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The graph isomorphism (GI) problem asks whether two given graphs are isomorphic or not. The GI problem is quite
basic and simple, however, it’s time complexity is a long standing open problem. The GI problem is clearly in NP,
no polynomial time algorithm is known, and the GI problem is not NP-complete unless the polynomial hierarchy
collapses. In this paper, we survey the computational complexity of the problem on some graph classes that have
geometric characterizations. Sometimes the GI problem becomes polynomial time solvable when we add some
restrictions on some graph classes. The properties of these graph classes on the boundary indicate us the essence
of difficulty of the GI problem. We also show that the GI problem is as hard as the problem on general graphs even
for grid unit intersection graphs on a torus, that partially solves an open problem.
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1 Introduction
For any two given graphs G1 = (V1, E1) and G2 = (V2, E2) with |V1| = |V2|, the graph isomorphism
(GI) problem asks whether there exists a one-to-one mapping φ between two given graphs. That is, G1

andG2 are isomorphic if and only if there exists a bijective function φ : V1 → V2 such that {u, v} ∈ E1 if
and only if {φ(u), φ(v)} ∈ E2. Although the GI problem is quite natural, determining its time complexity
is a long standing open problem. The problem is clearly in NP, but it is not known to be NP-complete or
not.

From the viewpoint of the computational complexity, it is not likely that the GI problem is NP-complete.
If it is NP-complete, the polynomial hierarchy collapses to its second level (Boppana et al. (1987)). On
the other hand, it is known that the GI problem is hard for the class DET (and hence NL) (Torán (2004)).
Some comprehensive survey of the structural complexity of the GI problem can be found in Köbler et al.
(1993). When we turn to develop an exponential time algorithm, it is known that the GI problem can
be solvable in 2O(

√
n logn) time (Zemlyachenko et al. (1985); Babai and Luks (1983)). Recently, Grohe

investigates the GI problem from the viewpoint of a group theoretic approach with structural graph theory
(Grohe (2012, 2013)): for example, the Weisfeiler-Lehman algorithm (a simple combinatorial algorithm)
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solves the GI problem for graph classes with excluded topological subgraphs in polynomial time (Grohe
and Marx (2012)).

We here remark that the GI problem has a hereditary property. More precisely, for any graph classes
C1 and C2 with C1 ⊂ C2, if the GI problem is polynomial time solvable for the class C2, so is for C1.
On the other hand, if it is as hard as on general graphs for the class C1, so is for C2. (We note that this
property does not hold on the recognition problem for these graph classes. This fact will be discussed
in the concluding remarks.) The hereditary property leads us to the notion of GI-completeness: The GI
problem on the class C is said to be GI-complete if it is as hard as on general graphs under polynomial time
reduction (see, e.g., Uehara et al. (2004)). Last few decades, many graph classes have been proposed and
investigated (Brandstädt et al. (1999); McKee and McMorris (1999); Spinrad (2003); Golumbic (2004)).
Typical examples are interval graphs, that are intersection graphs of intervals, and chordal graphs, that
are intersection graphs of subtrees of a tree. The GI problem can be solved in linear time for interval
graphs, while the problem for chordal graphs is GI-complete. If we can clarify the gap between these
graph classes, it indicates the essential difficulty of the GI problem.

In 1970s, some efficient algorithms were developed for the GI problem on basic graph classes, which
include planar graphs (Hopcroft and Tarjan (1974)), interval graphs (Booth and Lueker (1976)). (We note
that Myrvold and Kocay pointed out that some early papers for planar graphs share common errors Myr-
vold and Kocay (2011).) Since the Reingold’s log-space algorithm for undirected connectivity (Reingold
(2008)), some log-space algorithms for planar graphs (Datta et al. (2009)) and interval graphs (Köbler
et al. (2011)) are also developed. For circular arc graphs, once Hsu reported O(nm) time algorithm in
1995 (Hsu (1995)), however, a counterexample for the algorithm is found recently (Curtis et al. (2012)),
and the time complexity of the GI problem for the circular arc graphs becomes open again.

