
Discrete Mathematics and Theoretical Computer Science DMTCS vol. 17:1, 2015, 383–396

Intervals and factors in the Bruhat order
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In this paper we study those generic intervals in the Bruhat order of the symmetric group that are isomorphic to the
principal order ideal of a permutation w, and consider when the minimum and maximum elements of those intervals
are related by a certain property of their reduced words. We show that the property does not hold when w is a
decomposable permutation, and that the property always holds when w is the longest permutation.
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The interval structure of the Bruhat order on the symmetric group is not well understood. One reason
for this is that, sometimes, even those intervals that are isomorphic to principal order ideals are actually
making use of the fact that a reduced word for the minimum element in the interval can be formed by
deleting an arbitrary subword of symbols from a reduced word of the maximum element in the interval.
The purpose of this paper is to gain a better understanding of that phenomenon. More precisely, we
explore the principal order ideals Λw with the property that whenever [x, y] is isomorphic to Λw, one may
obtain a reduced word for x by deleting a consecutive subword from a reduced word for y. Note that
deletion of some subword will always produce a reduced word for x, but not necessarily the deletion of a
consecutive one. The possibility for a consecutive such word is what we highlight in this work, and what
we refer to as “forcing” a factor, as defined in Definition 2.7. Structural analyses of intervals and principal
order ideals are of particular interest because it follows from [2] that the Kazhdan-Lusztig polynomial
corresponding to the interval [x, y] depends only on the principal order ideal Λy .

The precise question we answer here is laid out in Section 1, along with the relevant objects and exam-
ples. Section 2 gives additional definitions, and the main results appear in Theorems 3.4 and 4.10. Finally,
Section 5 discusses directions for subsequent work.

1 Introduction
The symmetric group Sn on {1, . . . , n} is generated by {s1, . . . , sn−1}, where si is the permutation
interchanging i and i + 1, and fixing all other elements. These generators, known as simple reflections,
satisfy the Coxeter relations

s2i = 1 for all i,
sisj = sjsi if |i− j| > 1, and

sisi+1si = si+1sisi+1 for 1 ≤ i ≤ n− 2.
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A permutation w can be recorded as a product of simple reflections

w = si1si2 · · · sir ,

of which there are infinitely many representations, or written uniquely in one-line notation

w = w(1)w(2) · · ·w(n).

These two representations of the same class of objects are quite different, and each have advantages in
certain contexts. The main result of [10] was a way to translate between the two options.

The order in which we compose maps indicates that siw interchanges the positions of the values i and
i+ 1 in the one-line notation of w, and wsi interchanges the values in positions i and i+ 1 in the one-line
notation of w.

Example 1.1 The permutation w ∈ S4 which maps 1 to 3, 2 to itself, 3 to 4, and 4 to 1, would be written
in one-line notation as

w = 3241.

A few of the infinite many ways to express w as a product of simple reflections include:

w = s1s2s1s3

= s2s1s2s3

= s1s2s3s1

= s1s3s3s2s3s1.

As demonstrated in Example 1.1, the number of simple reflections involved in representing a particular
permutation is not fixed. There is, however, a minimum value.

Definition 1.2 If w = si1 · · · si`(w)
where `(w) is minimal, then si1 · · · si`(w)

is a reduced decomposition
of w, and the string of subscripts i1 · · · i`(w) is a reduced word of w. The set of reduced words of w is
denoted R(w). The nonnegative integer `(w) is the length of w.

To avoid confusion with permutations, which are also strings of integers, reduced words and their
symbols will be written in sans serif.

The Coxeter relations among the symbols in a reduced decomposition have obvious analogues for the
symbols in a reduced word:

sisj = sjsi ←→ ij = ji if |i− j| > 1, and
sisi+1si = si+1sisi+1 ←→ i(i + 1)i = (i + 1)i(i + 1) for 1 ≤ i ≤ n− 2.

A product of simple reflections is reduced if it is a reduced decomposition for some permutation, and a
string of integers is reduced if the corresponding product of simple reflections is reduced.

Example 1.3 Continuing Example 1.1, `(3241) = 4 and R(3241) = {1213, 2123, 1231}. (Note that we
have not explained how to compute these values.)

