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We prove that on the class of (P6,diamond)-free graphs the Maximum-Weight Independent Set problem and the
Minimum-Weight Independent Dominating Set problem can be solved in polynomial time.
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1 Introduction
An independent set (or a stable set) in a graph G is a subset of pairwise nonadjacent vertices of G. An
independent set of G is maximal if it is not properly contained in any other independent set of G.

The Maximum-Weight Independent Set (WIS) problem is the following: Given a graphG = (V,E) and
a weight function w on V , determine an independent set of G of maximum weight. Let αw(G) denote the
maximum weight of an independent set of G. The WIS problem reduces to the IS problem if all vertices
v have the same weight w(v) = 1.

The WIS problem is NP-hard [34] and remains difficult for cubic graphs [27] and for planar graphs
[26], while it can be efficiently solved for various graph classes which include perfect graphs [33] (and
the class of perfect graphs includes the chordal graphs),K1,3-free graphs [2, 37, 40, 42, 45], and 2K2-free
graphs [21, 22, 38].

The Minimum-Weight Independent Dominating Set (WID) problem is the following: Given a graph
G = (V,E) and a weight function w on V , determine a maximal independent set of G of minimum
weight. Let ιw(G) denote the minimum weight of a maximal independent set of G. The WID problem
reduces to the ID problem if all vertices v have the same weight w(v) = 1.

The WID problem is NP-hard [28] and remains difficult for chordal graphs [18] and for 2P3-free perfect
graphs [46], while it can be efficiently solved for various graph classes which include permutation graphs
[15], locally independent well-dominated graphs [47], and 2K2-free graphs [21, 22, 38].

Both WIS and WID remain difficult for triangle-free graphs [43]. Also, for both IS and ID, the class of
P5-free graphs is the unique minimal class, defined by forbidding a single connected subgraph, for which
the computational complexity is an open question (see [1, 3, 7]).

On the other hand, several papers introduced structural properties on graphs containing no long induced
paths (see e.g. [5, 6, 19, 39]), often applied to design efficient algorithms for solving various NP-hard

1365–8050 c© 2009 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France

http://www.dmtcs.org/volumes/
http://www.dmtcs.org/volumes/dm11:1ind.html


126 Raffaele Mosca

problems, including WIS or WID, in subclasses of such graphs: concerning subclasses of P5-free graphs,
see e.g. [4, 9, 10, 11, 13, 16, 17, 23, 29, 31, 36]; concerning subclasses of P6-free graphs, see e.g.
[9, 24, 30, 35, 41, 44].

Let us focus on two such graph subclasses which involve triangle-free graphs as well.
The class of (P5,diamond)-free graphs: a recent paper [8] shows that such graphs have bounded clique-

width and that a corresponding clique-width expression can be constructed in O(n + m) time, which
implies that a large class of NP-hard problems including WIS and WID can be solved for such graphs in
O(n+m) time.

The class of (P6,triangle)-free graphs: a recent paper [14] shows that such graphs have bounded clique-
width and that a corresponding clique-width expression can be constructed in O(n2) time, which implies
that a large class of NP-hard problems including WIS and WID can be solved for such graphs in O(n2)
time.

This paper introduces a proof that WIS and WID can be solved for (P6,diamond)-free graphs in O(n7)
time.

2 Notation and preliminaries
For any missing notation or reference, let us refer to [12].

Throughout this paper let G = (V,E) be a finite undirected graph without self-loops and multiple
edges and let |V | = n, |E| = m. For every u ∈ V , let N(u) = {v ∈ V : uv ∈ E} be the set of neighbors
of u. Let U,W be two subsets of V . Let N(U) = {v ∈ V \ U : there exists u ∈ U such that uv ∈ E}.
Let NW (U) = N(U) ∩W . Let us say that U has a join (a co-join, respectively) with W , if each vertex
in U is adjacent (is nonadjacent) to each vertex in W . Let v ∈ V . Let us say that: v contacts U if v is
adjacent to some vertex of U ; v is universal for U if v is adjacent to each vertex of U ; v is partial to U
if v contacts U but is not universal for U . Then let us say that U , with ∅ ⊂ U ⊂ V , is a module of G −
often called homogeneous set in the literature − if no vertex of V \ U is partial to U .

