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We investigate a family of algorithms minimizing energetic effort in random networks computing aggregative func-
tions. In contrast to previously considered models, our results minimize maximal energetic effort over all stations
instead of the average usage of energy. Such approach seems to be much more suitable for some kinds of networks, in
particular ad hoc radio networks, wherein we need all stations functioning and replacing batteries after the deployment
is not feasible. We analyze also the latency of proposed energy-optimal algorithms.

We model a network by placing randomly and independently n points in a d-dimensional cube of side-length n1/d.
We place an edge between vertices that interact with each other. We analyze properties of the resulting graphs in
order to obtain estimates on energetic effort and latency of proposed algorithms.
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1 Introduction
In this paper we consider the problem of computing a function of distributed data in a specific node of the
network. More precisely, each node of the network has some value and a function of a collected raw data
is required at some specific node called root (Note that the investigated problem can be in some sense
”inverted” - we can think of dissemination of information with the single origin at the root).

The system we have in mind is a large network of sensing nodes communicating by a radio channel.
Typically such system is deployed in order to work for a very long time and one of its aims is to detect
some dangers like fire or flood. All nodes are battery-supplied and their batteries cannot be easily replaced.
In such a scenario some data (e.g. the average temperature over all nodes) has to be possibly quickly
delivered to some specific point. One of the problems is that the cost of transmitting a message is a
superlinear function of the range of transmission. Thus, from the energy-saving point of view, it is better
to transmit a message over a longer distance via a sequence of intermediate nodes. This, however, leads
to lengthening the time of message delivery.

Another problem in the considered model is caused by peculiarities of radio communication - each
station can successfully receive at most one message at the same time. That is, if two or more nodes
∗Partially supported by National Science Center - Poland decision number DEC- 2013/09/B/ST6/02258
†Emails: {Marek.Klonowski, Malgorzata.Sulkowska}@pwr.edu.pl

1365–8050 c© 2016 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France

http://www.dmtcs.org/dmtcs-ojs/index.php/volumes/
http://www.dmtcs.org/dmtcs-ojs/index.php/volumes/dm17:3ind.html


286 Marek Klonowski, Małgorzata Sulkowska

in the range of a particular potential receiver transmit, then none of the messages can be assumed to be
correctly received. Such situation is called collision. For that reason some naive solutions like ”flooding”
are completely inadequate. Thus we have to deal with an optimization problem where some energy
usage/time of computation are solicited under strict constraints that are present in the model.

In our paper we assume that nodes are placed randomly in the region and can control the range of
their transmission, however, the energetic effort of each transmission is superlinear with its range. Thus
the investigated problem and obtained results may be seen as a counterpart of the paper Balister et al’s.
[2] for a modified model. The first fundamental difference is that we assume that a transmitted message
is received by all stations in the range of transmission (provided that only one station in the range of
the receiver transmits). That is, the transmission affects all stations in some ”ball” with the transmitting
station at its center. Such asumption is realistic in significant number of real-life scenarios, whenever
omnidirectional antennas are used. One can note that to by-pass such problem the so-called orthogonal
codes can be used. We argue, however, that this is quite difficult in the systems of a very constrained
devices, especially in dense networks whenever we need to handle frequent, multiple collisions.

The second fundamental difference when compared to [2] is that as the metric of energetic complexity
we use the maximal energetic effort over all stations instead of the total (or average) energetic effort.
Such approach seems to be more adequate in the case of long-lasting battery-supplied nodes, since for
proper functioning of the system we often need all stations working. Such energy metric is commonly
used for example in [15, 12] . We do not claim that our model is better or more realistic in general.
Nevertheless, it seems to be more adequate for some real systems.

Despite similarities to [2], our approach leads to completely different construction of protocols. More-
over, in many cases analysis of new algorithms is substantially different. Even though we use very often
similar mathematical tools, to the best of our knowledge, the results from [2] cannot be transferred to our
model in any obvious manner.

Similarly to most of previous papers (including [2]) we restrict our attention to some class of functions
(that are to be computed at the root) called aggregative functions ([22]). Roughly speaking, they should
be associative, commutative and the length of the result should be comparable to maximal length of all
inputs (e.g. the sum, the maximum). Nevertheless, the class of functions that fits to our framework is even
richer.

The primary motivation for our research are sensor networks (with particular focus on ad hoc systems).
Nevertheless, we believe that it can be applied for other distributed systems composed of devices with
constrained energy resources.

1.1 Previous and Related Work
Our paper can be seen as a counterpart of [2] wherein authors also investigate an energy/latency trade-off
for network built on top of a random graph. The difference comparing to [2] is a substantially different
definition of energy-efficiency and a modified communication model that takes into account collisions of
transmissions.

There is a well–developed body of research on other data processing in sensor networks. In [6] Giridhar
and Kumar presented a general framework for in-network computation of some classes of functions and
analyzed scaling property of capacity as the network size grows. There are also a few papers considering
trade-offs between energy and latency - [17, 31, 28, 19] and significant number of papers focused on
aggregative functions in sensor networks. An extensive survey can be found in [23] and a few latest
results are given in [14].
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Our result is also similar to [4] wherein authors investigate MST-building problem in similar network of
randomly placed stations. They present a lower bound Ω(log(n)) for energy and an optimal algorithm (in
expectation). We should also mention [30], wherein energy scaling laws in randomly placed networks for
routing are considered. Another recent paper considering latency/energy trade off is [16] wherein authors
consider SINR communication model and assume that stations can be arbitrarily placed.

Despite all papers mentioned above are more or less similar to ours, to the best of our knowledge
the results presented here cannot be transfered to previous work in any straightforward manner. The
main reason are different metrics (e.g. a sum of energies of all stations is taken into account in energy-
efficiency definition of other papers) and different communication model. This leads to substantially
different analysis. References to some other works loosely connected to our results can be found in [2].

