graphs.
There are two further 3-colored TSC-graphs defined in a similar way on vector spaces F 2

5 and F 2
11. The

vertex set of G3(52) is V = F 2
5 . It has 6 directions determined by vectors starting in (0, 0) and ending

in (1, 0), (0, 1), (1, 1), (2, 1), (3, 1), (4, 1). The edges in directions determined by (1, 0) and (0, 1) have
color 0, those in directions determined by (1, 1) and (2, 1) have color 1, and the remaining have color 2.
In other words, the graph is determined by the partition:

[(1, 0), (0, 1)], [(1, 1), (2, 1)], [(3, 1), (4, 1)].

Graph G3(112) has an analogous definition. The vertex set of G3(112) is V = F 2
11. It has 12 directions

determined by vectors starting in (0, 0) and ending in (1, 0) or (i, 1) for i = 0, . . . 10. The graph is then
determined by the partition

[(1, 0), (0, 1), (1, 1), (10, 1)], [(2, 1), (3, 1), (5, 1), (7, 1)], [(4, 1), (6, 1), (8, 1), (9, 1)].

The fact that these graphs are color-symmetric is proved in Section 6, where also the automorphism groups
of these graphs are presented.

2.5 Colored Hamming graph.
Let us consider the exceptional affine 2-transitive group M ≤ AGL4(3) with M0 > R = 21+4 given by
Hering’s Theorem in [21, Table 10] (cf. also [21, p. 484, Case R = R2

2]). Let H5(34) be the colored
graph determined by the orbitals of this group. Then combining Theorem 1.1 with Proposition 5.9 of [18]
we see that H5(34) is a 5-colored TCS-graph. The corresponding factorization is considered in detail in
[17]. In particular, it is observed that factors are isomorphic with Hamming graph H(2, 9) (both in [17]
and [18] the notation H(9, 2) is used, but this seems to be a mistake).

3 Proof
We start by recalling the results we apply in this paper. First, let us recall the results of [11] summarized
suitably as follows:

Theorem 3.1 If G is a k-colored TSC-graph then k ≤ 5 and G is arc-transitive. In addition, for k > 2
we have the following.

(i) F5(42) is the unique 5-colored TSC-graph on 16 vertices. Except, possibly, for n = 28, 34 or 74

there is no other 5-colored TSC-graph on n vertices.

(ii) F4(32) is the unique 4-colored TSC-graph on 9 vertices. Except, possibly, for n = 34 there is no
other 4-colored TSC-graph on n vertices.

(iii) Except for the known infinite family of 3-colored TSC-graphs (generalized Paley graphs), there are
only finitely many other 3-colored TSC-graphs with the number of vertices belonging to the set
{24, 26, 52, 112, 172, 232, 892}.
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Combining the above with [18, Theorem 1.1] (and careful inspecting Tables 2 and 3 of [18]), we see
that almost all TSC-graphs G have Aut(G) contained in one-dimensional semilinear affine group.

Corollary 3.2 If G is a k-colored TSC-graph on n vertices mentioned as a possibility in the above theo-
rem, then one of the following holds

(i) k = 5 and G = H5(34),

(ii) k = 3 and n = 52 or n = 112, or else

(iii) Aut(G) is an affine group contained inAΓL1(n) and there exists larger groupM ≤ AΓL1(n) such
that Aut(G) ≤M ≤ Ext(G), and M permutes transitively colors of G (that is, orbits of Aut(G)).

Let G be a TSC-graph satisfying (iii). Since Aut(G) contains translations, we may restrict to stabilizers
of zero: A = Aut(G)0 and M0. Then A ≤ M0 ≤ ΓL1(n). This makes possible to apply Foulser’s
description of one-dimensional semilinear groups [9, 10]. Let us recall briefly the facts we shall need.

Let ω be a primitive root of the underlying field Fq (q = pr), and at the same time, let it denotes
the scalar multiplication by ω, and let α be the generating field automorphism α : x → xp. Then
ΓL1(pr) = 〈ω, α〉 is the semidirect product of the normal subgroup 〈ω〉 by the subgroup 〈α〉. In particular,
every element of g ∈ ΓL1(pr) has a unique presentation as g = ωeαs for some 0 ≤ e < pr−1, 0 ≤ s < r.
(Alternatively, one may take 0 < s ≤ r which is more suitable for the lemma below).