Let G[U ] denote the subgraph of G induced by the vertex subset U . For any graph F , G is F -free if G
contains no induced subgraph isomorphic to F .

A component of G is the vertex set of a maximal connected subgraph of G. A component of G is
trivial if it is a singleton, and nontrivial otherwise.

Concerning WIS and WID, algorithmically an easy reduction works if the graph is disconnected: that is,
ifG has components V1, . . . , Vk, then αw(G) = αw(G[V1])+. . .+αw(G[Vk]) and ιw(G) = ιw(G[V1])+
. . .+ ιw(G[Vk]).

A path Pk has vertices v1, v2, . . . , vk and edges vjvj+1 for 1 ≤ j < k. A cycle Ck has vertices
v1, v2, . . . , vk and edges vjvj+1 for 1 ≤ j ≤ k (subscript addition taken modulo k). A triangle is a
graph of three vertices a, b, c and edges ab, ac, bc. A diamond is a graph of four vertices a, b, c, d and
edges ab, ac, ad, bc, bd.

A clique of G is a set of pairwise adjacent vertices of G. Notice that each component of G is a clique
if and only if G is P3-free.

A graph is chordal if it contains no induced Ck, k ≥ 4.
For chordal graphs, WIS and ID can be efficiently solved (see [25] and [20], respectively), while WID

remains NP-hard on them [18].
In [32] the authors proved that distance-hereditary graphs have bounded clique-width, and that a cor-

responding clique-width expression can be constructed in O(n + m) time. Since chordal diamond-free
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graphs are distance-hereditary, a direct consequence is:

Theorem 1 ([32]) Both the WIS and the WID problems can be solved for chordal diamond-free graphs
in O(n+m) time. 2

In [14] the authors proved that (P6,triangle)-free graphs have bounded clique-width, and that a corre-
sponding clique-width expression can be constructed in O(n2) time. A direct consequence is:

Theorem 2 ([14]) Both the WIS and the WID problems can be solved for (P6,triangle)-free graphs in
O(n2) time. 2

Obviously, the WIS (or WID) problem on a graph G with vertex weight function w can be reduced to
the same problem on subgraphs G[V \N(v)] for every v ∈ V in the following way:

αw(G) = max{αw(G[V \N(v)]) | v ∈ V }

ιw(G) = min{ιw(G[V \N(v)]) | v ∈ V }

Thus, whenever WIS (or WID) is solvable in time T for every subgraph G[V \N(v)] of G with v ∈ V ,
then it is solvable for G in time nT , plus O(n3) additional steps to generate those subgraphs.

Let us conclude with an observation which will be often used later.

Observation 1 Let G = (V,E) be a graph, and U ⊆ V with |U | = k. If one can solve WIS (or WID) for
each induced subgraph ofG[V \U ] in time T , then one can solve WIS (or WID) forG in time 2k(T +n2).

Proof: Let I(U) be the family of independent sets of G[U ]. Then to solve WIS (or WID) for G one can
consider WIS (or WID) for |I(U)| subgraphs of G, i.e., for G[V \ U ] and for G[I ∪ (V \ (N(I) ∪ U))]
for every I ∈ I(U). Since |I(U)| ≤ 2k, the assertion follows. 2

Remark: The results of the next section are introduced only for WIS, by meaning that they hold for
WID as well (by interchanging WIS with WID, and α with ι).

3 Independent sets in (P6,diamond)-free graphs
Let us introduce a preliminary result.

Definition 1 A graph G = (V,E) is green if there exists a partition {X,Y } of V (with X or Y possibly
empty) such that:

(i) G[X] and G[Y ] are P3-free;

(ii) each component of G[Y ] is a module of G;

(iii) each vertex in Y is adjacent to at most one vertex in each component of G[X].

Notice that every P3-free graph is green.