In this paper, we focus on some graph classes that have geometric representations. That is, these graph
classes consist of intersection graphs of geometric objects (e.g., intervals, trees, orthogonal rays). We
introduce some graph classes including relatively new ones, and the current status of the GI problem for
these graph classes. To demonstrate some basic techniques, we prove that the GI problem is GI complete
for unit grid intersection graphs on a torus, which partially solves an open problem.

2 Preiminalies
The neighborhood of a vertex v in a graph G = (V,E) is the set NG(v) = {u ∈ V | {u, v} ∈ E}, and
the degree of a vertex v is |NG(v)| denoted by dG(v). If no confusion can arise we will omit the index G.
For a subset U of V , the subgraph of G induced by U is denoted by G[U ]. Given a graph G = (V,E), its
complement Ḡ = (V, Ē) is defined by Ē = {{u, v} | {u, v} 6∈ E}. A vertex set I is an independent set if
and only if G[I] contains no edge, and a vertex set C is a clique if and only if G[C] contains all possible
edges.

For a graphG = (V,E), a sequence of distinct vertices v0, v1, . . . , vl is a path, denoted by (v0, v1, . . . , vl),
if {vj , vj+1} ∈ E for each 0 ≤ j < l. The length of a path is the number of edges on the path. For two
vertices u and v, the distance of the vertices, denoted by dist(u, v), is the minimum length of the paths
joining u and v. A cycle consists of a path (v0, v1, . . . , vl) of length at least 2 with an edge {v0, vl}, and
denoted by (v0, v1, . . . , vl, v0). The length of a cycle is the number of edges on the cycle (equal to the
number of vertices).

Two graphs G = (V,E) and G′ = (V ′, E′) are isomorphic if and only if there is a one-to-one mapping
φ : V → V ′ such that {u, v} ∈ E if and only if {φ(u), φ(v)} ∈ E′ for every pair of vertices u, v ∈ V . We
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denote by G ∼ G′ if G and G′ are isomorphic. The graph isomorphism (GI) problem is to determine if
G ∼ G′ for given graphsG andG′. A graph class C is said to be GI-complete if there is a polynomial time
reduction from the GI problem for general graphs to the GI problem for C. Intuitively, the GI problem for
the class C is as hard as the problem for general graphs if C is GI-complete.

An edge that joins two vertices of a cycle but is not itself an edge of the cycle is a chord of that cycle.
A graph is chordal if every cycle of length at least 4 has a chord. A graph G = (V,E) is bipartite if and
only if V can be partitioned into two sets X and Y such that every edge joins a vertex in X and the other
vertex in Y . A bipartite graph is chordal bipartite if every cycle of length at least 6 has a chord.

3 Geometric graph classes and their relationship

In this paper, we will discuss about intersection graphs of geometrical objects. Representatively, interval
graphs are characterized by intersection graphs of intervals, and it is well known that chordal graphs are
intersection graphs of subtrees of a tree (see, e.g., Spinrad (2003)).

The GI problem is GI-complete for several graph classes including chordal bipartite graphs and strongly
chordal graphs (Uehara et al. (2004)). On the other hand, the GI problem can be solved efficiently for many
graph classes; for example, interval graphs (Booth and Lueker (1976)), permutation graphs (Colbourn
(1981)), directed path graphs (Babel et al. (1996)), and distance hereditary graphs (i. Nakano et al. (2009)).