Lemma 3.3 [10, Lemma 2.1] Let H be a subgroup of 〈ω, α〉. Then H has the form H = 〈ωd, ωeαs〉,
where d, e, s can be chosen to satisfy the following conditions

(i) s > 0 and s|r;

(ii) d > 0 and d|(pr − 1);

(iii) 0 ≤ e < d and d|e(pr − 1)/(ps − 1).

Moreover, integers d, e, s satisfying the conditions above are unique, and the presentationH = 〈ωd, ωeαs〉
is called the standard form. In addition, the proof shows that each of d and s < r is in fact the least pos-
itive integer such that H = 〈ωd, ωeαs〉 for any d, e, s. Moreover, H is a subdirect product of the normal
subgroup 〈ωd〉 by the (another cyclic) subgroup 〈ωeαs〉. The cardinality |H| = (pr − 1)r/ds. We note
also that

αω = ωpα.

In our situation, A acts on the set {ω0, . . . , ωpr−1} of nonzero elements of the field Fq . It has k equal
orbits corresponding to orbitals of Aut(G), representing colors of G. Thus we may consider the nonzero
elements of Fq as colored: the color of ωi ∈ Fq is the color of the edge (0, ωi). We will refer to such an
edge as the edge ωi. By Foulser’s description, A = 〈ωd, ωeαs〉 and M0 = 〈ωd1 , ωe1αs1〉, where d1|d,
and if s1 > 0, then s1|s. Moreover if s > 0 then s1 > 0.

In the following sections we show that these conditions are very strong and leave little space for exis-
tence of suitable objects. The description presented in the main theorem follows directly from the lemmas
in the subsequent sections combined with Theorem 3.1 and the Peisert’s result in [23].
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4 TSC-graphs with 4 colors
We start from the case (ii) of Theorem 3.1. We prove the following.

Lemma 4.1 There is no 4-colored TSC-graph on 34 vertices.

Proof: Suppose, to the contrary, that G is a 4-color TSC-graph on 34 vertices. By Corollary 3.2 Aut(G)
is an affine group satisfying conditions given in (iii). We apply the notation given above. In this case
k = 4, n = 34, p = 3, r = 4. In particular, α : x→ x3.

By cardinality formula |A| = 80 · 4/ds. Since A is transitive on each color, (80/4) divides |A|. It
follows that ds|16. Since, A has four orbits, d ≥ 4. Thus, we have three cases to consider.

Case 1: d = 16 and s = 1.
HereA = 〈ω16, ωeα〉. Permutation ω16 has 16 orbits represented by elements ωi (i = 0, . . . , 15). Since

A has 4 equal orbits, for each such an orbit, permutation ωeα should ”glue together” 4 ω16-orbits, that is,
it should act on ω16-orbits as a product of 4 cycles of length 4. It means, that for each i = 0, 1, . . . , 15, the
4 consecutive images of element ωi by permutation ωeα should belong to 4 different orbits. We compute
two of these images: ωeα(ωi) = ω3i+e and (ωeα)2(ωi) = ω9i+4e.

By Lemma 3.3(iii), it follows that e must be divisible by 2, so e = 2f for some f . Thus, (ωeα)2(ωi) =
ω9i+8f . It should belong to a different on ω16-orbit than ωi itself. It means that 9i+ 8f is different from i
modulo 16. Applied for i = 0, 1 it means that (modulo 16) 8f is different from 0, and 9 + 8f is different
from 1, which is impossible.

Case 2: d = 8 and s ∈ {1, 2}.
Assume first that s = 1. In this case 〈ω8〉 has 8 orbits, and permutation ωeα should ”glue together” 4

pairs of such orbits. The consecutive images of ω0 by ωeα are ωe and ω4e, which implies that e = 2f for
some f .

Now, the images ωeα(ωi) = ω3i+2f should be in a different ω8-orbit than ωi, for each i, which means
that 3i+2f is different from imodulo 8. It follows that 2i+2f is different from 0 modulo 8, that is, i+f
is different from 0 modulo 4, for each i. Yet, for each f = 0, 1, 2, 3, there exists i such that i + f = 0
modulo 4, a contradiction.