In our paper we use some technical tools regarding random structures described in [27, 3, 24, 25]. We
extensively use properties of k −NNG (k-Nearest Neighbor Graphs), the graphs constructed by joining
each station to its k nearest neighbors (see [3]).

Let us also remind that we use the maximal expenditure of energy over all stations as a general metrics
of energetic efficiency of the given algorithm. Such approach is not new and has been used in many
previous papers (e.g. [15, 13, 12]).

1.2 Results and Organization of the Paper
The paper is organized as follows. In Section 2, we introduce basic definitions, notation and a formal
model of the network. In Section 3, we discuss the connectivity of the so-called k-Nearest-Neighbor-
Graph in our model and explain its relation to algorithms that minimize energetic effort. Then we define
the family of algorithms that compute aggregative function at the root transmitting data along the edges
of a k-Nearest-Neighbor-Graph for carefully chosen k. We also show that their energy consumption is of
the order Θ(logν/d(n)), where n is the number of stations placed in a d-dimensional cube of volume n,
and ν is the so-called path loss exponent. We show also that energy Ω(logν/d(n)) is necessary, thus the
presented algorithms are energy-optimal.

In Section 4 we present a lower bound for latency of energy-optimal algorithms Ω

((
n

log(n)

)1/d
)

.

Then we present an asymptotically energy-optimal algorithm and investigate its latency. We show that
its latency is optimal up to a polylogarithmic factor. Some of our numerical experiments confirming
theoretical results are presented in Section 5. In Section 6, we briefly summarize our results and state a
few open questions.

2 Model
2.1 Communication and Propagation Model
We consider the problem of computing a function (which depends on the measurements of all the nodes)
at the root of a wireless network. All the nodes are treated as random points in Euclidean space. The
algorithm is executed in rounds and stations are synchronized as they have access to a global clock. In
a single round every single station can either transmit or listen. If the transmission range of the node
is r, then the signal reaches all nodes at the distance at most r. In a single round a station successfully
receives a message if it is in a listening mode and if it is covered by the transmission range of exactly
one transmitting station. Station cannot transmit and receive any message in the same round. Note that
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the aforementioned assumptions seem to be adequate for example for some ad hoc radio networks with
omnidirectional antennas.

2.2 Network Model
Significant part of the model as well as the notation is exactly like in [2]. More precisely, let d be a
natural, positive number. Let Qn = [0, n1/d]d ⊂ Rd be a d-dimensional hypercube of volume n. (Despite
throughout this paper we concentrate on the realistic cases d = 2 and d = 3, some calculations are
conducted in general for d ≥ 1.) We have n stations placed randomly and independently in Qn. Let
Vn = {V1, . . . , Vn} be the set of their locations (with station i located at Vi ∈ Rd). Let also Yn =
{Y1, . . . , Yn} be the set of their local values (station i keeps Yi ∈ Y , where Y is some set). In practice
such value can be a measurement of a sensing device.

The root node, where finally our function of measurements has to be computed, will be denoted by r
(located at Vr ∈ Vn). The desirable function of values will be denoted by Ψ = Ψ(Yn).

2.3 Metrics
In the analysis of protocols we consider two metrics: latency and energy. While constructing a protocol
one usually aims at minimizing one of them or finding some reasonable trade-off. Let π be the policy
(algorithm) that we consider.

Energy of transmission between i-th and j-th sensor is defined by Rνe where e = {Vi, Vj}, Re =
‖Vi − Vj‖ is the Euclidean distance between Vi and Vj and ν is a path loss exponent - usually one
assumes that for sensor networks ν ∈ [2, 6] or just ν = 2 (e.g. [8]). However, we allow any ν ≥ 1.

We assume that the energetic cost of transmitting a message does not depend on its size. Such assump-
tion is realistic for computing aggregative functions. ([22])

Energetic effort of a single station is the sum of energies spent on all its transmissions during the
execution of the protocol.

Latency is the number of rounds necessary to complete the algorithm (i.e., the minimal number of
rounds after which Ψ is computable at the root). Formally we can define latency of π by

Lπ = inf{t : Ψ(Yn) is computable at r at time t}.

Here we consider a single shot function computation. Consequently, the scheme of communication is a
fixed one.

We define energy by the maximal energetic effort over all stations. Let Gπn (a communication graph
of π) denote the set of links used for inter-node communication by the policy π. Then the energy of π is
given by

Eπ = max
e∈Gπn

{Rνe · fe},

where fe is the number of transmissions that take place along the edge e during the protocol. As we
already mentioned in Introduction, our metrics of energy usage is different from the one presented in [2].
Indeed, in [2] the total energy consumption of all nodes is considered. Note that in the latter case one
does not care about the energetic effort of a single station (which is in practice bounded by the power of
its battery). Therefore we find our approach (considering maximal energy usage over all stations) much
more suitable for some kinds of networks (in particular, radio networks, wherein we need all stations
functioning and replacing batteries after the deployment is not feasible).
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2.4 Function Computation Model
The aim of the protocol is to compute a function Ψ at the root, provided that it requires inputs kept by all
the nodes in the network. Note that if no other assumptions are made on Ψ, then all the nodes need to
deliver their measurements to the root without any in-network computation. Since typically the functions
required in various network applications are of a specific kind (e.g. sum, minimum, maximium, etc.)
we restrict our problem to the class of aggregative functions. As we already said in Introduction, an
aggregative function is associative, comutative and the length of its result is comparable to the maximal
length of any input. Without loss of generality we may assume that Ψ is of a form

Ψ(Yn) =

n∑
i=1

ψi(Yi).