A bipartite graph G = (X,Y,E) is a grid intersection graph if every vertex x ∈ X and y ∈ Y can be
assigned to line segments Ix and Jy in the plane, parallel to the horizontal and vertical axis respectively,
so that for all x ∈ X and y ∈ Y , {x, y} ∈ E if and only if Ix and Jy cross each other. We call (I,J )
a grid representation of G, where I = {Ix | x ∈ X} and J = {Jy | y ∈ Y }. A grid representation
is unit if all line segments in the representation have the same (unit) length. A bipartite graph is a unit
grid intersection graph if it has a unit grid representation. Otachi, Okamoto, and Yamazaki show some
relationship between (unit) grid intersection graphs and other graph classes (Otachi et al. (2007)); one of
them is that interval bigraphs are included in the intersection of unit grid intersection graphs and chordal
bipartite graphs.

In a grid intersection graph, if each line segment can be replaced by a ray, or half-infinite line, we
obtain an orthogonal ray graph. The notion of orthogonal ray graphs is recently introduced by Ueno
(Shrestha et al. (2010)), motivated by an application of VLSI design. He also proposed the notions of 2D
and 3D orthogonal ray graphs which are the restricted orthogonal ray graphs with respect to the directions
of rays (2D allows two directions, and 3D allows three directions among four possible directions). Based
on their characterization of 2D orthogonal ray graphs, the GI problem for 2D orthogonal ray graphs can
be solved in polynomial time. We here note that in (Shrestha et al., 2010, Corollary 14), they use the
result for circular arc graphs by Hsu (Hsu (1995)), which contains a bug as mentioned in Introduction.
However, their characterization in (Shrestha et al., 2010, Theorem 12) can avoid the bug. More precisely,
the characterization in Shrestha et al. (2010) shows that 2D orthogonal ray graphs are characterized by
circular arc graphs with two cliques (that is, each vertex belongs to one of these two cliques), and Eschen
proposed a polynomial time algorithm for the GI problem in this case (see Curtis et al. (2012) further
details). Moreover, recently, Chaplick et. al also give alternative characterizations supporting that the GI
problem can be solved in polynomial time for 2D orthogonal ray graphs (Chaplick et al. (2013)).

We summary the situation in Fig. 1.
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Fig. 1: Hierarchy of the graph classes and computational complexity of the GI problem.

4 GI completeness of unit grid intersection graph on a torus
The main theorem in this section is the following:

Theorem 1 The GI problem is GI-complete even for the class of connected unit grid intersection graphs
on a torus.

The proof is done by a reduction from the GI problem for general connected graphs to the GI problem
for connected unit grid intersection graphs on a torus. Similar idea can be found in Babel et al. (1996);
Uehara et al. (2004); Uehara (2008, 2013).

Proof: We first start the GI problem for general connected graph G0 = (V0, E0) with |V0| = n and
|E0| = m. (we will refer the graph G0 in Fig. 2(1) as an example). From G0, we first add extra vertices
V1 with associated edges E1 as follows: (1) For each vertex v of degree 1 in V0, we add v′ and v′′ into V1
and {v, v′} and {v, v′′} into E1. (2) For each vertex v of degree 2 in V0, we add v′ into V1 and {v, v′} into
E1. Let G1 = (V0 ∪ V1, E0 ∪E1) be the resulting graph, n′ = |V0 ∪ V1|, and m′ = |E0 ∪ E1|. It is easy
to see that n′ ≤ 3n, m′m + 2n. For the resulting graph G1 = (V0 ∪ V1, E0 ∪ E1), we define a bipartite
graph G2 = (V0 ∪ V1, E0 ∪ E1, E2) by E2 := {{v, e} | v is one endpoint of e}. (Intuitively, each edge
in G1 is divided into two edges joined by a new vertex; see Fig. 2(2)(3)). Then, e ∈ E0 have degree 2 in
G2 by its two endpoints in V0 ∪ V1. Moreover, by the definition of V1, we can observe that v is in V1 if
and only if v has degree 1 in G2, and v is in V0 if and only if v has degree at least 3 in G2. It is easy to
see that G0 ∼ G′

0 if and only if G2 ∼ G′
2, for any graphs G0 and G′

0 with resulting graphs G2 and G′
2,

respectively.
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Fig. 2: Reductions from G0 to G1, from G1 to G2, and from G2 to G3.