The Bruhat order is a partial ordering given to the elements of a Coxeter group. Although we are only
concerned with the symmetric group, we give the full definition here.
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Definition 1.4 Suppose that x and y are elements of a Coxeter group. Then x ≤ y in the Bruhat order if
there exists a reduced word of x that can be obtained from a reduced word of y by deleting symbols and
simplifying Coxeter relations as necessary.

The Bruhat order gives a graded poset structure to any Coxeter group, where the rank of an element is
the element’s length. The Bruhat order of S4 is depicted in Figure 1. Of course, Definition 1.4 can be
stated analogously in terms of reduced decompositions.

∅

s1s2s3s1s2s1

s1

s2
s3

s2s3s3s2 s1s3
s1s2s2s1

s2s3s2 s1s2s1s3s2s1 s1s2s3s1s3s2 s2s1s3

s2s3s2s1 s1s3s2s1 s1s2s1s3s1s2s3s2
s2s1s3s2

s1s2s3s2s1

s2s3s2s1s2 s1s2s1s3s2

Fig. 1: The Bruhat order of the symmetric group S4, where each element is labeled by one of its (possibly many)
reduced decompositions.

The Bruhat order gives a partial ordering to the permutations of a given set. Another way to describe
it is as a subword order on reduced decompositions/words. Dyer studied intervals in the Bruhat order for
all finite Coxeter groups, showing that there are only finitely many non-isomorphic intervals of any given
length [3]. Jantzen and Hultman have classified all possible length 4 intervals, as well as the length 5
intervals in the symmetric group [4, 5, 6]. The special class of intervals for which the minimal element is
the identity, known as principal order ideals and defined formally in Definition 2.3, were studied by the
author in [9]. As is obvious from Table 1, there are intervals in Sn that never appear as principal order
ideals.
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Length 0 1 2 3 4 5
# Non-isomorphic intervals in Sn 1 1 1 3 7 25

# Non-isomorphic principal order ideals in Sn 1 1 1 2 3 5

Tab. 1: The number of non-isomorphic intervals and principals order ideals of length at most 5 (as defined in Defini-
tion 1.2) appearing in the Bruhat order of symmetric groups.

Example 1.5 The interval [2143, 4231] in the Bruhat order of S4, depicted in Figure 2, never appears as
a principal order ideal in the Bruhat order of any symmetric group.

2143

4231

2341

2431

2413

3241

4123

4132

3142

4213

Fig. 2: The interval [2143, 4231] ⊂ S4, not isomorphic to any principal order ideal appearing in the Bruhat order of
any Sn.

The purpose of this paper is to explore how and when generic intervals in Sn might be isomorphic to
principal order ideals. So that we can refer to it subsequently, we highlight the following discussion in a
remark.

Remark 1.6 Principal order ideals in Sn are special cases of intervals, and they lack a certain freedom
that more general intervals possess. In the Bruhat order, x ≤ y if there is an element of R(x) that is
a subword of an element of R(y). In a principal order ideal, this x is the identity permutation, and so
R(x) = {∅}. Of course ∅ is a subword of every word. Thus, for principal order ideals, the entire reduced
word for y must be deleted in order to yield the reduced word for x. In particular, note that what is getting
deleted is a consecutive subword (in fact, the entire word itself). On the other hand, in a generic interval,
what gets deleted from the reduced word for y need not be a consecutive subword. This potential yields
some generic intervals that do not appear as principal order ideals.

Example 1.7 The interval [21543, 52341] is isomorphic to the interval in Figure 2. Note that

R(21543) = {1343, 3143, 3413, 3431, 1434, 4134, 4314, 4341}



Intervals and factors in the Bruhat order 387

and

R(52341) = {1234321, 1243421, 1423421, 4123421, 1243241, 1423241, 4123241
1243214, 1423214, 4123214, 1432341, 4132341, 4312341, 1432314,

4132314, 4312314, 1432134, 4132134, 4312134, 4321234}.

Thus no element of R(21543) can be obtained by deleting a consecutive subword of symbols from an
element of R(52341).

The purpose of the current work is to examine when a principal order ideal in the symmetric group
also appears as a more general interval. In particular, we want to understand when such an interval, not
necessarily beginning at rank 0 in the poset, must still come from deleting a factor from a reduced word
of its maximum element.