If s = 2, then by Lemma 3.3(3), e = 0 or e = 4. Also, observe that α2 : x→ x9 preserves the orbits of
ω8. Hence α2 ∈ A. Now,A 6= 〈ω8, α2〉, since the latter has 8 orbits. On the other hand, α2 /∈ 〈ω8, ω4α2〉,
a contradiction.

Case 3: d = 4. As above, we see that α2 preserves the orbits of ω4. Since no other permutation ωeαs

preserves these orbits, A = 〈ω4, α2〉. Here, we need a deeper argument, exploiting total symmetricity.
Since G is a 4-color TSC-graph, by identifying any two pairs of colors we should obtain 2-color TSC-
graphs that are isomorphic. Yet, identifying color 0 with color 2 and color 1 with color 3, we obtain Paley
graph PG(34), while identifying color 0 with color 1 and color 2 with color 3, we obtain Peisert graph
PG∗(34). These graphs are not isomorphic, and thus we have a contradiction.

2

5 TSC-graphs with 5 colors
In a quite similar way we consider now the case (i) of Theorem 3.1 with k = 5.

Lemma 5.1 There is at most one 5-colored TSC-graph on 74 vertices.
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Proof: Let G be a 4-color TSC-graph on 74 vertices. By Corollary 3.2Aut(G) is an affine group satisfying
conditions given in (iii). In this case k = 5, p = 7, and r = 4. The cardinality |A| = (74−1) ·4/ds. Since
Aut(G) is arc transitive, (74 − 1)/5 divides |A|. It follows that ds|20. Since, A has five orbits, d ≥ 5.

Case 1: d = 20 and s = 1. Here A = 〈ω20, ωeα〉. Permutation ω20 has 20 orbits, and ωeα should act
as a product of 5 cycles of length 4 on ω20-orbits. We compute: ωeα(ωi) = ω7i+e and (ωeα)2(ωi) =
ω49i+8e. The value 49i+ 8f should be different from i modulo 16, which means that 9i+ 8f is different
from i, that is 8i+ 8f is different form 0 modulo 20. Consequently, for some f , and for all i, i+ f should
be different from 0 modulo 5, which is impossible.

Case 2: d = 10 and s ∈ {1, 2}. Now ωeα should act as a product of 5 transpositions on ω10-orbits.
Hence, for s = 1, (ωeα)2(ωi) = ω49i+8e is the identity on these orbits. Yet, for i = 0, 1 we have
9i+ 8e = 8e and 9 + 8e, respectively. It follows that 5 divides e and, consequently, 9 + 8 · 5f is equal 1
modulo 10, for some f , which is a contradiction.

For s = 2, ωeα2(ωi) = ω49i+e. For e odd, this yields a required product of transpositions, so we need
a deeper argument to get a contradiction in this case.

We make use of the larger groupM in Corollary 3.2(3). SinceM0 permutes the colors of G transitively,
and n = 7, M0 contains in particular a cyclic permutation of colors. Without loss of generality we
may assume that M is an extensions of Aut(G) by a single permutation c permuting colors cyclically.
We have M0 = 〈ωd1 , ωe1αs1〉, where d1|10, and the index [M0 : A] = 5. The only possibility is
M0 = 〈ω2, ωeα2〉. It follows that ω2 is a cyclic permutation of colors of order 5.

Now, the images of ω0 and ω2 by ωeα2 are, respectively, in ω10-orbits represented by ωe and ωe+8.
In, particular the corresponding pairs have the same colors. It follows, that ω2ωe = ωe+2 should have the
same color as ωe+8. This contradicts the fact that ω2 is a cyclic permutation of colors of order 5.