Lemma 1 One can solve WIS for every green P6-free graph in O(n3) time.
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Proof: Let G = (V,E) be a green P6-free graph. Assume without loss of generality that G is connected.
Let {X,Y } be a partition of V according to Definition 1. In particular, to our aim, by ii one can assume
that Y is an independent set. In fact, one can contract each component K of G[Y ] into a singleton u with
w(u) = αw(G[K]): that can be done in polynomial time since each component of G[Y ] is a clique.

Let W be the family of nontrivial components of G[X]. In particular, to our aim (similarly to above),
one can assume that in each component Q ∈W at most one vertex is nonadjacent to any vertex in Y .

Claim 3.1 There exists y∗ ∈ Y such that y∗ contacts every element of W .

Proof: For any y ∈ Y , let J(y) = {Q ∈ W : y contacts Q}. Let y∗ ∈ Y be such that |J(y∗)| ≥ |J(y)|
for every y ∈ Y . We state that this vertex y∗ is a proper choice for Claim 3.1. Assume for a contradiction
that there exists a component Q ∈ W such that y∗ does not contact Q. Since G is connected, one can
select y ∈ Y belonging to a shortest path from y∗ to Q, such that y contacts Q. By definition of W
and by iii, Q contains two (adjacent) vertices q1 and q2 such that y is adjacent to q1 and nonadjacent to
q2. Then, since G is P6-free, y contacts all the elements of W which are contacted by y∗. This implies
|J(y∗)| < |J(y)|, a contradiction. 2

Claim 3.2 There exists at most one element of W of cardinality greater than 2.

Proof: Assume for a contradiction that there exist two elements of W , say Q̃ and Q, with |Q̃| ≥ 3 and
|Q| ≥ 3. Let y∗ ∈ Y according to Claim 3.1. Let q̃ ∈ Q̃ and q ∈ Q be adjacent to y∗. Since |Q̃| ≥ 3,
there exists a ∈ Y adjacent to qa ∈ Q̃, with qa 6= q̃. Then a is adjacent to q, otherwise a, qa, q̃, y∗, q and
any vertex in Q nonadjacent to a induce a P6. Then, since |Q| ≥ 3, there exists b ∈ Y adjacent to qb ∈ Q,
with qb 6= q. By symmetry, one has that b is adjacent to q̃. Since |Q| ≥ 3, there exists q′ ∈ Q such that
q′ 6= q and q′ is nonadjacent to b. Then q′, qb, b, q̃, qa, a induce a P6, a contradiction. 2

If |Q| ≤ 2 for every Q ∈ W , then by iii G is triangle-free. Otherwise, by Claim 3.2 there exists at
most one element, say Q̃, of W of cardinality greater than 2. One can solve WIS in G by solving WIS in
G[V \ Q̃] and in G[V \N(q̃)] for every q̃ ∈ Q̃. Since such graphs are triangle-free, the lemma follows by
Theorem 2. 2

3.1 Deleting C6’s in (P6,diamond)-free graphs
Throughout this subsection assume that G = (V,E) is a (P6,diamond)-free graph containing a 6-cycle C,
say with vertices vi and edges vivi+1, i ∈ {1, . . . , 6} (subscript addition taken modulo 6). Let N(C) be
the set of vertices from V \ C which are adjacent to some vertex in C. For any subset S of C, let MS be
the set formed by those vertices in N(C) which are adjacent to each vertex in S and are nonadjacent to
each vertex in C \S. In particular, let us write M1 for S = {v1}, M1,2 for S = {v1, v2}, and so on. Then
let Z(k) denote the set of vertices of N(C) having exactly k neighbors in C.

Since G is (P6, diamond)-free: Z(1) = Z(5) = Z(6) = ∅; each vertex in Z(2) belongs to some of the
sets Mi,i+2 or Mi,i+3, i ∈ {1, . . . , 6} (subscript addition taken modulo 6); each vertex in Z(3) belongs to
some of the sets Mi,i+2,i+4 or Mi,i+2,i+3 or Mi,i+3,i+4, i ∈ {1, . . . , 6} (subscript addition taken modulo
6).

