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A subset X of the vertex set of a graph G is a secure dominating set of G if X is a dominating set of G and if, for
each vertex u not in X , there is a neighbouring vertex v of u in X such that the swap set (X − {v}) ∪ {u} is again
a dominating set of G. The secure domination number of G is the cardinality of a smallest secure dominating set of
G. A graph G is p-stable if the largest arbitrary subset of edges whose removal from G does not increase the secure
domination number of the resulting graph, has cardinality p. In this paper we study the problem of computing p-stable
graphs for all admissible values of p and determine the exact values of p for which members of various infinite classes
of graphs are p-stable. We also consider the problem of determining analytically the largest value ωn of p for which
a graph of order n can be p-stable. We conjecture that ωn = n− 2 and motivate this conjecture.

Keywords: Secure domination, graph protection, edge removal.

1 Introduction
Let G = (V,E) be a simple graph of order n. A set D ⊆ V is a dominating set of G if each vertex
v ∈ V − D is adjacent to a vertex in D. A dominating set X ⊆ V of G is secure dominating if, for
each vertex u ∈ V −X , there exists a vertex v ∈ N(u) ∩X such that the swap set (X − {v}) ∪ {u} is
again a dominating set of G, where N(u) denotes the open neighbourhood of u. In this case v is said to
defend u. A vertex u ∈ V −X is an external private neighbour of a vertex v ∈ X with respect to some
set X if N(u) ∩X = {v} and a vertex w ∈ V is a universal vertex of G if it is adjacent all the vertices
in V − {w}. The minimum cardinality of a secure dominating set of G is called the secure domination
number of G and is denoted by γs(G). For the graph G1 in Figure 1, for example, γs(G1) = 2. Noting
that at least one vertex in {v2, v3}must be included in any secure dominating set of G1, it follows that G1

has three minimum secure dominating sets (up to isomorphism), as shown in the figure. For the minimum
secure dominating set in Figure 1(a), v3 is defended by v2, while v4 and v5 are both defended by v1. The
vertex v2 is a universal vertex of G1 while the vertex v3 is an external private neighbour of v2 with respect
to the minimum secure dominating set in Figure 1(a).

A number of general bounds have been established for the parameter γs(G) in [9], and exact values of
γs(G) have also been established for various graph classes, such as paths, cycles, complete multipartite
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Fig. 1: All the minimum secure dominating sets (up to isomorphism) for a graph G1 of order 5.

graphs and products of paths and cycles. Various properties of the secure dominating sets of graphs have
been studied in [1, 2, 6, 7, 8, 12].

In [4] we considered the cost (measured by the increase in the secure domination number) of deleting
a number of edges from a graph. We then used our knowledge of this cost function in [3] to construct
the class of all graphs G of order n with the property that the smallest number of arbitrary edges whose
removal from G necessarily increases the secure domination number of the resulting graph, is some pre-
specified number q. This problem is relevant in the generic application where the vertices of G denote
locations on some spatial domain, and the edges represent links between these locations along which
patrolling guards may move. A secure dominating set of G represents a collection of locations at which
guards may be stationed so that the entire location complex modelled by G is securely dominated. The
studies in [3, 4] provide threshold information as to the number of edge failures (which may be caused
randomly or by an adversary) that will necessitate the hiring of additional guards to secure the resulting
location complex.

In this paper we focus our attention on the dual problem of determining graphs G with the property
that the largest number of arbitrary edges whose removal from G necessarily does not increase the secure
domination number of the resulting graph, is a pre-specified value p. This dual problem is relevant in the
same generic application as described above, but where threshold information is sought with respect to
the largest number of arbitrary edge failures which does not result in a requirement of additional guards
to dominate the location complex securely.

The paper opens in §2 with a formalisation of the notion of p-stability in secure domination (with respect
to edge removal). We characterise the class of p-stable graphs for all admissible values of p in an inductive
fashion in terms of (p − 1)-stable graphs in §3. In §4 we turn our attention to the intriguing problem of
determining the largest value of p for which a graph of order n can be p-stable, before determining exact
values of p for which paths and cycles are p-stable in §5. The paper closes in §6 with three suggestions
for further work.

2 The notion of p-stability
We denote the set of all non-isomorphic graphs obtained by removing exactly p ∈ {0, 1, . . . ,m} edges
from a given graph G of size m by G− pe. Similarly, G+ qe denotes the class of non-isomorphic graphs
obtained by inserting exactly q ∈ {0, 1, . . . ,

(
n
2

)
−m} edges between pairs of non-adjacent vertices of a

graphG of order n and sizem. Furthermore, γs(G−pe) denotes the set of values of γs(H) asH ∈ G−pe
varies (for a fixed value of p). The notation γs(G+qe) has a similar meaning. We distinguish between the
graph obtained by removing a specific edge e from G, by writing G− e, and the class of graphs obtained
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by removing any single edge from G, by writing G− 1e. A similar distinction is made for edge insertion.
It is not hard to prove the following basic result, which shows that the secure domination number of a
graph cannot decrease upon removal of a subset of its edges.

Proposition 1 ([3]) Let G be any nonempty graph and let e be any edge of G. Then exactly one of the
following statements is true:
(a) γs(G− e) = γs(G), or
(b) γs(G− e) = γs(G) + 1.

The following result is an immediate consequence of Proposition 1.

Corollary 1 For any graph G of size at least p, γs(G − pe) ⊆ {γs(G), γs(G) + 1, . . . , γs(G) + p}.
2

It follows from Corollary 1 that the cost function

Cp(G) = max γs(G− pe)− γs(G)

is nonnegative and bounded from above by p for all p ∈ {0, 1, . . . ,m}. This cost function measures the
largest possible increase in the secure domination number of a member of G − pe, relative to the secure
domination number of a graphG of sizem, when an arbitrary set of p ∈ {0, 1, . . . ,m} edges are removed
from G. Note that a graph G is p-stable if Cp(G) = 0, but Cp+1(G) > 0.

The following result shows that for any graph G, the associated stability value is non-increasing as
more and more edges are removed from G, as long as the secure domination number does not change as
a result of the edge removals.