Case 3. d = 5 and s ∈ {1, 2, 4}. Here ω5-orbits have to correspond to 5 colors. We check that ωeαs

does not preserve ω5-orbits unless e = 0 and s = 4. Thus, A = 〈ω5〉. Note, that in this case, ω permutes
ω5-orbits cyclically, so we cannot obtain a contradiction with the methods applied so far. Adding to A
translations, we obtain a group whose orbitals form a 5-colored graph. This is just the only exception
pointed out in the formulation of the theorem. 2

We observe that this exceptional graph is the generalized Paley graph GP5(74) defined in Section 2.
One may check that the whole group AΓL1(74) preserves colors of GP5(74), which suggests that it may
be a TSC-graph with the automorphism group containing AΓL1(74) (and contained in AΓL4(7)). Note
that we are able easily to compute this graph and store it in computer memory, but since it has 2401
vertices, computing its automorphism group is beyond the capabilities of modern computer technology.
Only combining suitably the computational power with the knowledge we possess makes possible to settle
the case. This will be done in the next section.

Lemma 5.2 There is at least one and at most two 5-colored TSC-graph on 34 vertices.

Proof: One of such graphs is H5(34) described in Section 2. By Corollary 3.2, for every other 5-colored
TSC-graph G on 34, Aut(G) is an affine group satisfying conditions given in (iii).

In this case k = 5, p = 3, and r = 4. The cardinality |A| = (34 − 1) · 4/ds. Since Aut(G) is arc
transitive, (34 − 1)/5 divides |A|. It follows that ds|20. Since, A has five orbits, d ≥ 5. The remaining of
the proof is essentially the same as that for n = 74. We leave it to the reader. Again, similarly as in the
previous case, the only unsettled case is A = 〈ω5〉 acting on nonzero elements of F81.

2
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As before, the exceptional graph is the generalized Paley graph, GP5(34), and one may check that the
whole group AΓL1(34) preserves colors. So, we need other methods to check this case. Here, GP5(34)
has ”only” 81 vertices, so one could try to check it using existing computation tools for permutation
groups. Yet, we will do it more efficiently applying the same approach as in the case of GP5(74). This is
presented in the next section. The last case of Theorem 3.1(i) to consider is that for n = 28.

Lemma 5.3 There is at most one 5-colored TSC-graph on 28 vertices.

Proof: If G be a 5-color TSC-graph on 28 vertices, then by Corollary 3.2, Aut(G) is an affine group
satisfying conditions given in (iii). In this case k = 5, p = 2, and r = 8. Using cardinality arguments
we have that |A| = (28 − 1) · 8/ds, and by arc transitivity, (28 − 1)/5 divides |A|. It follows that ds|40.
Since, A has five orbits, d ≥ 5, and since (by Lemma 3.3(ii)) d divides 28 − 1 = 255 = 5 · 51, it follows
that we have only one possibility d = 5.

Again we check that for A to have 5 orbits, we need to have e = 0 and s = 0 or 4. Since α4 : x→ x16

preserves ω5-orbits, it follows that the only possibility is A = 〈ω5, α4〉, and the possible exception
mentioned in the formulation of the lemma is, again, the generalized Paley graph GP5(28). 2

6 TSC-graphs with 3 colors
Before we deal with the three unsettled cases of the previous section, we complete our investigation
considering the case k = 3. In the three lemmas below we use the fact that, by Corollary 3.2, Aut(G) is
an affine group satisfying conditions given in (iii). As before we use the notation of Section 3.

Lemma 6.1 The generalized Paley graph GP(24) is the only 3-colored TSC-graph on 24 vertices.

Proof: Let G be a 3-colored TSC-graph on 24 vertices. In this case k = 3, n = 24, p = 2, r = 4. In
particular, α : x → x2. The cardinality formula yields |A| = (24 − 1) · 4/ds. Since Aut(G) is arc
transitive, (24− 1)/3 divides |A|. It follows that ds divides 12. By Lemma 3.3(ii), d divides 24− 1 = 15.
Hence d = 3. The only possibility for A to have three orbits is e = 0 and s = 2. Since α2 preserves
ω3-orbits, this leads to the generalized Paley graph G = GP(24). 2

Lemma 6.2 The generalized Paley graph GP(26) is the only 3-colored TSC-graph on 26 vertices.