Lemma 2 Every component of G[Z(0)] is green.
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Proof: Let K be a component of G[Z(0)]. Since G is connected, there exists v ∈ V \K which contacts
K. If v is universal for K, then G[K] is P3-free (since G is diamond-free). Then let us assume that v is
partial to K, and prove that G[K] is green. Let us write X = K ∩N(v), and Y = K \N(v). Since G is
diamond-free, G[X] is P3-free. Let T be a component of G[Y ]. Then T is a module of G[K]: otherwise,
for any x ∈ X partial to T , one has that two adjacent vertices in T together with x, v and two vertices
in C would induce a P6 (since G is (P6,diamond)-free, v is the endpoint of an induced P3 involving
two vertices in C). Then T is a clique (since G is diamond-free), i.e., G[Y ] is P3-free. Furthermore,
each vertex in Y is adjacent to at most one vertex in each component of X , otherwise a diamond arises
involving v. Then the lemma follows. 2

Let us fix any vertex of C, say v2.
Let us prove that WIS can be solved for G[V \N(v2)] in O(n6) time.
A partition of V \N(v2) is given by {{v2, v4, v5, v6},M1,3,4,6,M1,3,5, M1,3,4,M1,4,5,
M3,5,6,M3,6,1,M4,6,1,M6,3,4, M1,3,M1,4,M1,5,M3,5,M3,6,M4,6, Z(0)}.
SinceG is diamond-free, the setsM1,3,4,6,M1,3,4,M1,4,5,M3,5,6,M3,6,1,M4,6,1,M6,3,4 have cardinality
at most one. Then, by Observation 1, to our aim it is sufficient to prove that WIS can be solved for each
induced subgraph of G[U ] in polynomial time, where a partition of U is given by
{M1,3,5,M1,3,M1,4,M1,5,M3,5,M3,6,M4,6, Z(0)}.
Since G is diamond-free: M1,3,5,M1,3,M1,4,M1,5,M3,5,M3,6,M4,6 are independent sets. Since G is
(P6,diamond)-free: M1,3,5 ∪M1,3 ∪M1,5 ∪M3,5 is an independent set; M1,3 ∪M1,5 ∪M3,5 ∪M4,6 has
a co-join with Z(0).
For any W ⊆ U , let us write W ∗ = W ∩ Z(0).
For any W ⊆ U , let us say that a component K of G[W ∗] is of:

type 1 if K is not a clique and there exists a vertex in W \ Z(0) partial to K;

type 2 if K is a clique and there exists a vertex in W \ Z(0) partial to K;

type 3 otherwise.

Let T1(W ), T2(W ), T3(W ) respectively denote the union of components of G[W ∗] of type 1, 2, 3.
Let us fix a subset W ⊆ U .
Notice that M1,3,5 is an independent set, since G is diamond-free.
Let us consider the following binary relation ‘≤1’ onM1,3,5: for any a, b ∈M1,3,5, a ≤1 b ifNT1(W )(a) ⊆
NT1(W )(b). It is immediate to verify that (M1,3,5,≤1) is a partially ordered set.

Lemma 3 Let y ∈M1,3,5 be maximal for (M1,3,5,≤1). Then G[T1(W ) \N(y)] is P3-free.

Proof: First let us prove that y contacts every component Q of type 1 of G[W ∗]. Assume for a contradic-
tion that there exists a component Q1 of type 1 of G[W ∗] such that y does not contact Q1. By definition
of component of type 1, there exists y1 ∈ W \ Z(0) partial to Q1. Since G is P6-free (also recall that
W ⊆ U ), y1 ∈ M1,3,5. By the maximality of y there exists a vertex q̃ in some component Q̃ of type 1 of
G[W ∗] such that q̃ is adjacent to y and nonadjacent to y1. Then q̃, y, v1, y1 and two adjacent vertices of
Q1 induce a P6, a contradiction.

To conclude the proof of the lemma one has to show that if y contacts a component Q of type 1 of
G[W ∗], then G[Q \ N(y)] is P3-free. This can be shown by applying the last part of the argument of
Lemma 2. 2
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Let us consider the following binary relation ‘≤2’ on M1,3,5: for any a, b ∈ M1,3,5, a ≤2 b if
NT2(W )(a) ⊆ NT2(W )(b). It is immediate to verify that (M1,3,5,≤2) is a partially ordered set.

