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received 15th Feb. 2012, revised 3rd May 2013, accepted 26th Aug. 2013.

Let P be a set of n points in general position in the plane. A subset I of P is called an island if there exists a convex
set C such that I = P ∩ C. In this paper we define the generalized island Johnson graph of P as the graph whose
vertex consists of all islands of P of cardinality k, two of which are adjacent if their intersection consists of exactly l
elements. We show that for large enough values of n, this graph is connected, and give upper and lower bounds on its
diameter.
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1 Introduction
Let [n] := {1, 2, . . . , n} and let k ≤ n be a positive integer. A k-subset of a set is a subset of k elements.
The Johnson graph J(n, k) is the graph whose vertex set consists of all k-subsets of [n], two of which
are adjacent if their intersection has size k − 1. The Kneser graph K(n, k) is the graph whose vertex set
consists of all k-subsets of [n], two of which are adjacent if they are disjoint. The generalized Johnson
graph GJ(n, k, l) is the graph whose vertex set consists of all k-subsets of [n], two of which are adjacent
if they have exactly l elements in common. Thus GJ(n, k, k− 1) = J(n, k) and GJ(n, k, 0) = K(n, k).

Johnson graphs have been widely studied in the literature. This is in part for their applications in
Network Design–where connectivity and diameter (i) are of importance. (Johnson graphs have small

†Email: maria.dolores.lara@upc.edu
(i) A graph is connected if there is a path between any pair of its vertices. The distance between two vertices is the length of the

shortest path joining them. The diameter is the maximum distance between every pair of vertices of a graph.
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diameter and high connectivity.) Geometric versions of these graphs have been defined in the literature.
In Araujo et al. (2005) the chromatic numbers of some “geometric type Kneser graphs” were studied. In
this paper we study the connectedness and diameter of a “geometric” version of the generalized Johnson
graph.

Let P be a set of n points in the plane. A subset I ⊂ P is called an island if there exists a convex set C
such that I = P ∩ C. We say that I is a k-island if it has cardinality k (see Figure1). Let 0 ≤ l < k ≤ n
be integers. The generalized island Johnson graph IJ(P, k, l) is the graph whose vertex set consists of all
k-islands of P , two of which are adjacent if their intersection has exactly l elements. Note that IJ(P, k, l)
is an induced subgraph of GJ(n, k, l). If P is in convex position, then IJ(P, k, l) and GJ(n, k, l) are
isomorphic–since in this case every subset of k points is a k-island.

Fig. 1: A subset of 5 points which is a 5-island, and a subset of 5 points which is not (both painted black).

Graph parameters of IJ(P, k, l) can be translated to problems in Combinatorial Geometry of point sets.
Here are some examples.

- The number of vertices of this graph is the number of k-islands of P–the problem of estimating this
number was recently studied in Fabila-Monroy and Huemer (2011).

- An empty triangle of P is a triangle with vertices on P and without points of P in its interior.
The empty triangles of P are precisely its 3-islands (or the number of vertices in IJ(P, 3, l)).
Counting them has been a widely studied problem Bárány and Füredi (1987); Bárány and Valtr
(2004); Dumitrescu (2000); Katchalski and Meir (1988); Valtr (1995).

- A related question Bárány and Károlyi (2001) is: What is the maximum number of empty trian-
gles that can share an edge? This translates to the problem of determining the clique number of
IJ(P, 3, 2).

The paper is organized as follows. In Section 2, we prove that IJ(P, k, l) is connected when n is large
enough with respect to k and l. The proof of this result implies an upper bound of O

(
n
k−l

)
+ O(k − l)

on the diameter of this graph. In Section 3, we improve this bound for the case when l ≤ k/2, where we
show that the diameter is at mostO(log n)+O(k− l). We also exhibit a choice of P for which IJ(P, k, l)

has diameter at least Ω
(

logn−log k
log(k−l)

)
. Note that these bounds are asymptotically tight when l ≤ k/2 and,
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Fig. 2: A 4-island which is projectable, and a 4-island which is not projectable.

k and l are constant with respect to n. A preliminary version of this paper appeared in Bautista-Santiago
et al. (2010).