Clearly, with such assumptions in every algorithm it is enough that each node transmits exactly once.

2.5 Energy-optimal algorithm
Our aim is to find and analyze an energy-optimal algorithm ensuring that an aggregative function Ψ of
measurements is computable at the root r when the algorithm terminates. Let F(Ψ) be the set of valid
aggregation policies, i.e.,

F(Ψ) = {π : Ψ(Yn) is computable at r}.
The energy-optimal algorithm π∗ will be the one that minimizes E[Eπ] over the set of valid policiesF(Ψ),
i.e.,

Eπ
∗

= min
π∈F(Ψ)

E[Eπ],

where the expectation is over the locations Vn of n nodes placed randomly and independently in Qn.

3 Optimal Algorithm Minimizing Energy Consumption
In this section we analyze the energy usage of an energy-optimal algorithm. Its latency is discussed in
the next section. Our aim is to find a policy that minimizes the expectation of the energy understood as
described in Section 2. Therefore we are going to analyze the algorithms in which each node transmits
exactly once (thus for each edge ewe have fe = 1 in formulas above). More precisely, we need to indicate
a policy π with a graph of communication Gπn that minimizes

E[max
e∈Gπn

Re
ν ]

over the set of valid policies F(Ψ). This value will be called energetic complexity.
Note that if each node transmits exactly once during the protocol we do not need to know the π itself

to derive the above value. It is enough to know its communication graph Gπn. Throughout the rest of this
section we are going to restrict our considerations to the family of k-Nearest-Neighbor-Graphs (k-NNG).
We construct such a graph by joining each station to its k nearest neighbors. (For the definition and basic
properties see e.g. [3].) Below we briefly explain that we do not lose generality considering only this
family.

Of course,Gπn needs to be connected if we want to complete the algorithm successfully. It turns out that
the threshold for connectivity of k-NNG for d = 2, 3 (in terms of k) is of the order Θ(log n). The proof
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that ξn-NNG for ξn = d(1 + δ)9(
√

log(n) +O(1))2e, where
√

3/3 ≤ δ ≤ 1, is in the second dimension
connected w.h.p. may be found later as a part of the proof of Lemma 5 (analogous calculations may be
conducted for d = 3). In this Section we prove that the expected length of the longest edge in ξn-NNG
is of the order Θ(log1/d(n)). By Lemma 6 from Appendix B we get that it is optimal result for d = 2, 3
among the graphs on n vertices which are connected w.h.p. Therefore w.l.o.g. we may consider only the
family of k-NNG with k = dC log ne where C is chosen such that it guarantees connectivity w.h.p.

3.1 Minimizing energetic complexity
Let ξn = dC log ne, where C is a constant chosen such that ξn-NNG is connected w.h.p. W.l.o.g. let
us assume that C ≥ 1. Having a connected communication graph we can always construct a naive, yet
energy-efficient protocol for computing Ψ at the root. That is, we can subsequently send values to the
root using any spanner. Now, we are going to analyze the energetic complexity of the algorithms whose
communication graph is ξn-NNG and in which each node transmits exactly once.

Theorem 1 Let Kn be a ξn-NNG. For d = 2, 3 and ν ≥ 1 we have

E[max
e∈Kn

Re
ν ] = Ω(logν/d(n)).

Proof: Let us fix w ∈ Rd. Let x1, x2, . . . , xn−1 be chosen randomly and independently from Qn and
ordered such that ‖w − x1‖ν ≤ ‖w − x2‖ν ≤ . . . ≤ ‖w − xn−1‖ν . Clearly,

E[max
e∈Kn

Re
ν ] = E[‖w − xξn‖ν ] . (1)

By diamQ we denote the diameter of Qn. Integrating by parts we obtain

E[‖w − xξn‖ν ] =

∫ diamQ

0

rν
(
− d

dr
P[‖w − xξn‖ ≥ r]

)
dr

=

∫ diamQ

0

νrν−1P[‖w − xξn‖ ≥ r]dr − [rνP[‖w − xξn‖ ≥ r]]
diamQ
0

=

∫ diamQ

0

νrν−1P[‖w − xξn‖ ≥ r]dr − 0 + 0.

Let Br be the ball of radius r centered at the root. Let Vr = Br ∩Qn and |Vr| be its volume. Obviously,
|Vr| ≤ crd for some positive constant c since it is at most the volume of a d-dimensional sphere of radius
r. Let also Xr be the number of sensors in Vr. Clearly, Xr has a binomial distribution with parameters n
and |Vr|/n. In particular E[Xr] = |Vr|.

Note that
P[‖w − xξn‖ ≥ r] = P[Xr ≤ dC log ne] .

Substituting this formula into above equation we get

E[‖w − xξn‖ν ] =

∫ diamQ

0

νrν−1P[Xr ≤ dC log ne]dr .

Let ε be such that 5
6c < ε < 1

c and yn = (1/c− ε)1/d(log n)1/d. Recall that C ≥ 1. We have
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∫ diamQ

0

νrν−1P[Xr ≤ dC log ne]dr ≥
∫ yn

0

νrν−1P[Xr < log n]dr =

=

∫ yn

0

νrν−1dr −
∫ yn

0

νrν−1P[Xr ≥ log n]dr. (2)

One can calculate in a straightforward manner∫ yn

0

νrν−1dr = (1/c− ε)ν/d(log n)ν/d = Θ(logν/d(n)) .

