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An additive labeling of a graph G is a function ` : V (G) → N, such that for every two adjacent vertices v and u of
G,

∑
w∼v `(w) 6=

∑
w∼u `(w) (x ∼ y means that x is joined to y). The additive number of G, denoted by η(G), is

the minimum number k such that G has a additive labeling ` : V (G)→ Nk. The additive choosability of a graph G,
denoted by η`(G), is the smallest number k such that G has an additive labeling for any assignment of lists of size k
to the vertices of G, such that the label of each vertex belongs to its own list.

Seamone in his PhD thesis conjectured that for every graph G, η(G) = η`(G). We give a negative answer to this
conjecture and we show that for every k there is a graph G such that η`(G)− η(G) ≥ k.

A (0, 1)-additive labeling of a graph G is a function ` : V (G) → {0, 1}, such that for every two adjacent vertices
v and u of G,

∑
w∼v `(w) 6=

∑
w∼u `(w). A graph may lack any (0, 1)-additive labeling. We show that it is NP-

complete to decide whether a (0, 1)-additive labeling exists for some families of graphs such as perfect graphs and
planar triangle-free graphs. For a graph G with some (0, 1)-additive labelings, the (0, 1)-additive number of G is
defined as σ1(G) = min`∈Γ

∑
v∈V (G) `(v) where Γ is the set of (0, 1)-additive labelings of G. We prove that given

a planar graph that admits a (0, 1)-additive labeling, for all ε > 0, approximating the (0, 1)-additive number within
n1−ε is NP-hard.

Keywords: Additive labeling, additive number, lucky number, (0, 1)-additive labeling, (0, 1)-additive number, Com-
putational complexity.

1 Introduction
Throughout the paper we denote {1, 2, . . . , k} by Nk. An additive labeling of a graph G, which was
introduced by Czerwiński et al. [11], is a function ` : V (G)→ N, such that for every two adjacent vertices
v and u of G,

∑
w∼v `(w) 6=

∑
w∼u `(w) (x ∼ y means that x is joined to y). The additive number of G,

denoted by η(G), is the minimum number k such that G has a additive labeling ` : V (G)→ Nk. Initially,
additive labeling is called a lucky labeling of G. The following important conjecture was proposed by
Czerwiński et al. [11].
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Conjecture 1 [ Additive Coloring Conjecture [11]] For every graph G, η(G) ≤ χ(G).

Czerwiński et al. also, considered the list version of above problem [11]. The additive choosability
of a graph G, denoted by η`(G), is the smallest number k such that G has an additive labeling from any
assignment of lists of size k to the vertices of G. Idem above, about list-coloring proved that if T is a
tree, then η`(T ) ≤ 2, and if G is a bipartite planar graph, then η`(G) ≤ 3 (for more information about
the recent results see [9]). Seamone in his Ph.D dissertation posed the following conjecture about the
relationship between additive number and additive choosability [23].

Conjecture 2 [Additive List Coloring Conjecture [23]] For every graph G, η(G) = η`(G).

For a given connected graphGwith at least two vertices, if no two adjacent vertices have a same degree,
then η(G) = 1 and η`(G) > 1. We show that not only there exists a counterexample for the above equality
but also the difference between η(G) and η`(G) can be arbitrary large.

Theorem 1 For every k there is a graph G such that η(G) ≤ k ≤ η`(G)/2.

Chartrand et al. introduced another version of additive labeling and called it sigma coloring [10]. For
a graph G, let c : V (G) → N be a vertex labeling of G. If for every two adjacent vertices v and u
of G,

∑
w∼v c(w) 6=

∑
w∼u c(w), then c is called a sigma coloring of G. The minimum number of

labels required in a sigma coloring is called the sigma chromatic number of G and is denoted by σ(G).
Chartrand et al. proved that, for every graphG, σ(G) ≤ χ(G) [10]. Note that the only difference between
additive labeling and sigma coloring is the objective function, but the feasible labelings are the same.

Additive labeling and sigma coloring have been studied extensively by several authors, for instance see
[3, 4, 6, 8, 10, 11, 13, 21, 22]. It is proved, in [3] that it is NP-complete to determine whether a given
graph G has η(G) = k for any k ≥ 2. Also, it was shown that, it is NP-complete to decide for a given
planar 3-colorable graph G, whether η(G) = 2 [3]. Furthermore, it was proved that, it is NP-complete
to decide for a given 3-regular graph G, whether η(G) = 2 [13].