Proposition 2 Let G1 be a nonempty graph and suppose G2 ∈ G1 − 1e such that γs(G1) = γs(G2). If
G1 is p1-stable and G2 is p2-stable, then p1 > p2.

Proof: Let G1 be a p1-stable graph and let G2 be a p2-stable member of G1 − 1e such that γs(G1) =
γs(G2), but suppose, to the contrary, that p2 = p1 + p′ for some p′ ∈ N. Then

Cp2(G2) = max γs(G2 − p2e)− γs(G2)

= max γs((G2 + 1e)− (p2 + 1)e)− γs(G2)

≥ max γs(G1 − (p1 + p′ + 1)e)− γs(G1)

= max γs((G1 − p1e)− (p′ + 1)e)− γs(G1)

≥ 1,

contradicting the p2-stability of G2. 2

3 Computing the class of p-stable graphs of order n
Let Spn be the class of non-isomorphic p-stable graphs of order n ≥ 2. We open this section with a
characterisation of the graph class Spn in terms of the graph class Sp−1n for any p ∈ N.
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Proposition 3 A graph G of size at least p > 0 is p-stable if and only if
(a) γs(H) = γs(G) for each H ∈ G− 1e and
(b) each member of G − 1e is r-stable for some r ≥ p − 1 and at least one member

of G− 1e is (p− 1)-stable.

Proof: Let G be a p-stable graph for some p > 0. Then γs(G) = γs(H) for all graphs H ∈ G − 1e,
implying the necessity of (a). The necessity of (b) is established by contradiction. Suppose, contrary to
(b), that there exists an r-stable graph Ĥ ∈ G− 1e for some r < p− 1. Then,

Cp(G) = max γs(G− pe)− γs(G)

= max γs((G− 1e)− (p− 1)e)− γs(G)

≥ max γs(Ĥ − (p− 1)e)− γs(Ĥ)

= Cp−1(Ĥ)

≥ 1,

contradicting the p-stability of G. This shows that all graphs in the class G − 1e are r-stable for some
r ≥ p − 1. Note, however, that by Proposition 2 there exists an r-stable graph H ′ ∈ G − 1e for some
r < p. Clearly, r = p− 1 in this case, thereby establishing the necessity of (b).

For the sufficiency of (a) and (b), suppose, to the contrary, that at least one member H∗ ∈ G − 1e for
which γs(H∗) = γs(G) is (p−1)-stable and that each member H ∈ G−1e for which γs(H) = γs(G) is
r-stable for some r ≥ p−1, but that G is not p-stable. Then max γs(G−pe) = max γs(H− (p−1)e) =
γs(H) = γs(G), where the maximum is taken over all graphs H ∈ G − 1e for which γs(H) = γs(G).
But max γs(G − (p + 1)e) ≥ γs(H

∗ − pe) > γs(H
∗) = γs(G), contradicting the supposition that G is

not p-stable. 2

If the class S0n can be characterised and constructed, then the result of Proposition 3 may be used to
compute the class Spn inductively from the class Sp−1n for all p ∈ N and all n ≥ 2, using the class S0n as
the base case. We therefore pose the following open problem.

Problem 1 Characterise the class S0n of 0-stable graphs of order n.

While the above problem seems hard, it is easy to prove that S0n is nonempty for all n ≥ 2. The next
result follows immediately from a realisation that the complete graphKn is the only graph of order n with
secure domination number 1 [5, Proposition 1].

Proposition 4 Kn ∈ S0n for all n ≥ 2.

In fact, it follows from Proposition 4 that any graph of order n which contains a nontrivial, complete
component is a member of S0n. The seven graphs of order 5 in Figure 2 are, for example, all members of
the graph class S05 by Proposition 4.

Furthermore, each member of the graph class S0n has the following interesting property.

Proposition 5 If G ∈ S0n for some n ≥ 2, then some vertex in every minimum secure dominating set X
of G has private neighbours external to X .
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(a) (b) (c) (d) (e) (f) (g)

Fig. 2: A subset of the graph class S0
5 . Minimum secure dominating sets are denoted by solid vertices in each case.

Square solid vertices denote members of the minimum secure dominating set which have external private neighbours.

Proof: SupposeG is 0-stable, but suppose, to the contrary, thatG possesses a minimum secure dominating
set X in which no vertex has private neighbours external to X . Let e = uv be any edge of G. Then there
are three cases to consider:

Case i: u, v ∈ X . In this case, clearly, X remains a secure dominating set of G − e, showing
that γs(G − e) ≤ |X| = γs(G). But since γs(G − e) ≥ γs(G) by Proposition 1, it follows that
γs(G− e) = γs(G).

Case ii: u, v 6∈ X . Since u and v are not external private neighbours of any vertex in X , it follows
from [9, Proposition 2] that they are not uniquely defended by a common vertex in X . Hence X
remains a secure dominating set of G− e, and so γs(G− e) = γs(G), as above.

Case iii: u ∈ X and v 6∈ X . Since no vertex outside X is an external private neighbour of any vertex
in X , v has another neighbour in X which does not defend any vertex outside X uniquely. Hence X
remains a secure dominating set of G− e, and so γs(G− e) = γs(G) yet again.

In all of the above cases, removal of the arbitrary edge e from G does not increase the domination
number of the resulting graph, contradicting the 0-stability of G. 2

The property in Proposition 5 is, however, not sufficient to characterise the graph class S0n, as illustrated
by the counter example in Figure 1. The graph G1 in the figure is not a member of S05 ; removal of any
of its edges other than v2v3 will cause an increase in the secure domination number. Yet every minimum
secure dominating set of G1 has at least one member which possesses private neighbours external to the
set, as shown in Table 1.

Minimum secure Members of Private neighbours
dominating set X the set X external to X

in Figure 1(a) v1 None
v2 v3
v1 v4, v5in Figure 1(b)
v3 None

in Figure 1(c) v2 v1, v4, v5
v3 None

Tab. 1: At least one member of any secure dominating set of G1 possesses private neighbours external to the set.