Clearly, to complete the proof of Theorem 1 it is sufficient to show that the second integral of (2) tends to
0 with n tending to infinity. One can easily check that for EXr = |Vr| ≤ crd and the assumed ε > 5

6c
we have log n ≥ 6 · EXr whenever r ≤ yn . Thus, using one of Chernoff’s inequalities (see Fact 2 in
Appendix A) we get P[Xr ≥ log n] ≤ 2− logn for all r ∈ [0,yn]. Therefore we obtain

∫ yn

0

νrν−1P[Xr ≥ log n]dr ≤
∫ yn

0

νrν−12− logndr =

= 2− logn(1/c− ε)ν/d(log n)ν/d → 0.

Recalling equality (1) we finally obtain

E[max
e∈Kn

Re
ν ] = Ω(logν/d(n)).

2

Theorem 2 Let Kn be a ξn-NNG. For d = 2, 3 and ν ≥ 1 we have

E[max
e∈Kn

Re
ν ] = O(logν/d(n)).

Proof:
Recall that ξn = dC log ne. Let again Vr = Br ∩Qn, where Br is the ball of radius r centered at the

root and |Vr| the volume of Vr. Recall that |Vr| ≤ crd for some constant c. We also have |Vr| ≥ c̃rd for
some constant c̃ (see proof of Lemma 2 in [2]) (i). Let ε > Cc−c̃

c̃·c and yn = (1/c+ ε)1/d(log n)1/d. As in
the proof of Theorem 1 we have

E[‖w − xξn‖ν ] =

∫ diamQ

0

νrν−1P[‖w − xξn‖ ≥ r]dr

≤
∫ yn

0

νrν−1dr +

∫ diamQ

yn

νrν−1P[Xr ≤ dC log ne]dr. (3)

(i) For d = 2 : c = π, c̃ = 1/2. For d = 3 : c = 4π/3, c̃ = 1/(3
√
3)



292 Marek Klonowski, Małgorzata Sulkowska

Clearly, ∫ yn

0

νrν−1dr = [rν ]
yn
0 =

(
1

c
+ ε

)ν/d
(log(n))ν/d = Θ((log(n))ν/d) .

Let us now investigate the second integral of (3). We have

∫ diamQ

yn

νrν−1P[Xr ≤ dC log ne]dr

=

∫ diamQ

yn

νrν−1P
[
Xr ≤

(
1− |Vr| − dC log ne

|Vr|

)
|Vr|

]
dr

≤
∫ diamQ

yn

νrν−1 exp

(
−1

2

(
|Vr| − dC log ne

|Vr|

)2

|Vr|

)
dr

=

∫ diamQ

yn

νrν−1 exp

(
− (|Vr| − dC log ne)2

2|Vr|

)
dr

≤
∫ diamQ

yn

νrν−1 exp

(
−
(
c̃rd − dC log ne

)2
2crd

)
dr = (?).

The first inequality follows from the Chernoff bound (see Fact 3 in Appendix A) by substituting δ =

δ(n, r) = |Vr|−dC logne
|Vr| and E[Xr] = |Vr|. For correctness of aforementioned reformulations we need to

prove that 0 ≤ δ ≤ 1. Clearly,

δ =
|Vr| − dC log ne

|Vr|
= 1− dC log ne

|Vr|
> 1− dC log ne

c̃rd
.

Since we consider only r > yn

δ > 1− dC log ne
c̃(1/c+ ε) log n

.

Since we assumed ε > Cc−c̃
c·c̃ we get δ > 0. On the other hand

δ = 1− dC log ne
|Vr|

< 1 .

To complete the proof of Theorem 2 it is enough to show that the integral (?) is of the orderO((log(n))ν/d) .
Substituting x2 = rd we get

(?) =

∫ ∞
0

νrν−1 exp

(
−
(
c̃rd − log n

)2
2crd

)
dr =

2ν

d

∫ ∞
0

xA exp

(
−
(
Bx− C

x

)2
)

dx

for A = 2ν
d − 1, B = c̃√

2c
and C = dC logne√

2c
. By Fact 7 (see Appendix B) we have∫ ∞

0

xA exp

(
−
(
Bx− C

x

)2
)

dx =

(
C

B

)A+1
2

exp (2 ·B · C)KA+1
2

(2 ·B · C), (4)
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where Kα(z) is the Bessel function of the 2nd kind (described e.g. in [26]). Moreover, from [1] or [26]
one can get that for all α > 0

Kα(z) =

√
π

2z
exp(−z)

(
1 +O

(
1

z

))
.

Applying this to (4) we finally get

(?) =

(
dC log ne

c̃

)ν/d
exp

(
c̃dC log ne

c

)√
πc

2c̃dC log ne
exp

(
− c̃dC log ne

c

)
·
(

1 +O

(
1

dC log ne

))
=

(
dC log ne

c̃

)ν/d√
πc

2c̃dC log ne

(
1 +O

(
1

dC log ne

))
= o

(
(log n)ν/d

)
.

2

From Theorems 1 and 2 we instantly get the following corollary:

Corollary 1 Any algorithm from F(Ψ) in which each node transmits at most constant number of times
and which has a communication graph Kn = ξn-NNG has asymptotically optimal energetic complexity
equal to

E[max
e∈Kn

Re
ν ] = Θ(logν/d(n)),

for d = 2, 3 and ν ≥ 1.

The set of algorithms from F(Ψ) in which each node transmits at most constant number of times and
which have a communication graph Kn = ξn-NNG will be denoted by GKn(Yn).

4 Latency of algorithms from GKn
(Yn)

In this section we analyze the expected latency of the energy-optimal algorithms from GKn(Yn). Recall
that latency is the number of rounds that we need to complete the algorithm, i.e., the minimal number of
rounds after which the function Ψ is computable at the root. First, we show a lower bound Ω(( n

logn )1/d)

for the latency for every algorithm from GKn(Yn). Then we present a simple protocol from GKn(Yn)
and prove that it is close to optimal and has latency O(log2 n( n

logn )1/d).