Before making this property precise, consider the following result, where vexillary permutations are
exactly those that avoid the pattern 2143.

In [10], we showed that if a permutation w contains a vexillary p-pattern, then there is a reduced word
for w possessing a reduced word f for p as a factor, possibly with a fixed positive integer added to each
letter in f. If v is the permutation obtained by deleting this subword from w, then this implies that the
interval [v, w] in the Bruhat order would be isomorphic to Λp, the principal order ideal for p. Indeed, this
would also imply that there is a copy of Λp sitting as a principal order ideal inside of the principal order
ideal Λw of w, as depicted in Figure 3.

e

w

v

e

w

v

∼= Λp

Fig. 3: When a permutation w contains a vexillary pattern p, then Λw will contain intervals isomorphic to Λp as
indicated by the shading. (There may, of course, be other intervals in Λw isomorphic to Λp as well.)

Example 1.8 The permutation 4213 contains the vexillary pattern 321. The interval [1243, 4213] and the
principal order ideal Λ3214 are both isomorphic to Λ321, as shown in Figure 4.

We are now able to clarify the main question of this paper: when does a principal order ideal Λw ⊆ Sn

have the property that for all intervals [x, y] ∼= Λw, there is a reduced word i ∈ R(x) and a reduced word
j ∈ R(y) such that i can be formed by deleting a consecutive subword from j?
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1234

2134

3124 2143

3214

1243 1324

1423 2314

24134123

4213

Fig. 4: The principal order ideal Λ4213 has a copy of the principal order ideal Λ321, both as a principal order ideal
(thick dashed lines) and as a generic interval (thick solid lines).

The main results of this paper are that no decomposable permutation can force a factor (Theorem 3.4),
and that the permutation n(n−1) · · · 321 does force a factor for all n (Theorem 4.10). These are preceded
by a discussion of the useful terminology in Section 2, and the paper concludes with suggestions for future
work.

2 Definitions
We now define the main objects of the current work. More details and background information about
Coxeter groups can be found in [1] and [7].

Two of the most fundamental structural features of a poset are its intervals and its order ideals. In a
poset with a unique minimal element, these objects intersect at the concept of a principal order ideal.

Definition 2.1 Consider a poset P and elements x, y ∈ P with x ≤ y. The set of elements {z : x ≤ z ≤
y} ⊆ P is denoted [x, y], and is called an interval.

Definition 2.2 An order ideal in a poset P is a subset I ⊆ P such that if y ∈ I and x ≤ y, then x ∈ I .

Definition 2.3 A principal order ideal in a poset P is an order ideal with a unique maximal element.
Equivalently, the principal order ideals of P are the subsets Λy = {z : z ≤ y} for each y ∈ P . If P has
a unique minimal element 0̂, then the principal order ideals are exactly the intervals of the form [0̂, y].

To calculate the length of a permutation, we must make a preliminary definition.

Definition 2.4 Given a permutation w, an inversion in w is a pair (i, j) such that i < j and w(i) > w(j).
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Inversions are easy to see in the one-line notation of a permutation: they consist of a value (the w(i)
of the definition) appearing somewhere to the left of a smaller value (the w(j) of the definition). It is
well known that `(w) is equal to the number of inversions in w, and it is now clear that there is a unique
permutation in Sn having maximal length.

Definition 2.5 Fix a positive integer n. The unique element of maximal length in Sn is wn
0 = n(n −

1) · · · 321, and `(wn
0 ) =

(
n
2

)
.

As described in Definition 1.4, the relation x ≤ y in the Bruhat order allows any subset of symbols to
be deleted from a reduced word of y in order to form a reduced word of x. In particular, these symbols
need not be consecutive. For example, as shown in Figure 1,

1324 = s2 < s1s2s3 = 2341.

In this paper, we will examine when all of the activity happening within an interval [x, y] in the Bruhat
order of some symmetric group is actually happening within some consecutive substring of the symbols
of an element of R(y), all of which must be deleted to form an element of R(x).

Definition 2.6 A factor in a word is a consecutive substring.

This paper is concerned with understanding when intervals [x, y] that are isomorphic to Λw for some w
may or may not be formed in “interesting” ways. This is made more precise in the following definition.