If Problem 1 can be solved and if the resulting characterisation can be used to derive an iterative or
recursive construction for the graph class S0n, then the inductive process of computing the graph classes
S1n,S2n,S3n, . . . from S0n can be achieved by Algorithm 1. The algorithm commences by systematically
considering each graph H ∈ Sp−1n and proceeding to add a single edge e /∈ E(H) to H in Step 3, upon
which the result of Proposition 3 is used to test whether H + e is, in fact, p-stable. If H + e is p-stable, it
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is included in the class Spn. This process is repeated for each edge e /∈ E(H).

Algorithm 1: The class Spn of p-stable graphs of order n for p > 0

Input : The classes S0n, . . . ,Sp−1n .
Output: The class Spn of p-stable graphs of order n.

1 for each H ∈ Sp−1n do
2 for each e /∈ E(H) do
3 if p-Stable(H + e, p) then Spn ← Spn ∪ {H + e}

In Step 3 of Algorithm 1, another algorithm, Algorithm 2, is called to test whether the graphG = H+e
is p-stable. In Algorithm 2, each member of G − 1e is examined. If a member I is found for which
γs(I) 6= γs(G), then G is not p-stable. Furthermore, if G − e /∈ Srn for r ≥ p − 1, then again G is not
p-stable by Proposition 3.

Algorithm 2: p-Stable(G, p)

Input : A graph G of order n, a natural number p and the graph classes S0n, . . . ,Sp−1n .
Output: TRUE if G ∈ Spn, or FALSE otherwise.

1 if G ∈ Sqn for some q ≤ p then
2 return [FALSE]

3 for each e ∈ E(G) do
4 if γs(G− e) 6= γs(G) or G− e ∈ Sqn for some q < p− 1 then
5 return [FALSE]

6 return [TRUE]

The graph classes S0n,S1n,S2n and S3n are shown as an example in Figure 3. The base case, the class S05 ,
shown in the outer layer of Figure 3, was found manually (by brute force). Thereafter, Algorithm 1 was
used to compute the classes S15 , S25 and S35 inductively. These classes are shown in the inner layers of the
figure.

The cardinalities of the nonempty graph classes Spn are listed in Table 2 for all p ∈ {0, 1, . . . ,
(
n
2

)
} and

all n ∈ {2, 3, . . . , 9}.

4 The largest p for which an order n graph is p-stable
Let ωn be the largest value of p for which there exists a graph of order n that is p-stable. It follows from
Proposition 4 that S0n 6= ∅ for all n ≥ 2. Proposition 3 therefore implies that

S0n, . . . ,Sωn
n 6= ∅ and Sωn+1

n , . . . ,S(n
2)

n = ∅

for all n ≥ 2. It follows from Table 2 that ωn = n− 2 for all n ∈ {2, . . . , 9}. We believe that this linear
functional relation holds in general, and hence conjecture as follows.
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n → 2 3 4 5 6 7 8 9
|S0n| 1 2 6 17 81 514 5 460 107 794
|S1n| 1 3 10 51 355 4 205 94 106
|S2n| 1 4 16 136 2 050 52 502
|S3n| 2 5 32 551 16 923
|S4n| 2 5 70 3 081
|S5n| 1 6 245
|S6n| 3 13
|S7n| 3
Total 1 3 10 33 155 1 043 12 345 274 667
Time � 1 < 1 1 15 374 15 895 1 069 220

Tab. 2: Cardinalities of the nonempty graph classes S1
n, . . . ,S

(n2)
n of orders n ∈ {2, . . . , 9} computed by a C++

implementation of Algorithms 1–2 on a 3.4 GHz Intel(R) Core(TM) i7-3770 processor with 8 GiB RAM running in
Ubuntu 12.04. The Boost graph library [13] was used for isomorphism testing. The classes S0

2 ,S0
3 , . . . ,S0

9 were
found by brute force and the constructions of these classes were not included in the time measurements in the last row
of the table (which are measured in seconds).

Conjecture 1 ωn = n− 2 for all n ≥ 2.

Although we are unable to prove Conjecture 1, we further substantiate this conjecture and establish
bounds on ωn in this section.

4.1 Upper bounds on ωn

It is easy to show that ωn is bounded from above by a linear function of n.

Proposition 6 Suppose u and v are two adjacent vertices of a graph G. Then G is p-stable for some
p ≤ deg(u) + deg(v)− 2.

Proof: Let u and v be two adjacent vertices in G, and let H be the graph obtained by removing all the
edges from G that are incident to u or v, except for the edge uv. Then H contains deg(u) + deg(v) − 2
edges fewer thanG and one component more thanG. Furthermore, one of these components is isomorphic
to the complete graph K2, which is 0-stable by Proposition 4. Hence it is possible to increase the secure
domination number of G by removing more than deg(u) + deg(v)− 2 edges, and so G is not p-stable for
any p ≥ deg(u) + deg(v)− 1. 2

The following three consequences immediately follow from Proposition 6.

Corollary 2 A connected graph with maximum degree ∆ is p-stable for some p ≤ 2(∆− 1).

Corollary 3 A connected graph with minimum degree δ and maximum degree ∆ which contains a uni-
versal vertex is p-stable for some p ≤ ∆ + δ − 3.

Corollary 4 ωn ≤ 2n− 4 for all n ≥ 2.

When further restrictions are placed on the graph, then improvements on the above bounds, such as the
following, may be obtained.

Proposition 7 If G contains a vertex v such that γs(G − v) ≥ γs(G), then G is p-stable for some
p ≤ deg(v)− 1 ≤ ∆− 1.
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Proof: Let v be a vertex of G such that γs(G− v) ≥ γs(G) and let H be the graph obtained by removing
all edges from G that are incident to v. Then γs(H) = γs(G− v) + 1 ≥ γs(G) + 1 > γs(G). Hence it is
possible to increase the secure domination number of G by removing deg(v) edges from G, and so G is
p-stable for some p ≤ deg(v)− 1 ≤ ∆− 1. 2

The following corollaries are immediate consequences of Proposition 7.

Corollary 5 IfG contains a vertex v such that γs(G−v) ≥ γs(G), thenG is p-stable for some p ≤ n−2.

Corollary 6 If G is an (n− 2)-stable graph, then γs(G− v) < γs(G) for any non-universal vertex v of
G.