Let us divide the set of vertices of our communication graph ξn-NNG into disjoint layers. Let S0 be
the set containing only the root. The set Si+1 for i ≥ 0 is defined as the set of all nodes having neighbors
in Si and not being included in any of the previous layers. Moreover, let S be the number of the last
nonempty layer. Clearly, the i-th layer Si contains all sensors that are at edge distance equal to i from the
root (by the edge distance between two vertices we understand the number of edges of the shortest path
joining them). The root itself is a layer number 0, all neighbors of the root form the first layer, and so on.

Let L be the latency of the fastest algorithm from GKn(Yn). Note that L ≥ S, since we need at least S
rounds to pass the information from the last layer to the root.



294 Marek Klonowski, Małgorzata Sulkowska

4.1 Lower bound
Before we prove the lower bound let us state two lemmas.

Lemma 1 Let Kn be a ξn-NNG. For d = 2, 3 we have

E
[

1

maxe∈Kn Re

]
= Ω

(
1

(log1/d(n))

)
.

Proof: The proof comes directly from Corollary 1, Jensen’s inequality and the convexity of the function
1/x on (0,∞). 2

Lemma 2 W.h.p. at least half of stations are placed at the distance at least 1/5n1/d from the root.

Remark. In the above lemma any constant from the interval (0, 1/4) instead of 1/5 would work as well.
We chose 1/5 as the first convenient for further calculations constant smaller than 1/4.

Proof: See Appendix B. 2

Now, let us move on to the lower bound for the expectation of latency of any algorithm from GKn(Yn).

Theorem 3 For L being the random variable denoting latency of any algorithm from GKn(Yn) and for
d = 2, 3

E[L] = Ω

((
n

log n

)1/d
)
.

Proof: Recall that S is the random variable denoting the number of disjoint layers in ξn-NNG (Kn). Let
us recall that L ≥ S. Let us choose arbitrary vertex v from the last, S-th layer. Recall that r is the root.
By Lemma 2 we know that w.h.p. at least half of vertices lie at distance at least 1

5n
1/d from the root.

Therefore w.h.p.
1

5
n1/d ≤ ‖Vr − Vv‖.

Let us choose any path (r = v0, v1, v2, . . . , vS−1, vS = v) such that vi belongs to the ith layer for any
0 ≤ i ≤ S . Let Y =

∑S−1
i=0 ‖Vvi − Vvi+1

‖ be the length of our path. Clearly,

Y ≤ S · max
e∈Kn

Re.

On the other hand w.h.p.

Y ≥ ‖Vr − Vv‖ ≥
1

5
n1/d .

Thus we obtain

P
[
S ≥ 1

5
n1/d 1

maxeRe

]
→ 1.
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(Note that maxe∈Kn Re 6= 0 with probability 1.) Therefore

E[S] = E
[
S|S ≥ 1

5
n1/d 1

maxeRe

]
P
[
S ≥ 1

5
n1/d 1

maxeRe

]
+

E
[
S|S < 1

5
n1/d 1

maxeRe

]
P
[
S <

1

5
n1/d 1

maxeRe

]
≥

≥ E
[

1

5
n1/d 1

maxeRe

]
P
[
S ≥ 1

5
n1/d 1

maxeRe

]
+

+E
[
S|S < 1

5
n1/d 1

maxeRe

]
P
[
S <

1

5
n1/d 1

maxeRe

]
=

= Θ

(
E
[

1

5
n1/d 1

maxeRe

])
.

By Lemma 1 we have

E
[

1

5
n1/d 1

maxeRe

]
=

1

5
n1/d E

[
1

maxeRe

]
= Θ

((
n

log n

)1/d
)
.

Thus finally we get

E[L] ≥ E[S] = Ω

((
n

log n

)1/d
)
.

2

4.2 Upper bound
In the rest of this section we present an energy-optimal algorithm from GKn(Yn) and analyze its la-

tency. The following lemma will be helpful later on.

Lemma 3 Vn is the set of vertices of ξn-NNG. We have

E[max
v∈Vn

deg(v)] = Θ(log n).

Proof: By the definition of ξn-NNG we have deg(v) ≥ dC log ne for all v and this instantly follows
E[maxv∈Vn

deg(v)] = Ω(log n).
Now, let v be the vertex that maximizes the value deg(v) over the set of Vn. Let Γ(v) denote the neigh-
borhood of v. Let also R = maxw∈Γ(v) ‖Vw − Vv‖. By Theorem 2 there exists a constant a such that
R ≤ a(log n)1/d. Let VR = BR∩Qn, whereBR is the ball of radiusR centered at the vertex v. Let, as in
the proof of Theorem 1, XR be the number of stations in VR. Recall that XR has a binomial distribution
with parameters n and |VR|/n ( |VR| is the volume of VR and |VR| ≤ cRd for some constant c ). Note
that deg(v) ≤ XR thus

E[max
v∈Vn

deg(v)] ≤ E[XR] = |VR| ≤ cRd ≤ cad log n = O(log n).

2
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Algorithm description The idea of the algorithm is to schedule transmission of all stations layer by
layer in such a way that the aggregated messages are finally delivered to S0 (which contains only the
root). The problem is that the message cannot be transmitted by all stations in a single layer during the
same round since it leads to collisons and failed communication. For that reason we need to apply more
advanced scheduling avoiding collisons.

Let us label all vertices of Si by unique numbers from the set {1, 2, . . . , |Si|} in an arbitrary way. Let
vji be the j-th node in the Si. For each 1 ≤ i ≤ S we need to partition the set Si = S1

i ∪ . . . ∪ S
li
i . I.e.,

Sji for j = 1, . . . , li are pairwise disjoint and nonempty.
Let us recall that Γ(v) denotes the set of all neighbors of the vertex v and let Γ(V ) =

⋃
v∈V Γ(v).