The edge version of additive labeling was introduced by Karoński, Łuczak and Thomason [18]. They
introduced an edge-labeling which is additive vertex-coloring that means for every edge uv, the sum of
labels of the edges incident to u is different from the sum of labels of the edges incident to v [18]. It is
conjectured that three integer labels N3 are sufficient for every connected graph, exceptK2 [18]. Currently
the best bound is 5 [17]. This labeling has been studied extensively by several authors, for instance see
[1, 2, 5, 14, 19, 20].

A clique in a graph G = (V,E) is a subset of its vertices such that every two vertices in the subset are
connected by an edge. The clique number ω(G) of a graph G is the number of vertices in a maximum
clique in G. There is no direct relationship between the additive number and the clique number of graphs.
For any natural number ω there exists a graph G, such that ω(G) = ω and η(G) = 1. To see this for given
number ω, consider a graph G with the set of vertices V (G) = {vi|i ∈ Nω}∪ {ui,j |i, j ∈ Nω, j < i} and
the set of edges E(G) = {vivj |i 6= j} ∪ {viui,j |i, j ∈ Nω, j < i}.

Theorem 2 We have the following:
(i) For every graph G, η(G) ≥ w

n−w+1 .
(ii) If G is a regular graph and ω > n+4

3 , then η(G) ≥ 3.

A (0, 1)-additive labeling of a graphG is a function ` : V (G)→ {0, 1}, such that for every two adjacent
vertices v and u of G,

∑
w∼v `(w) 6=

∑
w∼u `(w). A graph may lack any (0, 1)-additive labeling. It was
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proved that, it is NP-complete to decide for a given 3-regular graph G, whether η(G) = 2 [13]. So, it
is NP-complete to decide whether a (0, 1)-additive labeling exists for a given 3-regular graph G. In this
paper, we study the computational complexity of (0, 1)-additive labeling for perfect graphs and planar
graphs.

A graph G is called perfect if ω(H) = χ(H) for every induced subgraph H of G. Here, we show that
it is NP-complete to decide whether a (0, 1)-additive labeling exists for perfect graphs.

Theorem 3 The following problem is NP-complete: Given a perfect graph G, does G have any (0, 1)-
additive labeling?

Next, we show that it is NP-complete to decide whether a (0, 1)-additive labeling exists for planar
triangle-free graphs.

Theorem 4 It is NP-complete to determine whether a given planar triangle-free graph G has a (0, 1)-
additive labeling.

For a graph G with some (0, 1)-additive labelings, the (0, 1)-additive number of G is defined as
σ1(G) = min`∈Γ

∑
v∈V (G) `(v) where Γ is the set of (0, 1)-additive labelings of G. For a given graph G

with a (0, 1)-additive labeling ` the function f(v) = 1 +
∑
w∼v `(w) is a proper vertex coloring, so we

have the following trivial lower bound for σ1(G).

χ(G)− 1 ≤ σ1(G).

We prove that given a planar graph that admits a (0, 1)-additive labeling, for all ε > 0, approximating
the (0, 1)-additive number within n1−ε is NP-hard.

Theorem 5 If P 6= NP, then for any constant ε > 0, there is no polynomial-time n1−ε-approximation
algorithm for finding σ1(G) for a given planar graph with at least one (0, 1)-additive labeling.

For v ∈ V (G) we denote by N(v) the set of neighbors of v in G. Also, for every v ∈ V (G), the
degree of v is denoted by d(v). We follow [16, 24] for terminology and notation not defined here, and we
consider finite undirected simple graphs G = (V,E).