Although a vertex v for which γs(G− v) ≥ γs(G) may often be found in a graph G, this requirement
is not necessary for the result of Corollary 5. For example, the complete bipartite graph K4,4 has no such
vertex, yet it is possible to prove the following result.

Proposition 8 K4,4 ∈ S68 .

The proof of Proposition 8 is rather lengthy, consists of many cases and is not particularly instructive.
The proof is therefore omitted here, but may be found in Appendix A. The result of Proposition 8 seems
to be an isolated instance. The graph in Figure 4, for example, is a member of Kr,r − 2(r − 1)e which
has no secure dominating set of cardinality 4. This shows that Proposition 8 cannot be generalised to Kr,r

and hence that Kr,r /∈ Sn−2n for all n = 2r, where r > 4.

V1

V2

· · ·

· · ·
Kr−1,r−1

︸ ︷︷ ︸

Fig. 4: A member of Kr,r − 2(r − 1)e which has no secure dominating set of cardinality 4. A minimum secure
dominating set of cardinality 5 is indicated by the solid vertices.

The following result is a similarly isolated case.

Proposition 9 K3,3,3 ∈ S79 .

The proof of Proposition 9 is again rather lengthy and may be found in Appendix B. The graph in
Figure 5 is a member of Kr,r,r − (3r− 2)e which has no secure dominating set of cardinality 3 and hence
Kr,r,r /∈ Sn−2n for n = 3r, where r ≥ 3. This shows that the result of Proposition 9 cannot be generalised
to Kr,r,r.

4.2 A lower bound on ωn

We next turn our attention to establishing a lower bound on ωn.

Proposition 10 (Stability of stars) For any integer n ≥ 2, K1,n−1 ∈ Sn−2n .
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···

· · ·

···

V1

V2

V3

Fig. 5: A member of Kr,r,r − (3r − 2)e which has no secure dominating set of cardinality 3. A minimum secure
dominating set of cardinality 4 is indicated by the solid vertices.

Proof: The result is an immediate consequence of [4, Theorem 3], which states that

Cp(K1,n−1) =

{
0 if 0 ≤ p ≤ n− 2
1 if p = n− 1

for the star graph K1,n−1 of order n. 2

We therefore have the following corollary.

Corollary 7 ωn ≥ n− 2 for all n ≥ 2.

Our next result disqualifies large partitions of any sufficiently large independent set of a graph from
forming part of a minimum secure dominating set of the graph.

Proposition 11 LetG be a graph for which γs(G) = k. IfG contains an independent set S of cardinality
at least k + 1, then every minimum secure dominating set of G contains at most k − 2 vertices of S.

Proof: By contradiction. Suppose G contains an independent set S of cardinality at least k+ 1 and let X
be a minimum secure dominating set of G. There are two cases to consider:

Case i: |X ∩S| = k− 1. In this case X contains a single vertex, x (say), of V (G)−S and there are at
least two vertices, y and z (say), in the set S−X . Then x is adjacent to both y and z (for otherwise y and
z are not dominated). However, since y and z are nonadjacent, they are not defended by x. But clearly y
and z are also not defended by any vertex in X − {x}, a contradiction.

Case ii: |X ∩ S| = k. In this case X ⊂ S. But then no vertex in S −X is dominated, a contradiction.
These contradictions show that |X ∩ S| ≤ k − 2, as required. 2

It follows from the contrapositive of the special case where k = 2 in Proposition 11 that the secure
domination number of the graph

H = K1,3,3,...,3︸ ︷︷ ︸
` terms

is at least 3. But since H ∈ Kn − 3`e = Kn − (n − 1)e = (Kn − e) − (n − 2)e, for n = 3` + 1, it
follows that Kn − e is not p-stable for any p ≥ n − 2 if n ≡ 1 (mod 3). Therefore, Kn − e /∈ Sn−2n if
n ≡ 1 (mod 3).
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· · ·

x z

yv

V (H)− {x, y, z, v}

Fig. 6: A subgraph of H for which x, y, z are three consecutive vertices on a cycle of H .

Despite this counter example, we next show that the graph class Sn−2n nevertheless contains the graph
Kn − e if n ≡ 0, 2 (mod 3).

Proposition 12
If n ≥ 3 is a natural number such that n ≡ 0, 2 (mod 3), then Kn − e ∈ Sn−2n .

Proof: For any integer n ≥ 3, the graph Kn − e contains a vertex v of degree n − 1. Removal of the
n− 1 edges incident to v yields the graph K1 ∪ Kn−1 − e. Since γs(Kn − e) = γs(Kn−1 − e) = 2, but
γs(K1 ∪ Kn−1 − e) = 1 + 2 = 3, it therefore follows that

Kn − e is not p-stable for any integer p ≥ n− 1. (1)

Suppose now that H ∈ Kn − (n − 1)e. Then it follows by the pigeonhole principle that there is one
vertex of H with degree at least n− 2 and another vertex of H of degree at least n− 3. We consider three
cases:

Case i: At least one vertex of H has degree n− 1. There are three further subcases to consider.

Case i(a): At least two vertices of H have degree n − 1 each. In this case any two universal
vertices form a secure dominating set of H .

Case i(b): Exactly one vertex of H has degree n − 1 and at least one vertex of H has degree
n− 2. In this case the universal vertex and any vertex of degree n− 2 form a secure
dominating set of H .

Case i(c): Exactly one vertex of H , v (say), has degree n − 1, and no vertex of H has degree
n− 2. In this case each vertex in H − v has degree n− 3. Since every vertex of H
other than v therefore has degree 2, each component of H − v is a cycle. But since
n 6≡ 1 (mod 3), at least one of these cycles, C (say), is not a triangle. Let x, y and z
be three consecutive vertices on C. Then x and z are adjacent in H and y is adjacent
to neither x nor z in H . But since the degree of y in H is n − 3, y is therefore
adjacent to all the vertices in V (H) − {x, y, z}. Hence the graph in Figure 6 is a
subgraph of H and so {v, y} is a secure dominating set of H , with v defending itself
as well as x and z, and y defending itself and all the vertices in V (H)−{x, y, z, v}.
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Case ii: No vertex of H has degree n − 1. In this case H has size n − 1 and δ(H) ≥ 1. Therefore at
least one component of H is a nontrivial tree T . Since all trees are bipartite, let V1 and V2 be
the partite sets of T . Then the set {x, y}, where x ∈ V1 and y ∈ V2, is a secure dominating set
of H , since x defends all the vertices in V1, y defends all the vertices in V2, and both x and y
defend the vertices in V (H)− V1 − V2.