Definition 2.7 Fix an element w ∈ Sn, and consider its principal order ideal Λw. If it is true that for
every interval [x, y] ∼= Λw, there exists an element of R(x) formed by deleting a factor from an element
of R(y), then w forces a factor. Otherwise w does not force a factor.

The “interesting” feature noted above was described in Remark 1.6 in the introduction to this work. The
first thing to note about this topic is that determining which permutations force a factor is an interesting
problem. More precisely, not all permutations do so.

Example 2.8 Consider Λ2314 ⊂ S4. Note that the principal order ideal Λ2314 is isomorphic to the
interval [1324, 2341].

1234 = ∅

2314 = s1s2

2134 = s1 1324 = s2

1324 = s2

2341 = s1s2s3

2314 = s1s2 1342 = s2s3

However, there is no element of R(1324) = {2} that can be formed from by deleting a single factor from
an element of R(2341) = {123}. Thus 2314 = s1s2 does not force a factor.
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3 Permutations that do not force a factor
In this section we describe a large class of permutations that do not force a factor.

Definition 3.1 A permutation w is decomposable if Λw
∼= Λu × Λv , where neither Λu nor Λv is itself

isomorphic to Λw. If w is not decomposable, then it is indecomposable.

Example 3.2 The permutation 4213 ∈ S4 is decomposable because Λ4213
∼= Λ3214 × Λ1243. This is

depicted in Figure 4.

Proposition 3.3 ([8]) A permutation w ∈ Sn is decomposable if and only if there exists m ∈ [n− 2] and
a reduced word a1a2 ∈ R(w), where a1 and a2 are nonempty, such that ai consists only of letters less than
or equal to m, and a3−i consists only of letters strictly greater than m.

Example 3.2 continued. The reduced words of 4213 ∈ S4 are {3121, 3212, 1321}. Then in the language
of Proposition 3.3, we can let m = 2, and a1 = 3 and a2 = 121. Thus 4213 is decomposable.

We now show, constructively, that no decomposable permutation forces a factor. This means that for
any decomposable permutation w, we must produce an interval [x, y] ∼= Λw such that no reduced word
for x can be obtained by deleting a factor from any reduced word for y.

Theorem 3.4 If w is decomposable, then w does not force a factor.

Proof: Suppose that w is decomposable. Consider the value m and the reduced word a1a2 ∈ R(w)
guaranteed by Proposition 3.3. We can assume, without loss of generality, that i = 1 in the proposition.
Let k1 ≤ m be the largest value appearing in a1, and k2 ≥ m + 1 be the smallest value appearing in a2.

Let a′2 be the string obtained from a2 by increasing each symbol by 1. Also, define

b = (k1 + 1)(k1 + 2) · · · (m + 1) · · · (k2 − 1)k2,

a string of consecutive increasing letters. Now define w− = sk1+1sk1+2 · · · sm+1 · · · sk2−1sk2 ; that is,

b ∈ R(w−)

It is not hard to see that a1b a′2 is reduced, by construction. Define w+ so that

a1b a
′
2 ∈ R(w+).

It is not hard to see that
Λw
∼= [w−, w+].

Neither a1 nor a′2 contain any of the letters {k1+1, k1+2, . . . , k2}. Moreover, k1 ∈ a1 and k2+1 ∈ a′2.
Thus the Coxeter relations prohibit k1 ∈ a1 from commuting into or across b from the left, and similarly
k2 + 1 ∈ a′2 cannot do so from the right. Thus it will be impossible to get k1 and k2 + 1 into the same
factor whose deletion would yield b.

Therefore w does not force a factor. 2

Example 2.8 depicts the procedure outlined in Theorem 3.4. In that case, w = s1s2 = 2314, and so
m = 1, a1 = 1, and a2 = 2. Then k1 = 1 and k2 = 2, and so a′2 = 3 and the resulting string a1b a

′
2 = 123.
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Therefore w− = s2 = 1324 and w+ = s1s2s3 = 2341. This yields exactly the demonstrative interval
[1324, 2341] of the example.

Theorem 3.4 says that if a permutation has a principal order ideal that can decompose nontrivially into
a direct product of posets, then there are ways for that principal order ideal to appear as an interval in an
“interesting” way, as described in Remark 1.6. In this context, then, the result may not be surprising. It
might even be natural to wonder whether the converse to Theorem 3.4 is also true. Unfortunately, it is not.