2 Connectedness
In this section we prove the following theorem.

Theorem 2.1 If n > (k− l)(k− l+ 1) + k, then IJ(P, k, l) is connected and its diameter is O
(

n
k−l

)
+

O(k − l).

The proof is divided in two parts:

• First we choose F , an appropriate ‘core’ subgraph from IJ(P, k, l) which has small diameter and
is connected.

• Next we prove that for every vertex in IJ(P, k, l) there is a path of length at most O
(

n
k−l

)
con-

necting it to a vertex in F .

2.1 Choosing a core subgraph from IJ(P, k, l)

Let P := {p0, p1, . . . , pn−1} be a set of n points in general position in the plane. So that p0 is the topmost
point of P , and p1, . . . , pn−1 are sorted counterclockwise by angle around p0. For 0 ≤ i ≤ j ≤ n, let
Pi,j := {pi, pi+1, . . . , pj} and let P ′i,j := Pi,j ∪ {p0}. Observe that Pi,j and P ′i,j are both islands of P .
We call these two types of islands projectable, and define this concept next.

Definition 2.2 The projection of a point pi , i 6= 0, is the intersection of the ray emanating from p0 and
passing through pi with a horizontal line. The projection of an island is the projection of its point set after
omitting p0. Projectable islands are those islands that can be “projected” in such a way that its points
are consecutive in the image of the whole set; see Figure 2.

Let F be the subgraph of IJ(P, k, l) induced by the projectable k-islands of P . Let S be a set of n− 1
points on a horizontal line h, and let S′ := S∪{x}, where x is a point not in h. It is not hard to see that F
is isomorphic to IJ(S′, k, l). We classify the islands of S′ into two types: those that contain x, and those
that do not. Notice that these two types correspond to the two types of projectable islands of P .
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Now we show that IJ(S′, k, l) is connected. First we consider the subgraph of IJ(S′, k, l) induced by
those islands of S′ that do not contain x. Note that this is precisely IJ(S, k, l). Without loss of generality
assume that S is a set x1 < x2 < · · · < xn−1 of points on the real line. Observe that a k-island of S is an
interval of k consecutive elements {xi, . . . , xi+k−1}. For the sake of clarity, in what follows we refer to
k-islands of S as k-intervals.

Two k-intervals of S are adjacent in IJ(S, k, l) if they overlap in exactly l elements. It follows easily
that if l > 0, each k-interval is adjacent to at most two different k-intervals, one containing its first
element, and the other containing its last; see Figure 3. Since IJ(S, k, l) has no cycles and its maximum
degree is at most two, it is a union of pairwise disjoint paths. These paths can be described as follows. For
i < j, let Ai and Aj be the intervals ending at xi and xj respectively. There is a path between Ai and Aj
if and only if i ≡ j mod (k− l). Consider the interval adjacent withAi to its right, this interval must end
at point xi+(k−l) (leaving exactly l points on the intersection). On the other hand, the interval adjacent
with Ai to its left, must end at point xi−(k−l); see Figure 3. For 0 ≤ r < k − l, let Pr be the subgraph of
IJ(S, k, l) induced by those k-intervals ending at a point with index congruent to r mod (k − l). Thus
we have:

Proposition 2.3 If l > 0, Pr is an induced path of IJ(S, k, l). Moreover IJ(S, k, l) is the union of
{Pr|0 ≤ r < k − l}.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A7 A11 A15

Fig. 3: Three different k-intervals, for |S| = 16, k = 6, l = 2.

For l = 0 and n ≥ 3k − 1, every k-interval would either intersect the left-most k-interval or the right-
most k-interval, but not both. In this case IJ(S, k, 0) is connected and its diameter is at most 3. Note
that except for some special cases, IJ(S, k, l) is disconnected. Remarkably, as we show next, for a large
enough value of n, the addition of one extra point makes the graph connected.