In both the above cases γs(H) = 2 and hence Kn− e is p-stable for some p ≥ n− 2. The result therefore
follows from (1). 2

It follows from Propositions 8–12 that the class of graphs

Λn =





{K1,7,K8 − e,K4,4} if n = 8

{K1,8,K9 − e,K3,3,3} if n = 9

{K1,n−1} if n ≡ 1 (mod 3)

{K1,n−1,Kn − e} otherwise

(2)

is a subset of Sn−2n for all n ≥ 3. We are unaware of any graphs in the class Sn−2n \Λn and conjecture as
follows.

Conjecture 2 Sn−2n = Λn for all n ≥ 3.

Our final result of this section shows that the validity of Conjecture 2 would imply the validity of
Conjecture 1.

Proposition 13 If Λn = Sn−2n , then ωn = n− 2.

Proof: By contradiction. Suppose Λn = Sn−2n , but assume, to the contrary, that Sn−1n 6= ∅. Let G ∈
Sn−1n . Then it follows from Proposition 3 that there is a member H ∈ G− 1e of the class Sn−2n such that
γs(G) = γs(H). There are three cases to consider:

Case i: n 6= 8, 9. In this case H 6∼= K1,n−1, because γs(K1,n−1) = n− 1 > n− 2 = γs(K1,n−1 + e)
as a result of the triangle in K1,n−1 + e. Furthermore, H 6∼= Kn− e, because γs(Kn− e) = 2 >
1 = γs(Kn). We therefore have a contradiction in this case.

Case ii: n = 8. In this case, additionally H 6∼= K4,4, because γs(K4,4) = 4 by [9, Proposition 11], yet
Ψ′(2, 1, 4, 0, 0) is a certificate showing that γs(K4,4 + e) ≤ 3 [5, Proposition 3]. This is again
a contradiction.

x

y

z

Fig. 7: The graph K3,3,3 + e, which admits {x, y} as secure dominating set.
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Case iii: n = 9. In this case, additionally H 6∼= K3,3,3, because γs(K3,3,3) = 3 by [9, Proposition 11],
yet K3,3,3 + e is isomorphic to the graph in Figure 7, which admits {x, y} as secure dominating
set, showing that γs(K3,3,3 + e) ≤ 2, yet again a contradiction.

The above contradictions show that Sn−1n = ∅ and hence that ωn ≤ n− 2. The desired result therefore
follows from Corollary 7. 2

5 Paths and Cycles
In this section we consider the stability of paths and cycles. We start with paths.

Proposition 14 (Stability of paths)
The only paths that are 1-stable are P3 and paths of the form P5+7` for some ` ∈ N0.
All other paths are 0-stable.

Proof: It is easily verified exhaustively that the paths P2 and P4 are 0-stable, and that the paths P3 and P5

are 1-stable. Suppose, therefore, that n ≥ 6. It follows from [9, Theorem 12(d)] that γs(Pn) = d3n/7e.
Removal of the fifth edge from Pn yields the forest P5 ∪ Pn−5 for which

γs(P5 ∪ Pn−5) =
⌈
3(5)
7

⌉
+
⌈
3(n−5)

7

⌉
= 3 +

⌈
3n
7 − 2− 1

7

⌉
= 1 +

⌈
3n−1

7

⌉
,

again by [9, Theorem 12(d)]. Therefore γs(P5 ∪ Pn−5) > γs(Pn), unless 3n ≡ 1 (mod 7), which has
the unique solution n ≡ 5 (mod 7). For any n 6= 7`+ 5, the path Pn is therefore 0-stable.

If n = 7` + 5 for some ` ∈ N, then γs(Pn) = d3n/7e = 3` + 3. Removal of the k-th edge from Pn

yields the forest Pk ∪ Pn−k for which

γs(Pk ∪ Pn−k) =
⌈
3k
7

⌉
+
⌈
3(7`+5−k)

7

⌉
=
⌈
3k
7

⌉
+ 3`+ 2 +

⌈
1−3k

7

⌉
.

Since γs(Pn) ≤ γs(Pk ∪ Pn−k), it follows that d3k/7e + d(1 − 3k)/7e ≥ 1. But by taking a = 3k
and b = 7 in the identity da/be + d(1 − a)/be ≤ 1, which holds for any a, b ∈ Z with b 6= 0, it follows
that d3k/7e + d(1 − 3k)/7e ≤ 1, so that, in fact, d3k/7e + d(1 − 3k)/7e = 1. We conclude that
γs(Pn) = γs(Pk ∪Pn−k) for any k ∈ {1, . . . , n−1} if n = 7`+ 5, showing that Pn is p-stable for some
p ≥ 1 in this case.

However, removal of the first and second edges from P7`+5 yields the forest 2P1 ∪ P7`+3 for which
γs(2P1 ∪ P7`+3) = 2d3/7e+ d3(7`+ 3)/7e = 3`+ 4 > γs(Pn), showing that P7`+5 is not p-stable for
any p > 1. We therefore conclude that P7`+5 is 1-stable. 2

The stability results for cycles other than C3 follow immediately from Proposition 14 upon realisation
that any edge removal from such a cycle produces a path of the same order. The cycle C3 is an exception
merely because it is also a complete graph.

Proposition 15 (Stability of cycles)
The only cycles that are 2-stable are cycles of the form C5+7` for some ` ∈ N0. All other cycles, except
C3, are 1-stable. Finally, C3 is 0-stable.
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6 Further work
We propose the following three problems for future work:

1. In §3 we showed how the graph classes S1n, . . . ,Sωn
n can be computed inductively from the class

S0n for all n ≥ 2. We therefore propose the design of a construction process for the graph class S0n
(Problem 1) as further work.