2 Counterexample

Proof of Theorem 1: For every k we construct a graph G such that η`(G) − η(G) ≥ k. For every α,
α ∈ N2k−1 consider a copy of complete graph K(α)

2k , with the vertices {xαβ : β ∈ Nk} ∪ {yαβ : β ∈ Nk}.
Next, consider an isolated vertex t and join every vertex yαβ to t, Call the resulting graphG. First, note that
in every additive labeling ` of G, for every (i, j), where i < j and i, j ∈ Nk we have

∑
z∈N(x1

i ) `(z) 6=∑
z∈N(x1

j ) `(z), thus `(x1
i ) 6= `(x1

j ) (because all the neighbors of x1
i and x1

j are common except x1
i as

a neighbor of x1
j , and vice versa). Therefore `(x1

1), `(x1
2), . . . , `(x1

k) are k distinct numbers, that means
η(G) ≥ k. Define (for every α and β):
` : V (G)→ Nk,
`(xαβ) = `(yαβ ) = β,
`(t) = k.
It is easy to see that ` is an additive labeling for G. Next, we show that η`(G) > 2k − 1. Consider the

following lists for the vertices of G (for every α and β).
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L(xαβ) = N2k−1,
L(yαβ ) = {i+ α : i ∈ N2k−1},
L(t) = N2k−1.
To the contrary suppose that η`(G) ≤ 2k − 1 and let ` be an additive labeling from the above lists.

Suppose that `(t) = r. Consider the complete graph K(r)
2k , for every β we have:

L(xrβ) = N2k−1,
L(yrβ) = {i+ r : i ∈ N2k−1}.
Now, consider the following partition for N2k−1 ∪ {i+ r : i ∈ N2k−1},

{1 + r, 1}, {2 + r, 2}, . . . , {2k − 1 + r, 2k − 1}.

By Pigeonhole Principle, there are indices i, n and m such that `(xrm), `(yrn) ∈ {i+ r, i}, so `(xrm) = i
and `(yrn) = i+r. Therefore,

∑
z∈N(xr

m) `(z) =
∑
z∈N(yrn) `(z). This is a contradiction, so η`(G) ≥ 2k.

2

3 Lower bounds

Proof of Theorem 2: (i) Let ` : V (G)→ Nk be an additive labeling of G and suppose that T = {vi|i ∈
Nω} is a maximum clique in G. For each vertex v ∈ T , define the function Yv .

Yv
def
=

∑
x∈V (G)\T

x∼v

l(x)− l(v).

For every two adjacent vertices v and u in T , we have:∑
x∼v

l(x) 6=
∑
x∼u

l(x),∑
x/∈T
x∼v

l(x) +
∑
x∈T
x 6=v

l(x) 6=
∑
x/∈T
x∼u

l(x) +
∑
x∈T
x6=u

l(x),

∑
x/∈T
x∼v

l(x) + l(u) 6=
∑
x/∈T
x∼u

l(x) + l(v),

Yv 6= Yu.

Thus, Yv1 , . . . , Yvω are distinct numbers. On the other hand, for each vertex v ∈ T , the image of the
function Yv is [−k, k(n−w)−1]. Sow ≤ k(n−w+1), therefore k ≥ w

n−w+1 and the proof is completed.
(ii) Let G be a regular graph, obviously η(G) ≥ 2. To the contrary suppose that η(G) = 2. Let T be a

maximum clique in G and c : V (G)→ {1, 2} be an additive labeling of G. Define:

X1 = c−1(1) ∩ T , X2 = c−1(2) ∩ T ,
Y1 = c−1(1) \ T , Y2 = c−1(2) \ T .

Suppose that X1 = {v1, . . . , vk} and X2 = {vk+1, . . . , vω}. For each i ∈ Nω , denote the number
of neighbors of vi, in Y1 by di. Since c is an additive labeling of the regular graph, every two adjacent
vertices have different numbers of neighbors in c−1(1). Therefore d1, . . . , dk, 1 + dk+1, . . . , 1 + dω are
distinct numbers. Since for each i ∈ Nω , 0 ≤ di ≤ |Y1|, we have |Y1| ≥ ω − 2. Similarly, |Y2| ≥ ω − 2,
so
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n = |T |+ |Y1|+ |Y2| ≥ 3ω − 4.

This is a contradiction. So the proof is completed.
2

4 List Coloring Problem

Proof of Theorem 3: Let G be a graph and let L be a function which assigns to each vertex v of G
a set L(v) of positive integers, called the list of v. A proper vertex coloring c : V (G) → N such that
f(v) ∈ L(v) for all v ∈ V is called a list coloring of G with respect to L, or an L-coloring, and we say
that G is L-colorable.