Example 3.5 Consider the permutation w = 3412 = s2s1s3s2 ∈ S4. Because R(w) = {2132, 2312},
we see that this w is indecomposable. It is not hard to check that

[12543, 52341] ∼= Λ3412.

To show that w does not force a factor, note that R(12543) = {343, 434}, and recall R(52341) from
Example 1.7. There is no element of R(52341) from which a single factor could be deleted to yield either
343 or 434. Thus w does not force a factor.

4 Permutations that do force a factor
In this section we prove that the longest permutation n(n − 1) · · · 321 always forces a factor. With the
understanding that the symmetric group is given a poset under the Bruhat order, we will abuse notation
slightly and write Λwn

0

∼= Sn, henceforth. Thus we now show that for any interval [x, y] appearing in
the Bruhat order of a symmetric group satisfying [x, y] ∼= Sn, there exists some i ∈ R(x) that can be
obtained from some j ∈ R(y) by deleting a factor.

The main result will be proved inductively, and its proof will benefit from some preliminary results.
The first of these is about generic intervals in the Bruhat order of the symmetric group, not of any fixed
isomorphism class. The proposition concerns the coatoms in an interval [x, y], that is, the elements w of
the interval that are covered by y (denoted x ≤ w l y).

Proposition 4.1 Suppose that x, y ∈ Sn with x < y. Fix i satisfying x(i) 6= y(i). Then there exists a
permutation w with x ≤ w l y and w(i) 6= y(i).

Proof: We prove the result by induction on `(y)− `(x).
If `(y) − `(x) = 1, then set w = x. Now consider `(y) − `(x) > 1, and suppose inductively that the

result is true for all intervals of length less than `(y)− `(x).
Fix some v satisfying x ≤ v l y. If v(i) 6= y(i), then set w = v and we are done. If, instead,

v(i) = y(i), then we can apply the inductive assumption to the interval [x, v]. This yields a permutation
u with x ≤ ul v and u(i) 6= v(i). Consider the interval [u, y]. As described in Table 1, this has only one
possible form, and includes a fourth element which will denote w.

u

y

v w

Because `(y)− `(u) = 2, the permutations u and y differ, as strings, in either three or four positions, one
of which is necessarily position i.
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If u and y differ in four positions, then u and v differ in two positions (i and j, for some j), and v and y
differ in two other positions. The two transpositions commute, and so w is obtained from y by swapping
the values in positions i and j. In other words, w(i) 6= y(i).

Suppose, on the other hand, that u and y differ in just three positions: i, j1, and j2. Then, because
v(i) = y(i), we have that v and y differ in positions j1 and j2. Because w 6= v, the two positions in which
w and y differ, which must be a subset {i, j1, j2}, cannot be both j1 and j2. Thus, one of them must be i,
meaning that w(i) 6= y(i). 2

We now focus on a particular kind of interval in the symmetric group, and look at what such an interval
implies for the reduced words of its minimum and maximum elements.

Definition 4.2 Let s be a string of integers, and t ∈ Z. The shift of s by t is the string st obtained by
adding t to each of the values in s.

Example 4.3 (5 −1 0)4 = 9 3 4 and (5 −1 0)−4 = 1 −5 −4.

Proposition 4.4 Fix a positive integer k. Suppose that x, y ∈ Sn have reduced words ac ∈ R(x) and
abc ∈ R(y), and that [x, y] ∼= Sk. Then there exists an integer t ≥ 0 such that b−t ∈ R(wk

0 ).

Proof: The length of b is equal to `(y) − `(x) = `(wk
0 ) =

(
k
2

)
. Because b is a reduced word, it cannot

contain fewer than k−1 distinct symbols. Moreover, if it were to contain more than k−1 distinct symbols,
then [x, y] would not be isomorphic to Λwk

0
. Thus b contains exactly k − 1 distinct symbols. In order to

form a reduced word of length `(wk
0 ) out of k − 1 distinct symbols, that reduced word must actually be

the shift by t of a reduced word for wk
0 , where t + 1 be the smallest symbol in b. 2

Example 4.5 In the language of Proposition 4.4, let x = 21534 and y = 24531, with reduced words
143 ∈ R(x) and 123243 ∈ R(y). The interval [x, y] ⊂ S5 is isomorphic to S3, as drawn in Figure 5. In
this example, t = 1 because 232−1 ∈ R(321).