2. In §4 we showed that the graph class Λn in (2) is a subclass of Sn−2n for all n ≥ 2. We believe that
Sn−2n = Λn for all n ≥ 2 (Conjecture 2), but are unable to prove this. We therefore propose the
proof of Conjecture 2 or, alternatively, demonstration of a graph in the class Sn−2n \Λn as a problem
for future research.

3. Although the proof of Conjecture 2 would establish the truth of Conjecture 1 (by Proposition 13),
it may of course be possible that Conjecture 1 is true even if Conjecture 2 is false. We therefore
propose the resolution of Conjecture 1 as an independent problem.
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Appendix A: Proof of Proposition 8
Suppose V1 and V2 are the partite sets of K4,4 and let H be a subgraph of K4,4 that is isomorphic to a member of
K4,4 − 6e. Since H ⊆ K4,4 and γs(K4,4) = 4 [9, Proposition 10],

γs(H) ≥ 4. (3)

We show, by considering a number of cases, that, in fact, γs(H) = 4.
The largest subgraph of K4,4 containing a vertex v ∈ V1 with d ∈ {0, 1, 2, 3, 4} private neighbours u1, . . . , ud ∈

V2 is obtained by joining v to all vertices in V2 and joining each of the three vertices in V1−{v} to each of the 4− d
vertices in V2 −{u1, . . . , ud}. Because this subgraph has size 4 + 3(4− d) = 16− 3d and H has size 10, it follows
that d ≤ 2 (i.e.H has no vertex with more than two private neighbours). Moreover, ifH has a vertex with two private
neighbours, then it has exactly one such vertex, v (say), and H is necessarily isomorphic to the graph in Figure 8(a).
In this case H has the secure dominating set of cardinality 4 indicated by the solid vertices in the figure, showing that
γs(H) = 4 by (3).

v

V2

V1
v1

V2

V1
v2

u2u1

(a) (b)

Fig. 8: The graphH (a) with a vertex with two private neighbours, and (b) two vertices, each with exactly one private
neighbour.

Suppose, therefore, that no vertex in H has more than one private neighbour and let the number of vertices of
H with exactly one private neighbour be k ∈ {0, 1, 2, 3, 4}. The largest subgraph of K4,4 containing k vertices
v1, . . . , vk ∈ V1, each with one private neighbour, is obtained by joining vi to a private neighbour ui ∈ V2 for each
i = 1, . . . , k and by joining each vertex in V1 − {v1, . . . , vk} to all vertices in V2 − {u1, . . . , uk}. Because this
subgraph of K4,4 has size k + 4(4 − k) = 16 − 3k and H has size 10, it follows that k ≤ 2. Furthermore, if H
has exactly two vertices, each with exactly one private neighbour, then H is necessarily isomorphic to the graph in
Figure 8(b). In this case H again has a secure dominating set of cardinality 4, as indicated by the solid vertices in the
figure, showing that γs(H) = 4 by (3).

We may therefore assume that exactly one vertex of H , w (say), has at most one private neighbour and that the
remaining vertices of H have no private neighbours. Furthermore, since it requires at least 4 + 3 = 7 edge removals
from K4,4 to isolate two vertices of the graph, H has at most one isolated vertex. Hence we have four final cases to
consider:

http://www.boost.org/libs/graph/
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Case i: H has one isolated vertex, x (say), and w has one private neighbour w′. In this case x and w′ cannot be
in the same partite set, because the largest subgraph satisfying these conditions has size 9, as shown in Figure 9(a).
There is, however, only one subgraph of size 10 of K4,4 in which x and w′ are in different partite sets, as shown in
Figure 9(b). In this case H yet again has a secure dominating set of cardinality 4, as indicated by the solid vertices in
the figure, showing that γs(H) = 4 in view of (3).

x

V2

V1
w′

w

x

V2

V1
w

w′

(a) (b)

Fig. 9: The graph H with one isolated vertex x, and one vertex w which has one private neighbour w′, where (a) x
and w′ are in the same partite set, and (b) x and w′ are in different partite sets.

Case ii: H has one isolated vertex, (x say), but no vertex with a private neighbour. Suppose x ∈ V1 and let v1, v2
and v3 be the other vertices in V1. Since deg(v1) + deg(v2) + deg(v3) = 10, it follows by the pigeonhole principle
that at least one vertex in V1 has degree 4; suppose this vertex is v1. Then, since deg(v2) + deg(v3) = 6, it follows
by the pigeonhole principle that at least one of v2 or v3 has degree at least 3; suppose this vertex is v2 and let the
common neighbours of v1 and v2 be w1, w2 and w3. Then the remaining vertex w4 in V2 is adjacent to either v2
or v3, for otherwise it would be a private neighbour of v1. If w4 is adjacent to v2, then H contains the subgraph in
Figure 10(a), in which case v3 is adjacent to exactly two vertices in V2, wi and wj (say). But then H has the secure
dominating set {x, v1, wi, wj} of cardinality 4. If, however, w4 is adjacent to v3, then H contains the subgraph in
Figure 10(b) which also has a secure dominating set of cardinality 4, as indicated by the solid vertices in the figure.
In both cases, therefore, γs(H) = 4 by (3).

x

V2

V1
v1

w1

v2 v3

w4w3w2

x

V2

V1
v1

w1

v2 v3

w4w3w2

(a) (b)

Fig. 10: Subgraphs of H with an isolated vertex, (x say), but where no vertex has a private neighbour and where (a)
v3 is adjacent to wi and wj , and (b) v3 is adjacent to w4.

Case iii: H has no isolated vertices, and w has one private neighbour w′. Suppose w ∈ V1 and let v1, v2 and
v3 be the other vertices in V1. Since deg(w) + deg(v1) + deg(v2) + deg(v3) = 10, it follows by the pigeonhole
principle that at least two vertices in V1 have degree at least 3. If w has degree at least 3, let v1 be another vertex in
V1 with degree at least 3. Then H contains the subgraph in Figure 11(a), in which case some vertex u ∈ V2, which
is adjacent to v1, must be adjacent to at least one other vertex in V1, v3 (say). But then H has the secure dominating
set {w, v1, v2, v3} of cardinality 4. If, however, w has degree 2, then two other vertices in V1, v1 and v2 (say), have
degree at least 3. Then H contains the subgraph in Figure 11(b) which also has a secure dominating set of cardinality
4, as indicated by the solid vertices in the figure. In both cases, therefore, γs(H) = 4 by (3).