As before Ai is the k-island (k-interval) that ends at point xi and does not contain x. Let A′i be the
k-island ending at point xi and containing x; see Figure 4. The structure of IJ(S′, k, l) when l < 2 is
different from when l ≥ 2. In what follows, we assume that l ≥ 2 and briefly discuss the case l < 2 at
the end of this section. Note that the subgraph of IJ(S′, k, l) induced by the Ai’s is precisely IJ(S, k, l);
and the subgraph induced by the islands A′i is isomorphic to IJ(S, k−1, l−1). From these observations,
the following lemma is not hard to prove:

Lemma 2.4 If l ≥ 2, then in IJ(S′, k, l):

1. Ai is adjacent to A′i−(k−l) and A′i+(k−l)−1 (if they exist).

2. A′i is adjacent to Ai+(k−l) and Ai−(k−l)+1 (if they exist).

The following theorem provides sufficient and necessary conditions for IJ(S′, k, l) to be connected.

Theorem 2.5 For l ≥ 2, the graph IJ(S′, k, l) is connected if and only if n ≥ 3k − 2l − 1 or n = k.
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Fig. 4: Four different k-islands in S′, for |S′| = 16, k = 6, l = 2.

Proof: Let I and J be two k-islands of S′. As long as the intermediate islands exists we can repeatedly
use Lemma 2.4 to find a path from I to an island whose endpoint is in the same residue class of (k− l) as
the endpoint of J , and that contains x if and only if J does. This is the case whenever n ≥ 3k − 2l − 1:
Consider the set of islands {Ak, Ak+1, Ak+2, . . . , Ak+(k−l−1)}. Notice that, for any value of k and
l ≥ 2, all islands in this set exist. Furthermore, there is exactly one island in the set for each residue
class. Afterwards Proposition 2.3 ensures that there is a path from this island to J .

Suppose that n < 3k − 2l − 1, then there exists a k-island containing x and having less than k − l
points to its left and less than k− l points to its right. This island is an isolated vertex in IJ(S′, k, l). This
sole vertex is all of IJ(S′, k, l) when n = k (in which case the graph is connected). However, if n > k,
there are at least two such k-islands. 2

The proof of Theorem 2.5 implicitly provides the following bound on the diameter of IJ(S′, k, l).

Proposition 2.6 If IJ(S′, k, l) is connected, then its diameter is O
(
n−k
k−l

)
+O(k − l).

Proof: Suppose that n ≥ 3k−2l−1, as otherwise the bound trivially holds. Let I and J be two k-islands
of S′. Note that it takes at most 2(k− l) applications of Lemma 2.4 to take I to an island whose endpoint
is in the same residue class of (k − l) as the endpoint of J , and that contains x if and only if J does. The
path in IJ(S′, k, l) or in IJ(S, k, l)–depending on whether J contains x or not–connecting this island to
J has length at most dn−kk−l e. 2

Finally we consider the case when l < 2. As we mentioned before, if l = 0 and n ≥ 3k−1, IJ(S, k, 0)
is connected and its diameter is at most 3. This is the case also for IJ(S′, k, 0). On the other hand, if
l = 1, then the islands containing x induce a graph isomorphic to IJ(S, k−1, 0). From these observations
and Lemma 2.4, we get the following result.

Proposition 2.7 If n ≥ 3k, IJ(S′, k, 0) and IJ(S′, k, 1) are connected and of diameter at most 4. 2

2.2 Paths between projectable and non projectable islands
To finish the proof of Theorem 2.1, we prove that for any island of P , there is a path connecting it to a
projectable island. At the end of this section we present a first bound on the diameter of IJ(P, k, l).

Recall that P = {p0, p1, . . . , pn−1}; p0 is its topmost point and p1, . . . , pn−1 are sorted counterclock-
wise by angle around p0. Let A be an island of P such that |A \ {p0}| ≥ 2. Define the weight of A as the
difference between the largest and the smallest indices of the elements of A \ {p0}–an island of weight
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k − 1 is always projectable. The following lemma ensures the existence of a path between any island and
a projectable island, by eventually reducing the weight of any given island.