Following algorithm is executed for each layer. We construct S1
i , . . . ,S

li
i applying sequentially following

algorithms for partition of the layer i.

Algorithm 1 Layer partition algorithm (for the i-th layer)
for j = 1 to |Si| do
Sji ← ∅

end for
for k = 1, . . . , |Si| do
j′ ← min{j : Γ(vki ) ∩ (Γ(Sji ) ∪ S

j
i ) = ∅}

Sj
′

i ← S
j′

i ∪ {vki }
end for
li ← minj{j : Sji 6= ∅}

The algorithm for transmitting is based on layer partitions defined by the Algorithm 1. It consists of S
phases executed consecutively from i = S to 1. In the i-th phase we expect that all the stations from layer
i will transmit their (possibly aggregated) message to their neighbors in the (i − 1)-st layer. Finally, all
messages are delivered to the root in the layer S0. Pseudocode for the j-th round (1 ≤ j ≤ li) is described
below (in Algorithm 2).

Algorithm 2 Algorithm for data transmission
for i = S to 1 do

for j = 1 to li do
All v ∈ Sji transmit
All v ∈ Γ(Sji ) ∩ Si−1 listen to the channel and aggregate received data

end for
end for

Analysis

Lemma 4 In Algorithms 1 and 2

1. each station transmits exactly once;

2. all the transmissions are correctly received;
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3. for each 1 ≤ i ≤ S the number of rounds in the i-th phase satisfies li = O(log2 n).

Proof: The first point follows instantly from the construction of the partition.
To obtain the second point it is enough to see that two nodes can transmit in the same round if and

only if they are both from Sji . However (by the construction of Sji ) nodes from Sji cannot have a common
neighbor.

The third point is the consequence of the following observation. A node v is assigned to some Sli if
and only if in each subset S1

i , S
2
i , . . . , S

l−1
i there is already at least one node from Γ(v) or from Γ(Γ(v)).

Since |Γ(v)| = O(log n) (see Lemma 3) we have Γ(Γ(v)) = O((log n)2) and therefore li = O(log2 n).
2

Let us investigate the upper bound for the number of layers S.

Lemma 5 For S being the random variable denoting the number of disjoint layers in ξn-NNG (Kn) and
for d = 2, 3 w.h.p.

S = O

((
n

log n

)1/d
)
.

Remark. The proof presented below covers more than just a statement of the above lemma. Namely, in
the same way one may prove that ξn-NNG for ξn = d(1+δ)9(

√
log(n)+O(1))2e, where

√
3/3 ≤ δ ≤ 1

is connected w.h.p. The proof follows partially the arguments from [3] for connectivity of k-NNG in the
Poisson model.

Proof: Here we present the proof for d = 2. For d = 3 the calculations are analogous.
Let us partition the square Qn into small squares Pi of area Θ(log n) such that the side-length of Pi

divides the side-length of Qn (1 ≤ i ≤ mn = Θ(n/ log n)). The probability that there are no stations in

a single Pi is of the order
(

1− logn
n

)n
. Thus the order of the probability that there is at least one station

in each Pi is at least

1−mn

(
1− log n

n

)n
n→∞−−−−→ 1.

Thus w.h.p. there is at least one station in each Pi.
Now, let X denote the number of stations in P , a square formed from 9 adjacent Pi’s. Clearly, EX =

9(log n − O(1)). Throughout this paper we work with ξn that ensures connectivity of ξn-NNG w.h.p.
Setting

ξn = d(1 + δ)9(
√

log(n) +O(1))2e,

where
√

3/3 ≤ δ ≤ 1 is a proper choice (which is substantiated below). Applying Chernoff bounds (see
Fact 4 in Appendix A) we obtain

P[X ≥ ξn] = O(exp(−3δ2 log n)) = O(1/n3δ2).

Thus the probability that in each such square (of area 9(log n − O(1))) there are less than ξn stations is
of the order at least

1−mn/n
3δ2 n→∞−−−−→ 1.
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Thus w.h.p. every station contained in Pi is joined to every other station in Pi and to every other station
from any of 8 squares adjacent to Pi (note that also each station from any “boundary” square is joined to
every other station from any of its adjacent “inner” square). This is enough to make ξn-NNG connected
w.h.p. and to prove that S is w.h.p. of the order at most O(

√
n/ log n). 2

Theorem 4 For L being the random variable denoting latency of the algorithm GKn(Yn) and for d =
2, 3

E[L] = O

(
log2 n

(
n

log n

)1/d
)
.

Proof: Clearly, L ≤ S · T , where T is the maximal (over indices i = S, . . . , 1) number of rounds
necessary to transmit signals from all stations from Si to their neighbors in Si−1. Clearly, from Lemma
4, T = Θ(log2(n)).

By Lemma 5 we know that w.h.p.

L = O

((
n

log n

)1/d
)
· T,

which together with T = Θ(log2(n)) implies

E[L] = O

(
log2 n

(
n

log n

)1/d
)
.

2

Remark This algorithm is also efficient in the model wherein the energetic complexity is measured by
the number of rounds during which the nodes listen to the channel. Indeed, each station listens during at
most Θ(log n) rounds. Detailed analysis is, however, beyond the scope of this paper.

Remark In our paper we concentrated on aggregative functions in the sense explained for example in
[22] (associative, commutative, with short representation for any number of arguments). However some
of our considerations can be applied for holistic functions ([7]) that cannot be computed in a distributed
manner (e.g., quantiles over values hold by individual nodes).