Proof: This case is very similar to the previous one. We have k = 3, p = 2, and r = 6. We have
|A| = (26−1)·4/ds and (26−1)/3 divides |A|. Whence ds|24. By Lemma 3.3(ii), d divides 26−1 = 63,
yielding d = 3. The only possibility for A to have three orbits is e = 0 and s ∈ {2, 4}. The latter, s = 4,
is excluded by Lemma 3.3(i), since 4 does not divide r = 6. Hence, A = 〈ω3, α2〉, which leads to the
generalized Paley graph GP(26). 2

Lemma 6.3 For each p = 17, 23, 89, the generalized Paley graph GP(p2) is the only 3-colored TSC-
graph on p2 vertices.

Proof: Let p ∈ {17, 23, 89}. If s = 2, then A = 〈ω3〉, and the graph is GP(p2), as claimed. The
remaining case is s = 1.
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Here, again, we make use of the facts that |A| = 2(p2 − 1)/d and (p2 − 1)/3 divides |A|. Hence d|6.
Since d ≥ 3, we have two cases d = 6 or d = 3. The proof is the same in each case p = 17, 23, 89, since
in each case p = 5 modulo 6 (in particular, p = 2 modulo 3).

Case 1. d = 3. Since A should have exactly 3 orbits, ωeα should preserve ω3-orbits. Yet, the image
of ωi by ωeα is ωj , where j = pi + e = 2i + e modulo 3. It follows that i = 2i + e, and consequently,
i = −e modulo 3. This should be satisfied for each i and a field e, a contradiction.

Case 2. d = 6. Here, we look for e such that ωeα acts as a product of three transpositions on ω6-orbits.
Now, the image of ωi by ωeα is ωj , where j = e + 5i = e − i modulo 6. It follows that A has exactly
three orbits only when e is odd.

Here we need again a deeper argument, analogous to that applied in Case 2 of Lemma 5.1. In the same
way we infer that there exists a group M0 = 〈ωd1 , ωe1αs1〉, where d1|6, and the index [M0 : A] = 3. The
only possibility is M0 = 〈ω2, ωeα〉. It follows that ω2 is a cyclic permutation of colors of order 3.

Now, the images of ω0, ω1 and ω2 by ωeα are, respectively, in ω3-orbits represented by ωe, ωe+2 and
ωe+1. This contradicts the fact that ω2 is a cyclic permutation of colors of order 3.

2

It remains to consider exceptional cases of n = 52 and 112. We consider each of these cases separately,
but before, we establish a more general result we need here. By Theorem 2.1 of [11] we know that if G
is a k-colored TSC-graph then Aut(G) is an affine group. It follows we may speak of the (finite) vector
space V associated with G, and consequently, of sets of vertices forming lines in V . We prove that for
k > 2 lines are monochromatic in the following sense.

Lemma 6.4 If G is a 3-colored TSC-graph, and V a vector space associated with G, then for each one-
dimensional subspace L of V , if v, u ∈ L, v, u 6= 0, then the edges (0, v) and (0, u) have the same
color.

Proof: We make use of the fact that by the proof of Theorem 2.1 of [11] not onlyAut(G), but alsoExt(G)
is an affine group (see also [25, Theorem 15]). This means that Ext(G)0 ≤ GLr(p), where |V | = pr. In
particular, permutations in Ext(G) preserve lines.

Let L = {0, x1, . . . , xp−1}, and x1 (that is, (0, x1)) has color 0. Let f ∈ Ext(G)0 be a permutation of
vertices that is a transposition of colors 1 and 2. Since color 0 is fixed, and Aut(G) is transitive on each
color, we may assume that f fixes x1, as well. Consequently, f(L) = L.

Now assume that there is a vertex xi in L which is colored 1. It follows that the number of vertices
xi ∈ L colored 1 is the same as that colored 2. Since the choice of colors is arbitrary, it follows that
all the colors are represented in L in the same number. This contradicts the fact that, by Theorem 3.1,
p = 2(mod 3). 2

Lemma 6.5 The generalized Paley graph GP3(52) and the graph G3(52) defined in Section 2 are the only
two nonisomorphic 3-colored TSC-graphs on 52 vertices.