Lemma 4 Let y ∈ M1,3,5 be maximal for (M1,3,5,≤2). If T1(W ) = ∅, then G[(W \N(y))∗] admits at
most one component of type 2.

Proof: Let Q1 be a component of type 2 of G[(W \N(y))∗]. By definition of component of type 2 there
exists y1 ∈ (W \N(y))\Z(0) partial toQ1. SinceG is P6-free (also recall thatW ⊆ U ), y1 ∈M1,3,5. Let
q1 ∈ Q1 be adjacent to y1; let q′ ∈ Q1 be nonadjacent to y1. Since T1(W ) = ∅, there exists a component
of type 2 of G[W ∗], say Q̃1, such that Q1 ⊆ Q̃1. In particular, there exists q̃1 ∈ Q̃1 \ Q1 adjacent to y
and nonadjacent to y1, otherwise, by the maximality of y there would exist a vertex t ∈W \ Q̃1 adjacent
to y and nonadjacent to y1, i.e., vertices q′, q1, y1, v1, y, t would induce a P6.

Let us prove thatQ1 is the unique component of type 2 ofG[(W \N(y))∗]. Assume for a contradiction
that there exists another component of type 2, say Q2, of G[(W \N(y))∗]. Notice that y1 is nonadjacent
to any vertex q2 of Q2, otherwise q′, q̃1, y, v1, y1 and q2 would induce a P6. Then let y2 ∈ M1,3,5 be
partial to Q2. By symmetry, y2 is nonadjacent to any vertex of Q1. Then a vertex of Q2, y2, v1, y1, q1, q′

induce a P6, a contradiction. 2

Now, let us consider the following cases:

1. T1(U) = T2(U) = ∅.
Then each component K of G[Z(0)] is a module of G[U ]. Then, to our aim, one can assume that K is
a singleton. In fact, one can contract K into a singleton u with w(u) = αw(G[K]): that can be done in
polynomial time by Lemmas 2 and 1. So in general, one can assume that Z(0) is an independent set.
One can solve WIS in G[U ] by solving WIS in G[U \M1,4] and in G[U \N(y)], for every y ∈M1,4.

That can be done inO(n3) time. In fact, by the assumptions and by the above properties, one can verify
that G[U \M1,4] is triangle-free, and that G[U \N(y)] is triangle-free for every vertex y ∈ M1,4 (in
particular, no vertex of M3,6 \ N(y) is adjacent to a vertex of Z(0) \ N(y), otherwise a P6 arises).
Then the assertion follows by Theorem 2.

For the other two cases we note that the existence of a component Q of type 1 or type 2 in U ∩ Z(0)
implies the existence of a vertex a ∈ M1,3,5 which is partial to Q, similarly to the proof above. So,
M1,3,5 is nonempty.

2. T1(U) = ∅, T2(U) 6= ∅.
Based on (M1,3,5,≤2), the vertices y1, . . . , yh of M1,3,5 can be totally ordered so that yi is maximal
for ({yi, . . . , yh},≤2) for i = 1, . . . , h. Then one can solve WIS in G[U ] by sequentially solving WIS
in G[U \N(y1)], in G[(U \ {y1, . . . , yi−1}) \N(yi))] for i = 2, . . . , h, and in G[U \M1,3,5].

That can be done inO(n5) time. In fact, let us first consider G[U \N(y1)]. If G[(U \N(y1))∗] admits
no component of type 2, then one can refer to Case 1. Otherwise, by Lemma 4, G[(U \ N(y1))∗]
admits a unique component of type 2, say Q. Then one can solve WIS in G[U \ N(y1)] by solving
WIS in G[(U \ N(y1)) \ Q] and in G[(U \ N(y1)) \ N(q)], for every q ∈ Q: since for each of such
graphsG[H] one has thatG[H∗] has no component of type 2, one can refer to Case 1 and to Lemmas 1
and 2. Now, let us consider G[(U \ {y1, . . . , yi−1}) \ N(yi))] for i = 2, . . . , h: by the mentioned
total order, one can apply the argument applied for G[U \ N(y1)] in order to show that WIS can be
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solved for such graphs in polynomial time. Finally, let us consider G[U \M1,3,5]: since no vertex in
U \M1,3,5 is partial to any component of G[Z(0)] (otherwise a P6 arises), one can refer to Case 1.