In principle applicability of our algorithm to computing such functions depends on several factors.
First, our analysis and algorithms do not change if the energy and time spent for communication do not
depend on the size of the message. Such assumption is justified in case of system wherein the messages
have to be long enough to be sent due to technical requirements.

In another natural scenario, when the energy is proportional to the length of the message it is easy to
see that the problem is harder, thus all our lower bounds hold also for the problem of computing holistic
functions. The situation is more complex when we try to investigate efficient protocols. One can note
that the complexity of the problem depends on the nature of the function to be computed. In the most
difficult case we need to have all arguments delivered to a single node wherein the final computations
are performed. Clearly in this case we can utilize our algorithm by sending all messages independently.
This can increase the energy by at most factor n. In some graphs latency can be of order Θ(n) as well.
However finding an average case for random placement of nodes seems to be nontrivial.
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(a) n = 50 nodes (b) n = 500 nodes (c) n = 5000 nodes

Fig. 1: Connectivity as function of parameters k network size n. In each figure the fraction of connected
graphs for different k’s is presented.

5 Experimental Results

We have performed a number of experiments to confirm our theoretical results. All obtained results are
consistent with our theoretical analysis. Moreover, in some cases the constants hidden in the asymptotic
notation are much better than expected even for very small sizes of the network (e.g., 50 nodes). Below
we present some chosen experimental results to depict the general tendency. We limited our discussion to
dimensions d = 2, 3 that seem to be most important for real life networks.

Connectivity

It has been proved that k = C log n is the theshold for connectivity of k-NNG graphs. Our experiments
show that already the small values of C are sufficient to have a connected graph w.h.p. (In fact k = lnn
was always sufficient.) In each of the experiments presented in figures 1a,1b,1c, we generated at least
10000 instances of graphs and checked their connectivity.

Energetic Complexity

We have also performed some experiments to investigate the energetic complexity. We have limited
our experimental research to the case ν = 1. In figure 2 we show frequency histograms of energetic
complexity for small and moderate network. Note that the results are close to expected (log n)1/2. A very
good concentration of the energy around its mean is worth to underlining.

Latency

We have also performed numerical experiments to check the latency of the algorithm. Some chosen results
are presented in Figure 3.

Again, all results correspond well to the formal analysis.
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(a) n = 100 nodes, k = 6 (b) n = 1000 nodes, k = 6

Fig. 2: Different maximal energy dependently on the size of the network.

6 Remarks and open questions
Throughout this paper we assumed that the root was placed randomly. This may not be true in some
real-life scenarios. However, let us note that one can easily see that the root in fact can be placed in any
fixed point without significant changes of the analysis and the result (we would need at most one extra
round for getting to the root node, since other nodes are densely placed over Qn w.h.p.).

The model presented in our paper assumes that the sent signal can be heard within a certain range,
moreover that the signal collision always causes the message loss. In some cases however SINR model
is more realistic. In SINR model the signal is successfully received by a receiver v if the ratio of signal
strength at v and the combined interference from other transmitters along with ambient noise exceeds v’s
antenna gain.

Clearly, our analysis cannot be simply applied to SINR model. It would need more elaborated discus-
sion about the realistic assumptions with respect to the strength of the signal and its relation to energy that
is spent. This is particularly important for establishing any non-trivial lower bounds. Some papers show
that the characteristics of SINR model may differ significantly from that obtained by using graph-based
models (e.g. for capacity, connectivity and minimizing the scheduling complexity characteristics of SINR,
see [19, 20]). Since in SINR model receiver may recover the signals from multiple simultaneous senders,
we should expect that it will lead to much reduced latency but increased energy effort (clearly, the best
algorithm for SINR model cannot be worse in any reasonable model). Another issue that prevents us from
using methods from this paper is the non-locality of SINR model. Nevertheless discussing SINR model
in the context of latency and maximal energetic effort seems to be very natural direction of research. We
would expect that the approach from the paper [16] (in which energy-latency trade-off in SINR model is
considered, but the metric of energetic complexity is taken to be the average energetic effort) can be a
promising starting point.

We have assumed also that we need to gather the values from all stations to compute the aggregative
function at the root. One may consider a relaxed version of this problem, when already δ · n (for some
0 < δ < 1) values collected at the root are sufficient (e.g. to find a good estimator of temperature).
It seems that the optimal algorithm can be much faster and less energy consuming then in the model
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(a) n = 200 nodes, k = 6 (b) n = 2000 nodes, k = 6

Fig. 3: Different aaverage latency dependently on the size of the network.

considered in our paper.
Another interesting open question is, how the parameters of the algorithm would improve if the stations

could move by not more than some previously fixed distance ε. One may also ask, how the family
of energy-optimal algorithms would substantially change if the length of the message was taken into
consideration (e.g. if we payed for each single transmitted bit).

These questions are left as a future work.
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7 Appendix A
Below we recall the collection of the most important facts that we use in our paper.

Fact 1 The volume of d-dimensional sphere of radius l is equal

πd/2

Γ(d/2 + 1)
· ld,

where Γ is the Euler Gamma function .

Proof: See e.g. [5, 29] . 2

The following versions of Chernoff bound can be found in [18]:

Fact 2 Let X have a binomial distribution. For every R ≥ 6E[X] we have

P[X ≥ R] ≤ 2−R .

Fact 3 Let X have a binomial distribution. For any 0 ≤ δ ≤ 1 we have

P[X ≤ (1− δ)EX] ≤ exp

(
−EXδ2

2

)
.

Fact 4 Let X have a binomial distribution. For any 0 ≤ δ ≤ 1 we have

P[X ≥ (1 + δ)EX] ≤ exp

(
−EXδ2

3

)
.