Proof: Let G be a 3-colored TSC-graph on 52 vertices. We first construct the field F25 taking 2 + x2 as
an irreducible polynomial over F5, and ω = 1 + x as a primitive root. Then we have the natural injection
of ΓL1(25) into GL2(5) given by

ω −→
(

1 3
1 1

)
, α −→

(
1 0
0 −1

)
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The associated vector space V = F 2
5 has six lines (one-dimensional subspaces) determined by vectors

(1, 0), (0, 1), (1, 1), (2, 1), (3, 1), (4, 1). Taking powers of ω = 1 + x modulo 2 + x2, we check that
they correspond to the lines containing 1, ω3, ω, ω2, ω4, and ω5, respectively. By Lemma 6.4, each line
is monochromatic, and consequently, two lines correspond to each color. Without loss of generality we
may assume that lines of (1, 0) and (0, 1) have the same color. (This is so because changing a base by
conjugation preserve lines, and therefore it is enough to consider only graphs, in a fixed presentation,
with base lines of (1, 0) and (0, 1) having the same color). Then one of the lines generated by (2, 1),
(3, 1), (4, 1) has to have the same color as (1, 1). This implies that we have at most three nonisomorphic
3-colored TSC-graphs on 52.

The second possibility (lines of (3, 1) and (1, 1) have the same color) leads to a graph G2 whose
Aut(G2)0 = 〈ω3〉. This group is isomorphic to Z8 and G2 is isomorphic to GP3(52). The first pos-
sibility (lines of (2, 1) and (1, 1) have the same color) leads to a graph G1 whose Aut(G1)0 = 〈ω6, ω3α〉.
It is not difficult to see that this graph is isomorphic to G1. Indeed the permutation of F 2

5 corresponding
to the transposition (2, 3) of the underlined field F5 yields the desired isomorphism.

The last possibility (lines of (4, 1) and (1, 1) have the same color) leads to another 3-colored TSC-graph
G3 on 52 vertices. It is straightforward to check that in this case Aut(G3)0 is generated by matrices(

2 0
0 2

)
,

(
0 1
1 0

)
,

(
−1 0
0 1

)
,

which is isomorphic to D4 × Z2, has order 16, and cannot be embedded in ΓL1(52). Obviously, G3 =
G3(52) defined in Section 2. 2

Lemma 6.6 The generalized Paley graph GP(112) and the graph G3(112) introduced in Section 2 are
the only two nonisomorphic 3-colored TSC-graphs on 112 vertices.

Proof: In this case the fact that there are at most two 3-colored TSC-graphs on 112 vertices has been
established in the proof of [11, Theorem 5.1]. The second case in that proof is Aut(G)0 = 〈ω3, α2〉 <
ΓL1(112) (note that in this case α2 is an identity). This leads to the generalized Paley graph GP(112).
Below, we will use the fact that, in this case, Aut(G)0 is cyclic and isomorphic to Z40

The other case in the proof of [11, Theorem 5.1] is Aut(G)0 = 〈ω6, ω3α〉 (where ω3 may be replaced
by ω or ω5 leading to isomorphic graphs). This group is also of order 40 but is isomorphic with the group
〈a, b|a20 = e, b2 = a2, ba = a11b〉, which is not abelian and therefore not isomorphic to Z40. It follows
that the graph G determined by the orbitals of the corresponding group is not isomorphic to GP(112). We
still need to prove that it is totally symmetric.

In order to construct the field F112 we take the polynomial 1 + x2, which is irreducible over F11. As
a primitive root we take ω = 6 + 2x. We have twelve lines which contain ω0, . . . , ω11, respectively.
For each i, we compute vector (x, y) belonging to the same line as ωi, and using Aut(G)0 we determine
lines with the same color. The results are presented in Table 1. As we see, this defines graph G3(112)
introduced in Section 2. Using the table we may check that the graph is totally symmetric. To this end it
is enough to check that the matrix (

1 0
0 −1

)
exchanges colors 1 and 2, while the matrix
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i vector i vector i vector i vector i vector i vector
0 (1,0) 1 (3,1) 2 (5,1) 3 (10,1) 4 (9,1) 5 (4,1)
6 (0,1) 7 (7,1) 8 (2,1) 9 (1,1) 10 (6,1) 11 (8,1)

color 0 color 1 color 1 color 0 color 2 color 2

Tab. 1: Correspondence between lines of F 2
11 and elements ωi.