Case iv: H has no isolated vertices and no vertices with private neighbours. Let v1, v2, v3 and v4 be the vertices
in V1. Since δ(H) ≥ 2, it follows by the pigeonhole principle that at least two vertices in V1, v1 and v2 (say), have
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w

V2

V1
v1

w′

v2 v3

u

w

V2

V1
v1

w′

v2 v3

w3w1 w2

(a) (b)

Fig. 11: The graph H with no isolated vertices, where w has one private neighbour w′ and where (a) w has degree at
least 3, and (b) w does not have degree at least 3.

degree 2. Furthermore, without loss of generality, either v3 has degree 2 and v4 has degree 4, or else both v3 and v4
have degree 3. If v3 has degree 2 and v4 has degree 4, then H contains the subgraph in Figure 12(a), in which case
H has the secure dominating set {v1, v2, v3, v4}, because N(v1) ∪ N(v2) ∪ N(v3) = V2 in order to avoid private
neighbours in H . In this case, therefore, γs(H) = 4 by (3).

Finally, if both v3 and v4 have degree 3, then N(v3) = N(v4) or N(v3) 6= N(v4). If N(v3) = N(v4), then there
is a vertex u ∈ V2 that is adjacent to neither v3 nor v4, in order to avoid private neighbours in H . Since δ(H) ≥ 2, u
is adjacent to v1 and v2, as shown in Figure 12(b), in which case H has the secure dominating set {v1, v2, v3, v4} of
cardinality 4, showing that γs(H) = 4 by (3). If, however, N(v3) 6= N(v4), then some vertex u ∈ V2 is adjacent to
v3 but not to v4. Since δ(H) ≥ 2, u is adjacent to at least one other vertex in V1. Assume, without loss of generality,
that u is adjacent to v1. Then H contains the subgraph in Figure 12(c), in which case H has the secure dominating
set {v1, v2, v3, v4} of cardinality 4, showing that γs(H) = 4 by (3).

V2

V1
v1 v2 v3 v4

V2

V1
v1 v2 v3 v4

u
V2

V1
v1 v2 v3 v4

u

(a) (b) (c)

Fig. 12: The graph H with no isolated vertices and no vertices with private neighbours, where (a) deg(v3) = 2
and deg(v4) = 4, (b) deg(v3) = deg(v4) = 3 and N(v3) = N(v4), and (c) deg(v3) = deg(v4) = 3 and
N(v3) 6= N(v4).

From the above cases we conclude that γs(H) = 4 and hence that K4,4 is p-stable for some p ≥ 6. The subgraph
2K1 ∪ K3,3 of size 16 − 7 = 9 of K4,4, however, has secure domination number 2 + 3 = 5 [9, Proposition 10],
showing that K4,4 is not p-stable for any p ≥ 7. 2

Appendix B: Proof of Proposition 9
Suppose V1, V2 and V3 are the partite sets ofK3,3,3 and let H be a subgraph ofK3,3,3 that is isomorphic to a member
of K3,3,3 − 7e. Since H ⊆ K3,3,3 and γs(K3,3,3) = 3 by Proposition [9, Proposition 11],

γs(H) ≥ 3. (4)

It is shown, by considering a number of cases, that, in fact, γs(H) = 3.
Let V1 = {u1, u2, u3}, V2 = {v1, v2, v3} and V3 = {w1, w2, w3}. It follows from the pigeonhole principle that

at least four vertices in H have degree at least 5. Furthermore, two vertices of the same partite set of H , u1, u2 ∈ V1

(say), have degree at least 5. Two cases are considered.
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u2 u3u1

V3

V2

V1

v3

v2

v1

w2

w1

w3

u2 u3u1

V3

V2

V1

v3

v2

v1

w2

w1

w3

(a) (b)

Fig. 13: Subgraphs of H with ∆(H) = 6, where (a) deg(u1) = deg(u2) = 6, with both u1 and u2 defending
V1 ∪ V2, and (b) deg(u2) = 6 and deg(u1) = 5, with u2 defending v1, and u1 defending (V2 − {v1}) ∪ V3. A
minimum secure dominating set is indicated by the solid vertices in each case.

Case i: ∆(H) = 6. If both u1 and u2 have degree 6, then H contains the subgraph in Figure 13(a), in which case
the partite set V1 is a secure dominating set of H (of cardinality 3). Suppose then that only one vertex, u2 (say), has
degree 6, while u1 has degree 5. Then H contains the subgraph in Figure 13(b), in which case the partite set V1 is yet
again a secure dominating set of H (of cardinality 3). In both cases, therefore, γs(H) = 3 by (4).

Case ii: ∆(H) ≤ 5. In this case at least two vertices, u1 and u2 (say), of V1 have degree 5. It follows by the
pigeonhole principle that δ(H) ≥ 1. However, if δ(H) = 1, thenH is isomorphic to either the graph in Figure 14(a),
the graph in Figure 14(b) or the graph in Figure 14(c). In all of these cases γs(H) = 3. Assume, therefore, that
δ(H) ≥ 2. There are two subcases to consider:

Case ii(a): N(u1) = N(u2). In this case exactly one vertex, v1 (say), in V2 ∪ V3 is adjacent to neither u1 nor u2.
If v1 and u3 are adjacent, then H contains the subgraph in Figure 15(a), in which case V1 is a secure dominating set
of H . Suppose, therefore, that v1 and u3 are not adjacent. Since v1 is not adjacent to any vertex in V1 ∪ V2 and u3 is
not adjacent to any vertex in V1∪{v1}, and since deg(v1)+deg(u3) ≥ 7, it follows that u3 and v1 share at least two
common neighbours, w1 and w2 (say), in V3, as shown in Figure 15(b). Furthermore, since deg(v1) + deg(u3) ≤ 8,
there are at least eight edges between the vertices in V2 and V3. Hence, v2 and v3 are both adjacent to at least one of

u2 u3u1

V3

V2

V1

v3

v2

v1

w2

w1

w3

u2 u3u1

V3

V2

V1

v3

v2

v1

w2

w1

w3

u2 u3u1

V3

V2

V1

v3

v2

v1

w2

w1

w3

(a) (b) (c)