Fact 5 Let X have a binomial distribution. For any δ > 0 we have

P[X ≥ (1 + δ)EX] <

(
eδ

(1 + δ)(1+δ)

)EX

.

We also use the following version of Hoeffding’s Inequality (see [9]).

Fact 6 Let X1, X2, . . . Xn be i.i.d random variables such that E[Xi] = µ and P[a ≤ Xi ≤ b] = 1 . Then for any
ε > 0

P[|Xn − µ| ≥ ε] ≤ 2 exp

(
− 2nε2

(b− a)2

)
,

where Xn = X1+X2+...+Xn
n

.

http://mathworld.wolfram.com/ModifiedBesselFunctionoftheSecondKind.html
http://mathworld.wolfram.com/ModifiedBesselFunctionoftheSecondKind.html
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8 Appendix B
Below we present the proofs of some facts and lemmas used throughout the paper.

8.1 Disconnectivity of random geometric graphs
Lemma 6 Let Vn be the set of n vertices placed randomly and independently in a square Qn = [0,

√
n]2. Let

Gn = (Vn, E) be the graph such that {v, w} ∈ E if and only if ||v − w|| <
√

logn/π. Then Gn is disconnected
w.h.p.

Proof: (Sketch.) The proof is just a classic application of the second moment method to the random variable X
denoting the number of isolated vertices in Gn. Let Xi, 1 ≤ i ≤ n, be the indicator random variables such that

Xi =

{
1 if the i− th vertex is isolated,
0 otherwise.

Then X =
n∑
i=1

Xi denote the number of isolated vertices in Gn. Clearly,

P[Xi = 1] = E[Xi] =

(
1− logn

n

)n−1

thus

E[X] = n

(
1− logn

n

)n−1

(5)

and

E[X2] = n

(
1− logn

n

)n−1

+ (n2 − n)E[X1X2]. (6)

Since the probability that two vertices are not joined by an edge is equal to 1− logn
n

(and therefore the area covered
by their ranges is 2 logn

n
) we may write

E[X1X2] ≤ logn

n

(
1− logn

n

)n−1

+

(
1− logn

n

)(
1− 2 logn

n

)n−1

. (7)

Finally, by 5, 6, 7 and the second moment method we obtain

P[X = 0] ≤ Var[X]

(EX)2
=

E[X2]

(EX)2
− 1

n→∞−−−−→ 0. (8)

Thus w.h.p.there exists at least one isolated vertex which implies that Gn is disconnected w.h.p. 2

8.2 Fact about the Bessel function of the 2nd kind
Fact 7 For any A,B,C > 0∫ ∞

0

xA exp

(
−
(
Bx− C

x

)2
)

dx =

(
C

B

)A+1
2

exp (2 ·B · C)KA+1
2

(2 ·B · C),

where Kα(z) is the Bessel function of the 2nd kind [26].
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Proof: From [21] (Formula 10.32.10) we know that

Kα(z) =
1

2

(
1

2
z

)α ∫ ∞
0

exp

(
−t− z2

4t

)
dt

tα+1

for any positive real z. Thus, substituting α = A+1
2

and z = 2 ·B · C we get

KA+1
2

(2BC) =
1

2

(
1

2
· 2BC

)A+1
2
∫ ∞

0

exp

(
−t− 4B2C2

4t

)
dt

t
A+1

2
+1

=
1

2
(BC)

A+1
2

∫ ∞
0

exp

(
−t− B2C2

t

)
dt

t
A+1

2
+1
.

Substituting t = 2C2x−2 and doing simple reformulations we get

=

(
B

C

)A+1
2
∫ ∞

0

exp

(
−C

2

x2
−B2x2

)
xAdx

=

(
B

C

)A+1
2
∫ ∞

0

exp

(
−
(
C

x
−Bx

)2

− 2BC

)
xAdx

=

(
B

C

)A+1
2

exp(−2BC)

∫ ∞
0

exp

(
−
(
C

x
−Bx

)2
)
xAdx.

Finally,

KA+1
2

(2BC) =

(
B

C

)A+1
2

exp(−2BC)

∫ ∞
0

exp

(
−
(
C

x
−Bx

)2
)
xAdx.

Extracting the integral and putting all the other terms to the right side of the equality completes the proof.

2
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8.3 Proof of Lemma 2

Proof:
Let us consider the case when the ball B(Vr, 1/5n

1/d) of radius 1/5n1/d centered at the root is whole included
in Qn. Then the probability that we consider is the smallest possible. We have |Qn| = n and for some constant a,
when ã = a · (1/5)d the volume of the ball satisfies

|B(Vr, 1/5n
1/d)| = a · ((1/5)n1/d)d = ã · n.

Let us define a random variable X that denotes the number of stations placed outside B(Vr, 1/5n
1/d) . Clearly X

has binomial distribution with parameters n and 1 − ã. We need to prove that limn→∞ P[X ≥ n/2] = 1 which is
equivalent to limn→∞ P[X < n/2] = 0. Since a = πd/2

Γ(d/2+1)
where Γ is the Euler Gamma function (see Fact 1 in

Appendix A), we get ã < 1/2. Let ε = 1− ã− 1/2 > 0 . We have

P[X < n/2] ≤ P[X ≤ n/2] = P
[
X

n
− (1− c̃) ≤ −ε

]
≤ P

[∣∣∣∣Xn − (1− c̃)
∣∣∣∣ ≥ ε] .

Applying Hoeffding’s inequality (see Fact 6 in Appendix A) with parameters a = 0 and b = 1 we instantly get

P[X < n/2] ≤ P
[∣∣∣∣Xn − (1− c̃)

∣∣∣∣ ≥ ε] ≤ 2 exp(−2nε2)→ 0.
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