3. T1(U) 6= ∅.
Based on (M1,3,5,≤1), the vertices y1, . . . , yh of M1,3,5 can be totally ordered so that yi is maximal
for ({yi, . . . , yh},≤1) for i = 1, . . . , h. Then one can solve WIS in G[U ] by sequentially solving WIS
in G[U \N(y1)], in G[(U \ {y1, . . . , yi−1}) \N(yi))] for i = 2, . . . , h, and in G[U \M1,3,5].

That can be done in O(n6) time. In fact, let us first consider G[U \N(y1)]. By Lemma 3, G[T1(W ) \
N(y1)] is P3-free. ThenG[(U \N(y1))∗] admits no component of type 1. Then one can refer to Case 2
and to Lemmas 1 and 2. Now, let us consider G[(U \ {y1, . . . , yi−1}) \N(yi))] for i = 2, . . . , h: by
the mentioned total order, one can apply the argument applied for G[U \N(y1)] in order to show that
WIS can be solved for such graphs in polynomial time. Finally, let us consider G[U \M1,3,5]: since
no vertex in U \M1,3,5 is partial to any component of G[Z(0)] (otherwise a P6 arises), one can refer
to Case 1.

Let us summarize the above argument as follows.

Theorem 3 Let G = (V,E) be a (P6,diamond)-free graph containing a 6-cycle C. Then one can solve
WIS for G[V \N(c)] in O(n6) time, for any vertex c of C. 2

3.2 Deleting C5’s in (P6,diamond,C6)-free graphs
Throughout this subsection assume thatG = (V,E) is a (P6,diamond,C6)-free graph containing a 5-cycle
C, say with vertices vi and edges vivi+1, i ∈ {1, . . . , 5} (subscript addition taken modulo 5). Let N(C)
be the set of vertices from V \ C which are adjacent to some vertex in C. For any subset S of C, let MS

be the set formed by those vertices in N(C) which are adjacent to each vertex in S and are nonadjacent
to each vertex in C \ S. In particular, let us write M1 for S = {v1}, M1,2 for S = {v1, v2}, and so on.
Then let Z(k) denote the set of vertices of N(C) having exactly k neighbors in C.

Since G is (P6, diamond)-free: Z(4) = Z(5) = ∅; each element of Z(3) belongs to some of the sets
Mi,i+2,i+3, i ∈ {1, . . . , 5} (subscript addition taken modulo 5).

Similarly to the previous subsection, one has the following fact.

Lemma 5 Every component of G[Z(0)] is green. 2

Lemma 6 There exists a vertex c of C such that one of the following statements holds:

(i) Mi \ N(c) = ∅ for all i ∈ {2, . . . , 5}, and Mi,i+1 \ N(c) = ∅ for all i ∈ {1, . . . , 5} (subscript
addition taken modulo 5);

(ii) Mi \ N(c) = ∅ for all i ∈ {1, . . . , 5}, and Mi,i+1 \ N(c) = ∅ for all i ∈ {1, . . . , 4} (subscript
addition taken modulo 5).

Proof: SinceG is (P6, C6)-free, for all i ∈ {1, . . . , 5} (subscript addition taken modulo 5) one has that: if
Mi 6= ∅, then Mi+2 = Mi+3 = Mi+1,i+2 = Mi+3,i+4 = ∅; if Mi,i+1 6= ∅, then Mi−1,i = Mi+1,i+2 =
∅. This implies the lemma. 2

Let us fix any vertex of C, say v2, guaranteed by Lemma 6.
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Let us prove that one can solve WIS for G[V \N(v2)] in O(n4) time.
A partition of V \N(v2) is given by {{v2, v4, v5},M1,3,4,M3,4,5, M1,3,M1,4,M3,5,M1, Z(0)}.
Since G is diamond-free, the sets M1,3,4,M3,4,5 have cardinality at most one. Then, by Observation 1,

to our aim it is sufficient to prove that WIS can be solved for each induced subgraph ofG[U ] in polynomial
time, where a partition of U is given by {M1,3,M1,4,M3,5,M1, Z(0)}.