Lemma 2.8 (Shrinking Lemma). If n > (k − l)(k − l + 1) + k, then every non projectable k-island A
of P has a neighbor in IJ(P, k, l) which is either a projectable island or an island whose weight is less
than that of A by at least k − l.

Proof: Let the elements ofA different from p0 be pi1 , . . . , pim . Thusm is equal to k or to k−1 depending
on whetherA contains p0 or not. Consider all maximal intervals of P \{p0} containing exactly l elements
of A. (That is maximal sets of consecutive elements of P \ p0 containing exactly l elements of A.)

We distinguish two of these intervals: the one containing the first point of P \ {p0} and the one con-
taining the last. We refer to them as end intervals, and to the rest as interior intervals.

Note that there are at most k− l+ 1 such intervals and that every element of P \ {p0} is in at least one
of them. Since n > (k − l)(k − l + 1) + k, one of these intervals, I , must contain at least (k − l) points
of P \A.

Suppose that I is an interior interval. Let J := A ∩ I , note that |J | = l (if l = 0, set J := ∅). If J is
non empty let B be the set of the k − l points of I \ A closest(ii) to Conv(J). If J is empty then let B be
any k-island contained in I \ A. Then J ∪ B is a k-island adjacent to A in IJ(P, k, l), and its weight is
smaller than the weight of A by at least k − l.

Now suppose that I is an end interval, let pS and pE be the first and last elements in A ∩ I . If [pS , pE ]
contains at least k − l elements of P \ A, then proceed as with interior intervals. Otherwise, there are
r < k − l points of P \ A in I . If I is the first interval, then let B be the k − l − r points previous to pS
in P \ {p0}. If I is the last interval, then let B be the k − l − r points after pE . Note that in either case,
[pS , pE ] ∪B is a projectable island adjacent to A. 2

We are ready to finish the proof of Theorem 2.1.

Theorem 2.1 If n > (k− l)(k− l+ 1) + k, then IJ(P, k, l) is connected and its diameter is O
(

n
k−l

)
+

O(k − l).

Proof: LetA andB be k-islands of P . We apply Lemma 2.8 successively to find a sequence of consecutive
adjacent islands A = A0, A1, . . . , Am and B = B0, B1, . . . , Bm′ , in which each element has weight
smaller than the previous by at least k − l, and the last element is a projectable island. Since the weight
of the initial terms is at most n, these sequences have length O

(
n
k−l

)
.

As noted before the subgraph induced by the projectable islands is isomorphic to IJ(S′, k, l). Simple
arithmetic shows that if n > (k− l)(k− l+1)+k, then n > 3k−2l−2. Thus this subgraph is connected

and has diameter O
(
n−k
k−l

)
+ O(k − l) (Theorem 2.5 and Proposition 2.6). Hence the diameter of

IJ(P, k, l) is O
(

n
k−l

)
+O(k − l) as claimed.

2

(ii) The distance between Conv(J) and a point p /∈ Conv(J), is defined as the length of the shortest line segment having p and a
point of Conv(J) as endpoints.
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3 Bounds
3.1 Upper bound
In this section, for the case when l ≤ k/2, we improve the upper bound on the diameter of IJ(P, k, l)
given in Theorem 2.1. We use a divide and conquer strategy. Let A and B be two vertices of IJ(P, k, l).
First we find a neighbor ofA and a neighbor ofB; discarding half of the points of P in the process. We it-
erate on the new found neighbors. Just before P has very few points and IJ(P, k, l) may be disconnected;
we apply Theorem 2.1.

The following lemma provides the divide and conquer part of the argument. The proof uses some of
the ideas of the proof of the Shrinking Lemma.

Lemma 3.1 Let A and B be two vertices of IJ(P, k, l). If n ≥ 2((k − l)(k − l + 1) + k), and l ≤ k/2,
then there exists a closed halfplane, H , containing at most n/2 and at least (k− l)(k− l+ 1) + k points
of P . With the additional property that A and B, each have a neighbor contained entirely in H .