23514

23541

21543

24513

21534

24531

Fig. 5: The interval [21534, 24531] ⊂ S5, which is isomorphic to S3.

The next two propositions require an additional definition.
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Definition 4.6 Fix a string s. Consider a monotonic substring s′ of s with smallest value a and largest
value b (the endpoints of the monotonic substring). This s′ is thin if no value c 6∈ s′, with a < c < b,
appears between a and b in s.

Example 4.7 Let s = 91402365. The monotonic substring 0235 is thin, while the monotonic substring
910 is not thin because of the 4 appearing between 9 and 0 in s.

Proposition 4.8 Fix a positive integer k. Suppose that x, y ∈ Sn have reduced words ac ∈ R(x) and
abc ∈ R(y), with b−t ∈ R(wk

0 ) for some integer t ≥ 0. Then x and y, as strings, are identical outside of
a thin monotonic substring of length k, which appears in increasing order in x and decreasing order in y.

To ease the discussion, we will call this monotonic substring that distinguishes x from y the swap-string.
Note that if k is odd, then x and y will also be identical in the central position of the swap-string.

Proof: We prove the result by induction on the length of a.
If a = ∅, then

y =
(
12 · · · t(t + k) · · · (t + 2)(t + 1)

)
x.

Thus x and y only differ, as strings, in the subsequence involving {t + 1, . . . , t + k}, which necessarily
appears in increasing order in x (because bc is reduced, so multiplying c by the permutation corresponding
to b cannot undo any inversions) and decreasing order in y. Because there are no values between t + 1
and t + k that are not already in the swap-string, the result holds.

Now suppose that a = ua′ where u is a single letter. Let x′ = sux and y′ = suy, and assume inductively
that the result holds for a′c ∈ R(x′) and a′bc ∈ R(y′). This means that the strings x′ and y′ are identical
except for a substring of length k whose values appear in increasing order in x′ and decreasing order in
y′, and these swap-strings are thin.

Because ac and abc are both reduced words, the value u must appear to the left of u + 1 in both x′ and
y′. Thus at most one of {u, u+1} appears in the swap-string for x′ and y′, so swapping the positions of the
two values cannot change the monotonicity of the differentiating substrings. In other words, lengthening
the prefix might change the specific values that differ in the two strings, but cannot alter the swap-string
phenomenon.

Similarly, the thinness of the swap-string is maintained by this operation. 2

The converse to Proposition 4.8 is also true. Its proof is similar to the main result of [10], and we offer
the broad strokes of it here.

Proposition 4.9 Suppose that x, y ∈ Sn are identical, as strings, outside of a thin monotonic substring
of length k, which appears in increasing order in x and decreasing order in y. Then there exist reduced
words ac ∈ R(x) and abc ∈ R(y), with b−t ∈ R(wk

0 ) for some integer t ≥ 0.

Proof: We will transform both x and y into the identity permutation, by minimally many simple reflec-
tions, thus obtaining reduced words for each.

Look for any values sitting in between the endpoints of the swap-string that are not actually in the
swap-string themselves. Because the swap-strings are thin, each of these values is either smaller than
the minimum value of the swap-string or larger than the maximum value of the swap-string. Identically
multiply x and y on the right by a succession of simple reflections (thus swapping the values in adjacent
positions in the strings) to move all of the too-large (respectively, too-small) values to the right (respec-
tively, left) of the swap-string. The order in which these values are moved can be chosen so that each
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multiplication removes exactly one inversion. Let C be the reduced word corresponding to the product of
these multiplied simple reflections.

We now have two permutations x′ ≤ x and y′ ≤ y that are identical, as strings, outside of a swap-string
of length k, which appears in increasing order in x′ and decreasing order in y′. Moreover, the swap-string
is a factor in each of x′ and y′. We can now multiply y′ on the right by a succession of simple reflections,
each of which removes exactly one inversion from the permutation, to put this decreasing factor into
increasing order and thus yield x′. This will correspond to a reduced word b. Moreover, b necessarily
satisfies b−t ∈ R(wk

0 ), where the leftmost symbol in the swap-string appears in the (t−1)st position. Fix
some a ∈ R(x′).