Next, for a given graph G and a list L(v) for every vertex v, we construct a graph HG such that HG has
a (0, 1)-additive labeling if and only if G is L-colorable.

Define W =
⋃
v∈V (G) L(v) and let f be a bijective function from the set W to the set N|W |+1 \ {1}.

For every vertex v ∈ V (G), let Lf (v) = {f(i)|i ∈ L(v)}. The graph G is L-colorable if and only if G is
Lf -colorable. Now, we construct HG form G and Lf .

Construction of HG.
We use three auxiliary graphs T (w), I(j) and G(v, Lf (v), s). The gadgets I(j) and T (w) are shown in
Figure 1. Consider a vertex v and a copy of auxiliary graph T (w). Join the vertex v to T (w). Next, for
every j ∈ (Ns \ {1}) \Lf (v) consider a copy of I(j) and join the vertex v to the vertex uj . Finally, put s
isolated vertices and join each of them to the vertex v. Call the resulting graph G(v, Lf (v), s). Now, for
every vertex v ∈ V (G) put a copy of G(v, Lf (v), |W | + 1) and for every edge vv′ in the graph G join
the vertex v ∈ V (G(v, Lf (v), |W |+ 1)) to the vertex v′ ∈ V (G(v′, Lf (v′), |W |+ 1)). Call the resulting
graph HG.

For a family F of graphs, define: F ′
def
= {HG|G ∈ F}. We show that if F is a family of graphs such

that list coloring problem is NP-complete for that family. Then, the following problem is NP-complete:
”Given a graph HG ∈ F ′, does HG have a (0, 1)-additive labeling?”

Fig. 1: The auxiliary graphs I(j) and T (w).

First consider the following facts.
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Fact 1 Let G be a graph with a (0, 1)-additive labeling ` and assume that it has the auxiliary graph T (w)
as a subgraph, `(v) = 0, `(w) = 1 and

∑
x∈N(w) `(x) = 1.

Proof of Fact 1. By attention to the two triangles x1x2x3 and y1y2y3, `(w) = 1 and `(y4) = 1. Also
`(x1) 6= `(x2), without loss of generality suppose that `(x1) = 1 and `(x2) = 0. Therefore, `(x3) = 0,
thus

∑
x∈N(w) `(x) = 1 + `(v). Since

∑
x∈N(x3) `(x) = 2, therefore

∑
x∈N(w) `(x) = 1, consequently

`(v) = 0. ♠

Fact 2 Let G be a graph with a (0, 1)-additive labeling ` and assume that it has the auxiliary graph I(j)
as a subgraph,

∑
x∈N(uj) `(x) ≥ j.

Proof of Fact 2. By Fact 1, `(w) = 1, by using a similar argument `(z1) = · · · = `(zj−1) = 1. So∑
x∈N(uj) `(x) ≥ j. ♠

Fact 3 Let ` be a (0, 1)-additive labeling for G(v, Lf (v), |W |+ 1),
∑
x∈N(v) `(x) ∈ Lf (v).

Proof of Fact 3. By Fact 1 and Fact 2 it is clear.
First, suppose that the graph HG has a (0, 1)-additive labeling `, define c : V (G) → N, c(v) =∑
x∈N(v) `(x). The function c is a proper vertex coloring and for every vertex v, by Fact 3, c(v) ∈ Lf (v).

Next, suppose that the graph G is Lf -colorable, then it is clear that the graph HG has a (0, 1)-additive
labeling.

The list coloring problem is NP-complete for perfect graphs and planar graphs (see [7]). Obviously if
G is a planar graph, then HG is a planar graph. Also, if G is a perfect graph, then it is easy to see that the
graph HG is a perfect graph. This completes the proof.

2

5 Planar graphs

Proof of Theorem 4: Let Φ be a 3-SAT formula with the set of clauses C and the set of variables X .
Let G(Φ) be a graph with the vertices C ∪X ∪ (¬X), where ¬X = {¬x : x ∈ X}, such that for each
clause c = y ∨ z ∨ w, c is adjacent to y, z and w, also every x ∈ X is adjacent to ¬x. Φ is called planar
3-SAT(type 2) formula if G(Φ) is a planar graph. It was shown that the problem of satisfiability of planar
3-SAT(type 2) is NP-complete [15]. In order to prove our theorem, we reduce the following problem to
our problem.