Proof: We use the ham-sandwich theorem to find a line ` so that each of the two closed halfplanes bounded
` by contain dk/2e points of A and dk/2e points of B.

Without loss of generality suppose that the halfplane H above ` contains at most n/2 points of P . If
H , however, does not contain at least (k − l)(k − l + 1) + k points of P , move ` parallel down until it
does. In this case H would contain at least as many points of A and B as it previously did and since we
are assuming that n ≥ 2((k − l)(k − l + 1) + k), it still contains at most n/2 points of P .

We will now show the existence of a neighbor of A in IJ(P, k, l) with the desired properties. The
corresponding neighbor of B can be found in a similar way. Let P := P ∩ H and sort its elements by
distance to `. As in the proof of Lemma 2.8 we consider maximal intervals of P ′ containing exactly l
consecutive elements of A. There is at least one such interval, given that H contains at least k/2 points
of A and that we are assuming l ≤ k/2. The rest of the proof employs the same arguments as the proof of
Lemma 2.8 to find a neighbor of A contained in one of these intervals. 2

Theorem 3.2 If n ≥ 2((k− l)(k− l+1)+k) and l ≤ k/2, then the diameter of IJ(P, k, l) isO(log n)+
O(k − l).

Proof: Consider the following algorithm. Let A and B be two k-islands of P . We start by setting
A0 := A,B0 := B,P0 := P, n0 := n. While ni ≥ 2((k − l)(k − l + 1) + k), we apply Lemma 3.1
to Pi, Ai, and Bi. At each step we obtain a closed halfplane Hi containing at most ni/2 and at least
(k− l)(k− l+ 1) +k points of Pi, with the additional property that both Ai and Bi have neighbors Ai+1

and Bi+1 contained entirely in Hi. We set Pi+1 := Hi ∩ Pi, ni+1 := |Pi+1|, and continue the iteration.
We can do this procedure at most O(log n) times. In the last iteration, we have a point set Pm with fewer
than 2((k − l)(k − l + 1) + k) and at least (k − l)(k − l + 1) + k elements. The islands Am and Bm
are both contained in Pm , and are joined by paths of length O(log n) to A and B respectively. We apply
Theorem 2.1 to obtain a path of length at most O(k − l) from Am to Bm. Concatenating the three paths
we obtain a path of length O(log n) +O(k − l) from A to B in IJ(P, k, l). 2

3.2 Lower bound
For the lower bound we use Horton sets Horton (1983). We base our exposition on Matoušek (2002). Let
X and Y be two point sets in the plane. We say that X is high above Y (and that Y is deep below X), if
the following conditions are met:
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• No line passing through a pair of points of X ∪ Y is vertical.

• Each line passing through a pair of points of X lies above all the points of Y .

• Each line passing through a pair of points of Y lies below all the points of X .

For a set X = {x1, x2, . . . , xn} of points in the plane with no two points having the same x-coordinate
and with the indices chosen so that the x-coordinate of xi increases with i, we define the sets X0 =
{x2, x4, . . .} (consisting of the points with even indices) and X1 = {x1, x3, . . .} (consisting of the points
with odd indices). Thus X00 = {x4, x8, . . .}, X01 = {x2, x6, . . .}, X10 = {x3, x7, . . .} and X11 =
{x1, x5, . . .}.

Definition 3.3 A finite set of points H0, with no two of points having the same x-coordinate, is said to be
a Horton set if |H0| ≤ 1, or the following conditions are met:

• Both H00 and H01 are Horton sets.

• H00 is high above H01.

Horton sets of any size were shown to exist in Horton (1983). We remark that in Matoušek (2002), in
the definition of Horton sets, the second condition is that “H00 is high above H01 or H01 is high above
H00”. For our purposes we need to fix one of these two options.