Let c be the string obtained by writing C in reverse order. Then ac ∈ R(x) and abc ∈ R(y), with
b−t ∈ R(wk

0 ) for some integer t ≥ 0, as desired. 2

We are now able to prove the main result of this section, describing a family of permutations that force
factors.

Theorem 4.10 For all integers n > 1, the permutation wn
0 = n(n− 1) · · · 321 forces a factor.

Proof: First note that Λ21
∼= S2 is the following poset.

If [x, y] ∼= S2, then `(y) = `(x) + 1, and so a reduced word for x must be obtained from a reduced word
for y by deleting a single letter. A single letter is necessarily a factor, and so the result holds for n = 2.

Now consider some integer n > 2, and suppose, inductively, that the result holds for wn−1
0 .

Let [x, y] ∈ Sm be an interval that is isomorphic to Sn. In Sn, there are two intervals

[23 · · ·n1, wn
0 ] and [n12 · · · (n− 1), wn

0 ], (1)

each of which is isomorphic to Sn−1. Thus, there must be two such intervals [x1, y] and [x2, y] in
[x, y]. Recall the results of Propositions 4.4 and 4.8. Let the swap-string for [xi, y] ∼= Sn−1 have values
h
(i)
1 < · · · < h

(i)
n−1.

Because [x1, y] and [x2, y] overlap extensively in [x, y], as do the intervals of (1) in Sn, their respective
swap-strings must share many values. In particular, at the second highest rank in [x, y], the intervals
[x1, y] and [x2, y] overlap in n− 3 elements. Thus the two swap-strings share n− 2 values. It remains to
determine how these two swap-strings could fit together. In order to satisfy the thinness condition for the
swap-string of [xi, y], the n− 2 shared values must be either {h(i)

1 , . . . , h
(i)
n−2} or {h(i)

2 , . . . , h
(i)
n−1}.

Note that [x1, y]∪ [x2, y] includes all of the coatoms of [x, y]. By Proposition 4.1, x and y cannot differ
in any positions outside the union of the two swap-strings. This union encompasses exactly n positions.
Because the swap-strings are thin, and because `(y)− `(x) = `(wn

0 ), we must have the n positions form
an increasing substring in x and a decreasing substring in y, and these two monotonic substrings must be
thin in their respective permutations. Proposition 4.9 now implies that some i ∈ R(x) can be obtained
from some j ∈ R(y) by deleting a factor, completing the proof. 2

To illustrate the proof of Theorem 4.10, we present the following example.
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Example 4.11 Let x = 321456 and y = 361542 in S6, for which [x, y] ∼= S4. In the language of the
proof of Theorem 4.10, then, n = 4. Let x1 = 341562 and x2 = 361245. For i ∈ {1, 2}, the interval
[xi, y] ⊂ [x, y] is isomorphic to S3, as depicted in Figure 6. Note that these intervals share 4 − 3 = 1
coatom (the permutation 361452 ∈ S6), and the swap-string {4, 5, 6} for [x1, y] shares 4− 2 = 2 values
with the swap-string {2, 4, 5} for [x2, y].

x1 = 341562

351462 341652

351642 361452

y = 361542

x2 = 361245

361425 361254

361452 361524

y = 361542

Fig. 6: The intervals [x1, y] and [x2, y] described in Example 4.11, illustrating the proof of Theorem 4.10.

In fact, Proposition 4.9 also tells us the form of the factor forced by wn
0 .

Corollary 4.12 For all integers n > 1, if [x, y] ∼= Sn, then some i ∈ R(x) can be obtained from some
j ∈ R(y) by deleting a factor b, where bt ∈ R(wn

0 ) for some t ∈ Z.

5 Open questions
We have now documented a family of permutations that do not force factors and a second family of
permutations that do force factors. Completely characterizing those permutations that do (or do not) force
factors is still an open question, and one which could shed significant light on the interval structure of the
Bruhat order for the symmetric group.

In a different direction, the present work studies only the finite Coxeter group of type A, although the
analogous question can be asked for Coxeter groups of other types as well.
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