Problem: Planar 3-SAT(type 2).
INPUT: A planar 3-SAT(type 2) formula Φ.
QUESTION: Is there a truth assignment for Φ that satisfies all the clauses?

Consider an instance of planar 3-SAT(type 2) with the set of variables X and the set of clauses C.
We transform this into a graph G′(Φ) such that G′(Φ) has a (0, 1)-additive labeling, if and only if Φ is
satisfiable. The graph G′(Φ) has a copy of B(x) for each variable x and a copy of A(c) for each clause c.
The gadgets B(x) and A(c) are shown in Figure 2. Also, for every c ∈ C, x ∈ X , the edge w1

cx is added
if c contains the literal x. Furthermore, for every c ∈ C, ¬x ∈ ¬X , the edge w1

c¬x is added if c contains
the literal ¬x. Call the resulting graph G′(Φ). Clearly the graph G′(Φ) is triangle-free and planar.
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Fig. 2: The two auxiliary graphs A(c) and B(x).

Fact 4 Let ` be a (0, 1)-additive labeling for the graph G′(Φ), for each clause c = a∨ b∨d, `(a) + `(b) +
`(d) ≥ 1.

Proof of Fact 4. To the contrary suppose that there exists a clause c = a∨ b∨d, such that `(a)+ `(b)+
`(d) = 0, then

∑
t∈N(w1

c) `(t) = `(w2
c ) + `(w3

c ). Notice that in that case, ` restricted to the odd cycle
w1
cw

2
cw

4
cw

5
cw

3
c , is a (0,1)-additive labeling, but an odd cycle does not have any (0, 1)-additive labeling,

this is a contradiction. ♠

Fact 5 Let G′(Φ) be a graph with a (0, 1)-additive labeling `, for each variable x, `(x) + `(¬x) ≤ 1.

Proof of Fact 5. To the contrary, suppose that there is a variable x, such that `(x) + `(¬x) = 2.
Consider the auxiliary graph B(x). Because of the odd cycle y1

xy
2
xy

4
xy

5
xy

3
x, `(y6

x) = 1. Now two cases for
`(y5

x) can be considered.
Case 1. `(y5

x) = 1. Thus
∑
t∈N(y6x) `(t) = 3, therefore

∑
t∈N(y5x) `(t) ∈ {1, 2}.

• If
∑
t∈N(y5x) `(t) = 1, then `(y3

x) = `(y4
x) = 0. Thus, `(y1

x) + `(y2
x) = 1; without loss of generality

suppose that `(y1
x) = 1 and `(y2

x) = 0, in this case
∑
t∈N(y2x) `(t) =

∑
t∈N(y4x) `(t), but this is a

contradiction.
• If

∑
t∈N(y5x) `(t) = 2. Suppose that `(y3

x) = 1, `(y4
x) = 0. Four subcases for `(y1

x), `(y2
x) can be

considered, each of them produces a contradiction.
Case 2. `(y5

x) = 0. Thus
∑
t∈N(y6x) `(t) = 2, therefore

∑
t∈N(y5x) `(t) ∈ {1, 3}.

• If
∑
t∈N(y5x) `(t) = 1, then `(y3

x) = `(y4
x) = 0. Therefore, `(y1

x) + `(y2
x) = 1. With no loss of

generality suppose that `(y1
x) = 1, `(y2

x) = 0, therefore
∑
t∈N(y3x) `(t) =

∑
t∈N(y5x) `(t), but this is a

contradiction.
• If

∑
t∈N(y5x) `(t) = 3, then `(y3

x) + `(y4
x) = 2. Thus `(y1

x) + `(y2
x) = 1. Suppose that `(y1

x) = 1,
`(y2

x) = 0, therefore
∑
t∈N(y1x) `(t) =

∑
t∈N(y3x) `(t), this is a contradiction. ♠

First, suppose that Φ is satisfiable with the satisfying assignment Γ : X → {true, false}. We present
a (0, 1)-additive labeling ` for G′(Φ). For every variable x if Γ(x) = true, then put `(x) = 1, otherwise
put `(¬x) = 1. Also put `(z1) = · · · = `(z10) = `(y1