Fig. 14: The graph H with ∆(H) = 5 and δ(H) = 1, with (a) deg(v1) = 4, where u3 defends v1 and u1 defends
V1 ∪ (V2 − {v1}), (b) deg(v1) = 5 and deg(v2) = 4, where u1 defends v3 and u1 defends V1 ∪ (V2 − {v1}), and
(c) deg(v1) = 5 and deg(w1) = 4, where u3 defends v1 and u1 defends V1 ∪ (V2 − {v1}). A minimum secure
dominating set is indicated by the solid vertices in each case.
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u2 u3u1

V3

V2

V1

v3

v2

v1

w2

w1

w3

u2 u3u1

V3

V2

V1

v3

v2

v1

w2

w1

w3

(a) (b)

Fig. 15: Subgraphs of H with ∆(H) = 5 and δ(H) = 2, where u1 and u2 have identical neighbourhoods and where
(a) u3 and v1 are neighbours, with u3 defending v1, and both u1 and u2 defending the vertices in (V2 − {v1}) ∪ V3,
and (b) u3 and v1 are not neighbours, with u1 defending w3, and w1 and w2 both defending {u2, u3, v1, v2, v3}. A
minimum secure dominating set is indicated by the solid vertices in each case.

w1 or w2. In this case, {u1, w1, w2} is a secure dominating set of H . In this subcase, therefore, γs(H) = 3 by (4).

Case ii(b): N(u1) 6= N(u2). In this case u1 is adjacent to a vertex, x (say), in V2 ∪V3 to which u2 is not adjacent
and, similarly, u2 is adjacent to a vertex, y (say), in V2 ∪ V3 to which u1 is not adjacent.

Suppose first that x and y are in the same partite set. It may be assumed, without loss of generality, that x = v1
and y = v2. Since δ(H) ≥ 2, u3 is adjacent to at least two vertices in V2 ∪ V3. If u3 is adjacent to either v1 or
v2, then V1 is a secure dominating set of H , as shown in Figure 16(a). If u3 is adjacent to neither v1 nor v2, but u3

shares a neighbour, w1 (say), with either v1 or v2, then {u1, u2, w1} is a secure dominating set of H , as shown in
Figure 16(b). Finally, if u3 is adjacent to neither v1 nor v2, and u3 shares no common neighbours with v1 and v2,
then u3, v1 and v2 are all adjacent to distinct vertices in V3 and u3 is also adjacent to w3. It may be assumed, without
loss of generality, that v1 is adjacent to w2 and that v2 is adjacent to w1. Then V1 is a secure dominating set of H , as

u2 u3u1
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u2 u3u1
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Fig. 16: Subgraphs of H with ∆(H) = 5 and δ(H) = 2, where u1 and u2 do not have identical neighbourhoods
and where (a) u3 is adjacent to v1, with u3 defending v1 and u2 defending (V2 − {v1}) ∪ V3, (b) u3 is not adjacent
to v1 or v2, but shares w1 as common neighbour with them, in which case w1 defends u3, while u2 defends (V2 −
{v2, w1}) ∪ V3 and u2 defends v2, and (c) u3 is adjacent to neither v1 nor v2 and shares no common neighbour with
v1 or v2, in which case u3 defends {v3, w3}, u2 defends {v1, w2} and u1 defends {v2, w1}. A minimum secure
dominating set is indicated by the solid vertices in each case.
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Fig. 17: Subgraphs of H with ∆(H) = 5 and δ(H) = 2, where u1 and u2 do not have identical neighbourhoods and
where (a) u3 is adjacent to v1, in which case u3 defends v1 and u2 defends (V2 − {v1, v2}) ∪ V3, while u1 defends
v2, and (b) u3 is adjacent to neither v1 nor w1, but u3 shares a neighbour v3 with w1, in which case v3 defends u3, u2

defends v1 and u1 defends (V2−{v1, v3})∪V3. A minimum secure dominating set is indicated by the solid vertices
in each case.

shown in Figure 16(c). In all of these cases, therefore, γs(H) = 3 by (4).
Suppose x ∈ V2 and y ∈ V3. It may be assumed, without loss of generality, that x = v1 and y = w1. If u3 is

adjacent to either v1 or w1, or to both v1 and w1, then V1 is a secure dominating set of H , as shown in Figure 17(a).
Suppose, therefore, that u3 is adjacent to neither v1 nor w1, but that u3 shares a neighbour, z (say), with either v1 or
w1. It may be assumed, without loss of generality, that z = v3, in which case {u1, u2, v3} is a secure dominating set
of H , as shown in Figure 17(b). If u3 is adjacent to neither v1 nor w1, and u3 shares no common neighbours with v1
and w1, but v1 and w1 are adjacent, then deg(v1)+deg(w1) ≤ 6, in which case ∆(H) = 6, a contradiction. Finally,
suppose that u3 is adjacent to neither v1 nor w1, u3 shares no common neighbours with v1 and w1, and that v1 and
w1 are not adjacent. It may be assumed, without loss of generality, that v1 is adjacent to w2 and that w1 is adjacent
to w2. Then deg(v1) + deg(w1) = 4, in which case ∆(H) = 6, again a contradiction. In both of the cases that did
not lead to contradictions, however, γs(H) = 3 by (4).

From all of the above cases it is concluded that γs(H) = 3 and hence that K3,3,3 is p-stable for some p ≥ 7.
Finally, the subgraph of K3,3,3 in Figure 18 has size 27 − 8 = 19 and secure domination number 4, showing that
K3,3,3 is not stable for any p ≥ 8. 2

V3

V2

V1

Fig. 18: A graphH ⊆ K3,3,3−8e for which γs(H) = 4. A minimum secure dominating set is indicated by the solid
vertices in each case.
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