(
2 1
1 4

)
exchanges colors 0 and 1. 2

7 Computations
In order to check whether the exceptional graphs mentioned in Section 5 are totally symmetric we wrote
a dedicated computer program that made an intensive use of the facts about the structure of the graphs we
have established. Below, we present the result and the details of the computations.

Theorem 7.1 None of the graphs GP5(34), GP5(74), GP5(28) is totally symmetric.

The general idea of computations is the same in each case pr = 34, 74, 28. First, we use the fact
mentioned in the proof of Lemma 6.4 that the extended automorphism group of a totally symmetric graph
is contained in AGLr(p). It follows that we may restrict to stabilizers of 0 anyway, and our aim is to
prove that GLr(p) does not permute colors in the symmetric way. Colors of GP5(pr) corresponds to the
orbits of A = 〈ω5〉. To fix notation, let us assign color i to the orbit of ωi for i = 0, 1, . . . , 4. It is enough
to show that, for instance, no permutation in GLr(p) transposes colors 0 and 1. We make use of the fact
that permutations in GLr(p) can be represented by suitable r × r matrices. We have, respectively, 316,
716, and 264 matrices to check, which are still too large numbers. So we need to use further facts in order
to reduce these numbers. Since now the details of the program differ in each case, we describe them, first,
for n = 74.

First, we construct a concrete field on n = 74 elements, using the polynomial x4+x3+x2+3 irreducible
over F7. We check that ω = x is a primitive root of Fn, generating the multiplicative group. Computing
all the powers ωi we establish the colors of all vectors (a0, a1, a2, a3) = a0 + a1x + a2x

2 + a3X
3.

In order to prove that the graph determined by the colored vectors is not totally symmetric it is enough
to show that there exists a permutation of colors that is not preserved by any linear transformation. For
technical reason we demonstrate this for transposition (1, 2) of colors 1 and 2. We note that the since the
powers ω0, ω1, ω2 are the vectors (1, 0, 0, 0), (0, 1, 0, 0) and (0, 0, 1, 0), respectively, their colors are 0, 1
and 2, respectively.

Thus, we are looking for a 4 × 4 matrix B = (aij), aij ∈ F7 such that for each vector v ∈ Fn, v and
Bv have the same colors, except for that if v has color 1 then Bv has color 2, v has color 2 then Bv has
color 1. Note that since A is transitive on each color, if there is B with the required properties, then there
must be one that in addition fixes ω0 = (1, 0, 0, 0). In other words, we may assume that the first column
of B is just (1, 0, 0, 0). Further way to reduce the number of matrices to check is to observe that, since the
color of (0, 1, 0, 0) is 1, the second column must be a vector of color 2. Similarly, the third vector must be
of color 1, while the fourth column must be a vector of color 3. Since there are (74 − 1)/5 = 480 vectors
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of each color we have 4803 ≈ 11 × 107 matrices to generate and check. We wrote a suitable program in
C++ and it took some 20 minutes on our PC-computer with a 2GHz processor to get the answer that no
matrix satisfies these conditions.

The analogous program for the case of n = 34 has obtained the same answer checking 4096 matrices
in an instant time. The case n = 28 is the hardest one. Here we have (28 − 1)/5 = 51 vectors for each
color, and consequently, 517 ≈ 9 × 1011 matrices to check. To reduce this number we make use of the
fact that candidates for each column may be further restricted as follows. The sum of the first and the i-th
column, i > 1, must be of the same color as the vector (1, 0, . . . , 0, 1, . . . , 0) with the second 1 on the
i-th place. The sum in question may be obtained just by switching the first bite in the vector representing
the i-th column. Computations in the field F28 may be also speeded up due to the fact that the underlying
field is the so called Rijndael field [5], where each vector may be treated as a byte, and consequently
bitwise operations may be applied directly. In particular, computing the image of a vector by a matrix
reduces to computing the exclusive-OR operation on the set of column-bytes. We were able to reduce the
computation time to a few hours to get the answer that no matrix satisfies the required conditions.

Since the answers in all the three cases was negative, we modified the program slightly to make sure it
gives correct answers to other related questions. In particular, our program found correctly the matrices
permuting colors in a cyclic way and computed the correct cardinalities of the automorphism groups.
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