x) = `(y3
x) = `(y4

x) = `(y5
x) = `(y6

x) = 1.
Moreover, for every clause c, put `(w1

c ) = `(w2
c ) = `(w3

c ) = `(w5
c ) = 1. It is easy to extend this labeling

to a (0, 1)-additive labeling for the graph G′(Φ). Next, suppose that the graph G′(Φ) has a (0, 1)-additive
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labeling `. For each variable x, by Fact 5, `(x) + `(¬x) ≤ 1. If `(x) = 1, put Γ(x) = true, if `(¬x) = 1,
then put Γ(x) = false and otherwise put Γ(x) = true. By Fact 4, Γ is a satisfying assignment for Φ. 2

6 Inapproximability

Proof of Theorem 5: Let ε > 0 and k be a sufficiently large number. It was shown that 3-colorability of
4-regular planar graphs is NP-complete [12]. We reduce this problem to our problem. In other words,
for a given 4-regular planar graph G with k vertices, we construct a planar graph G∗ with 7k+ 10kd

3
ε e+2

vertices, such that if χ(G) ≤ 3, then σ1(G∗) ≤ 5k, otherwise σ1(G∗) > 5kd
3
ε e+1, therefore there is no

θ-approximation algorithm for determining σ1(G∗) for planar graphs, where:

θ =
Approximate Answer

OPT
>

5kd
3
ε e+1

5k

= kd
3
ε e

=
(
kd

3
ε e+3

) d 3ε e
d 3
ε
e+3

≥
(
7k + 10kd

3
ε e+2

) d 3ε e
d 3
ε
e+3

≥ |V (G∗)|
d 3
ε
e

d 3
ε
e+3

≥ |V (G∗)|1−ε

In order to construct the graph G∗, we use the auxiliary graph D(v) which is shown in Figure 3. Using
simple local replacements, for every vertex v of the graph G, put a copy of D(v), and for every edge
vu of the graph G, join the vertex v of D(v) to the vertex u of D(u). Call the resulting graph G∗.
First, suppose that G is not 3-colorable and let ` be a (0, 1)-additive labeling for G∗. By the structure
of D(v) we have `(v) = 1 and `(p3) = 0, so

∑
x∈N(v) `(x) = 4 + `(p4) + `(p5) + `(p6). Since G

is not 3-colorable, there exists a vertex v such that
∑
x∈N(v) `(x) = 4, therefore in the subgraph D(v),

`(p4) + `(p5) + `(p6) = 0, so `(p5) = 0. Consequently for every i, 1 ≤ i ≤ d, in the subgraph
D(v), `(vi) + `(v′i) ≥ 1. So σ1(G∗) > 5kd

3
ε e+1. Next, suppose that χ(G) ≤ 3. So G has a proper vertex

coloring c : V (G)→ {1, 2, 3}. For every vertex v ofG, if c(v) = 1 put `(p4) = `(p6) = 0 and `(p5) = 1,
else if c(v) = 2 let `(p4) = 0 and `(p5) = `(p6) = 1 and if c(v) = 3 let `(p4) = `(p5) = `(p6) = 1. It is
easy to extend ` to a (0, 1)-additive labeling for the graph G∗ such that σ1(G∗) ≤ 5k.

2

7 Concluding remarks
In this paper we study the computational complexity of (0, 1)-additive labeling of graphs. A (0, 1)-
additive labeling of a graph G is a function ` : V (G) → {0, 1}, such that for every two adjacent vertices
v and u of G,

∑
w∼v `(w) 6=

∑
w∼u `(w). For future work, someone can consider another version of this

problem that we call proper total dominating set. A proper total dominating set of a graph G = (V,E), is
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Fig. 3: The auxiliary graph D(v). This graph has 7 + 10kd
3
ε
e+1 vertices, where d = 5kd

3
ε
e+1.

a subset D of V such that every vertex has a neighbor in D (all vertices in the graph including the vertices
in the dominating set have at least one neighbor in the dominating set) and every two adjacent vertices
have a different number of neighbors in D (note that in a (0,1)-additive labeling every vertex does not
need to have a neighbor labeled 1).

In this work, we proved that for every k there is a graph G such that η(G) ≤ k ≤ η`(G)/2. What can
we say about the difference in bipartite graphs?
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