Let H0 := {x1, . . . , xn} be a Horton set of n points. Given an island A of H0, we define its depth,
δ(A), to be the length of the longest string s := 00 . . . 0 of all zeros such that Hs contains A. Thus for
example, δ(x1) = 1, δ(x2) = 2, δ(x3) = 1, δ(x4) = 3, · · · ; refer to Figure 5. Note that the depth of an
island is the depth of its shallowest point.

Lemma 3.4 Let x and y be two points of H0, such that x is to the left of y, and z is a point with depth
less than δ({x, y}). Then the island H0 ∩ Conv({x, y, z}) contains at least 2δ({x,y})−δ(z)−1 − 1 points
with depth greater than that of z, and lying in between x and y.

Proof: Let A := H0 ∩ Conv({x, y, z}). We will proceed by induction on r = δ({x, y}) − δ(z). If
r = 1 there is nothing to prove, since 2r−1 − 1 = 0. Assume then that r > 1. Let s be the unique
string of all zeros, such that Hs contains A but Hs0 and Hs1 do not. Note that z lies in Hs1 while x
and y both lie in Hs0; actually since we are assuming r > 1, they both lie in Hs00. Consider the set
Hs0, since it is a Horton set, A contains at least a point in Hs01, between x and y. Of all such points,
choose x′k to be the shallowest. The depth of x′k is one more than that of z. By induction, the island
H0 ∩Conv({x, y, x′k}) contains a set I of at least 2r−2− 1 points. These points have depth greater than
that of x′k (thus contained in Hs00) and lay between x and y. Therefore I is contained in A. For each
point in I , consider the next point xm to its right in Hs0. This point must be in Hs01 and δ(z) < δ(xm).
Thus we have 2r−2 − 1 additional points in A. Note that the point to the right of x in Hs0 is not in the
previous counting. ThereforeA has at least 2r−2−1+2r−2−1+1 = 2r−1−1 points with depth greater
than that of z, and lying between x and y. 2

Lemma 3.5 If A and B are two adjacent islands in IJ(H0, k, l) (with l ≥ 2), then their depths differ by
at most O(log(k − l)).

Proof: Without loss of generality assume that the depth of A is greater than the depth of B. Let C be
the island A ∩ B. Note that the depth of C is at least the depth of A. If z is the shallowest point of B,
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Fig. 5: A Horton set with 16 points, and the depth of its elements.

then δ(z) = δ(B), and this point has depth less than δ(C). Consider an edge of the convex hull of C,
whose supporting line separates C and z. Let x and y be its endpoints. Then by Lemma 3.4, the island
H0 ∩ Conv({x, y, z}) contains at least 2δ({x,y})−δ(z)−1 − 1 ≥ 2δ(A)−δ(B)−1 − 1 points, none of which
is in C. However, since these points do lie in B, there are at most k − l of them. Therefore δ(A)− δ(B)
is O(log(k − l)) as claimed.

2

Theorem 3.6 The diameter of IJ(H0, k, l) for l ≥ 2 is Ω
(

logn−log k
log(k−l)

)
Proof: Let A be an island with the largest possible depth, which is dlog2 n/ke. Let B be an island of
depth 1. By Lemma 3.5 in any path joining A and B in IJ(H0, k, l), the depth of two consecutive vertices

differs by O(log(k − l)).Therefore any such path must have length Ω
(

logn−log k
log(k−l)

)
. 2

We point out that there was an error in the proof of Theorem 11 in the preliminary version of this
paperBautista-Santiago et al. (2010); thus the bounds stated there are incorrect.

The diameter of the generalized Johnson graph can be substantially different from that of the gener-
alized island Johnson graph. The diameter of GJ(n, k, l) is O(k) when n is large enough, while the
diameter of IJ(P, k, l) can be Ω

(
logn−log k
log(k−l)

)
.

Determining upper and lower bounds for the diameter of IJ(P, k, l) seems to be a challenging problem
when l > k/2. It might happen that there is a sharp jump in the diameter when l rises above k/2. We
leave the closing of this gap as an open problem.
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