Now, we construct a new bipartite graph G3 = (X3, Y3, E3) that is a unit grid intersection graph on a
torus from the bipartite graph G2 = (V0 ∪V1, E0 ∪E1, E2) such that G2 ∼ G′

2 if and only if G3 ∼ G′
3 in

the same manner. (For the G2 in Fig. 2(3), the resulting graph is shown in Fig. 2(4). We illustrate G3 in
the figure by unit grid intersection model since its corresponding intersection graph has too many edges.
Intuitively, each connection in G2 is represented by a non-crossing in G3.)

The vertex set X3 is defined by V0 ∪ V1 ∪ ∪E0 ∪ E1. The other vertex set Y3 consists of |E2| pairs
of vertices. For each edge e = {u, v} ∈ E2, Y3 contains a pair of eu and ev . Precisely, Y3 is defined
by the set {eu|u ∈ e ∈ E2}. To make the idea clearer, we consider Y2 as the set consists of the pairs
[e] = {eu, ev} for each edge in E2.

Now we define the edge set E3 of G3. First we mention that each of X3 = V0∪V1∪E0∪E1 and Y3 is
independent set in G3 since G3 is bipartite. For each pair [e] = {eu, ev} in Y3, eu is joined to all vertices
in (V0 ∪ V1) ⊂ X3 but u ∈ (V0 ∪ V1) itself, and eu is also joined to all vertices in (E0 ∪ E1) ⊂ X3 but
e ∈ (E0 ∪ E1). The other vertex ev is joined to almost all vertices in the same manner. This completes
the construction of G3. It is easy to see that the resulting graph has n′ +m′ + 2m′ + 1 = n′ + 3m′ + 1
vertices, hence it is a polynomial time reduction. Now we show that (1) G0 ∼ G′

0 if and only if G3 ∼ G′
3,

and (2) G3 is a unit grid intersection graph on a torus.
(1) We show that when G3 is given, we can reconstruct G0 from G3 up to isomorphism. Since G3 is
connected and bipartite, two vertex sets X3 and Y3 are easy to find. Now, all vertices in Y3 has the same
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degree |X3| − 2. On the other hand, by the construction of G1 and G3, each vertex in E0 ∪ E1 has
degree |Y3| − 2, each vertex in V0 has degree at most |Y3| − 3, and each vertex in V1 has degree |Y3| − 1.
Moreover, since G0 is not trivial, X3 contains at least one vertex from V0, which has degree at most
|Y3| − 3. Therefore, checking the degrees, we can distinguish Y3 from X3, and we can extract V0 and V1
from X3. This is enough information to reconstruct G0 from G3. We first determine the vertices in V1 by
their degree equal to 1, and remove with associate edges in E1. Then the remaining graph contains only
V0 and E0.
(2) Now we show that G3 is a unit grid intersection graph on a torus (see Fig. 2(4)). We first arrange
the vertices in Y3 as the set of vertical lines. For each pair [e] = {eu, ev}, the corresponding lines are
arranged to be adjacent. The ordering among the pairs is arbitrary. Next we arrange the vertices in
X3 = V0 ∪ V1 ∪ E0 ∪ E1 as horizontal lines. We here split V0, V1, E0, and E1 on the representation, but
their ordering is arbitrary. Now we determine the positions of two endpoints for each line segments. For
each [e] = {eu, ev}, two endpoints of the vertical line corresponding to eu are arranged to avoid crossing
the vertex u itself in (V0 ∪ V1) ⊂ X3. The other line corresponding to ev is arranged in the same manner.
It is easy to see that it is possible for all vertices in Y3 (as shown in bottom half area of Fig. 2(4)). For each
vertex e ∈ (E0 ∪E1) ⊂ X3, two endpoints of the horizontal line corresponding to e are arranged to avoid
crossing the pair [e] itself in Y3. It is possible for all vertices in (E0 ∪E1) ⊂ X3 since two corresponding
line segments are adjacent (as shown in top half area of Fig. 2(4)). We also arrange two endpoints of the
horizontal lines representing the vertices in (V0 ∪ V1) ⊂ X3 in a trivial way (as shown in bottom left area
of Fig. 2(4)).

We can put this arrangement onto a torus (by gluing the corresponding gray arrows in Fig. 2(4)). Chang-
ing its scale, all gaps can be the same length ε > 0. Thus all line segments are of unit length.

Hence the GI problem for unit grid intersection graphs on a torus is as hard as the GI problem for
general graphs. Thus the GI problem is GI-complete for unit grid intersection graphs on a torus. 2

5 Concluding Remarks
In this paper, we show a hierarchy of graph classes with respect to the computational complexity of the
GI problem. We give a partial answer to the unit grid intersection graphs: it is GI-complete if they are
on a torus. The computational complexity of the GI problem for the following classes are still open: unit
grid intersection graphs on a plane, orthogonal ray graphs, and 3D orthogonal ray graphs.

One of basic problems for graph classes is the recognition problem. That is, for any given graph G
and some graph class C, the recognition problem asks if G is a member of C or not. The recognition
problem is not hereditary, but we need useful structures to recognize a class, and they are also helpful
for solving the GI problem. From this viewpoint, it is worth listing the computational complexity of the
recognition problem for these graph classes. The class of bipartite permutation graphs is well-investigated,
and it can be recognized in polynomial time (see, e.g., Spinrad et al. (1987); Kratsch et al. (2003)). It is
also known that convex bipartite graphs can be recognized in linear time (see Brandstädt et al. (1999)).
The class of 2D orthogonal ray graphs is also recognized in polynomial time (Shrestha et al. (2010);
Chaplick et al. (2013)). The class of chordal bipartite graph can be recognized in O(min{m log n, n2})
time (Hoffman et al. (1985); Lubiw (1987); Paige and Tarjan (1987); Spinrad (1993)). On the other hand,
the recognition problem of grid intersection graphs is NP-complete (Kratochvil (1994)), and recently,
the NP-completeness for unit grid intersection graphs is also shown by Mustaţă and Pergel (2013). The
recognition problems for the classes of orthogonal ray graphs and 3D orthogonal ray graphs are open.
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Fig. 3: Another hierarchy of the graph classes.

When we discuss computational complexity of the GI problem for a graph class, we have to take care of
computational complexity of the recognition problem, especially, when it is NP complete. Now suppose
that the recognition problem is NP complete for some class C. Then we have to suppose that given graph
is in C a priori without geometric representation. In the case, even if we know a graph G is in a class C, it
is not clear if we can construct its geometric representation efficiently, and if we can use some property of
the class provided by the representation. Therefore, we may not be able to use its geometric property to
solve the GI problem according to the assumption of the input of the problem (it can be natural to assume
that graphs are given in some explicit representations).

Another interesting hierarchy of graph classes is shown in Fig. 3. Both of permutation graphs and in-
terval graphs are recognizable in linear time; precisely, their geometric representations can be constructed
in linear time (see Kratsch et al. (2003) for recent results with references). The classes of simple triangle
graphs, triangle graphs, and trapezoid graphs are natural generalization of these graph classes. However,
computational complexity of the GI problem are still open for these classes. Surprisingly, though the
recognition problems for the classes of trapezoid graphs and simple triangle graphs are polynomial time
solvable (see Mertzios and Corneil (2009)), the recognition problem for the class of triangle graphs is
NP-complete (Mertzios (2012)).

For permutation graphs and interval graphs, using the canonical tree structures based on their geometric
representations, the GI problem can be solved in linear time. However, the computational complexity of
the GI problem of the other three superclasses are still open.
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