Since G is diamond-free, M1,3,M1,4,M3,5 are independent sets. Since G is P6-free: M1 has a co-join
with Z(0); each vertex in M1,3 ∪ M1,4 ∪ M3,5 is not partial to any component of G[Z(0)], i.e., each
component of G[Z(0)] is a module of G[U ]. So by assertions similar to Lemmas 5 and 1, one can assume
that Z(0) is an independent set.

Now, let us consider the following cases, which are exhaustive by symmetry.

Case 1 statement i of Lemma 6 holds.

Case 1.1 M1 = ∅. One can solve WIS in G[U ] by solving WIS in G[U \M3,5] and in G[U \N(y)] for
every y ∈ M3,5. Since G is diamond-free, one can verify that such graphs are triangle-free. Then
in this case one can solve WIS for G[U ] in O(n3) time by Theorem 2.

Case 1.2 M1 6= ∅.
First assume that M1 is a clique. One can solve WIS in G[U ] by solving WIS in G[U \M1] and in
G[U \N(y)] for every y ∈ M1. Then, by referring to Case 1.1, in this case one can solve WIS for
G[U ] in O(n4) time.

Then assume that M1 is not a clique, i.e., G[M1] is disconnected (since G[M1] is P3-free). Then
M3,5 is partitioned into {M0

3,5,M
′
3,5}, where M ′3,5 = {x ∈ M3,5 : x is universal for M1}, and

M0
3,5 = {x ∈ M3,5 : x does not contact M1} (in fact if y, z ∈ M1 are nonadjacent and a vertex

x ∈ M3,5 is adjacent to y and nonadjacent to z, then v4, v3, x, y, v1, z induce a P6). One can solve
WIS in G[U ] by solving WIS in G[U \M ′3,5] and in G[U \N(y)] for every y ∈M ′3,5.

That can be done in O(n4) time. Concerning graphs G[U \ N(y)] for every y ∈ M ′3,5, one can
refer to Case 1.1. Then let us consider G[U \M ′3,5]. Notice that M0

3,5 has a co-join with Z(0),
otherwise a P6 arises involving a vertex of M1. Then U \M ′3,5 is partitioned into {X,Y }, where
X = M1 ∪M1,3 ∪M1,4 (i.e., G[X] is P3-free) and Y = M0

3,5 ∪ Z(0) (i.e., Y is an independent
set). Then each component of G[U \M ′3,5] is either P3-free or green. Then the assertion follows by
Lemma 1.

Case 2 statement ii of Lemma 6 holds.

One can solve WIS inG[U ] by solving WIS inG[U \M4,5] and inG[U \N(y)] for every y ∈M4,5.
Since G is diamond-free, M4,5 is a clique. Then, by referring to Case 1.1 (3.2), in this case one can
solve WIS for G[U ] in O(n4) time.

Let us summarize the above argument as follows.

Theorem 4 Let G = (V,E) be a (P6,diamond,C6)-free graph containing a 5-cycle C.
Then there exists a vertex c ofC (which can be easily found) such that one can solve WIS forG[V \N(c)]

in O(n4) time. 2
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3.3 Deleting C4’s in (P6,diamond,C6, C5)-free graphs
Throughout this subsection assume that G = (V,E) is a (P6,diamond,C6, C5)-free graph containing a
4-cycle C, say with vertices vi and edges vivi+1, i ∈ {1, . . . , 4} (subscript addition taken modulo 4). Let
N(C) be the set of vertices from V \ C which are adjacent to some vertex in C. For any subset S of
C, let MS be the set formed by those vertices in N(C) which are adjacent to each vertex in S and are
nonadjacent to each vertex in C \ S. In particular, let us write M1 for S = {v1}, M1,2 for S = {v1, v2},
and so on. Then let Z(k) denote the set of vertices of N(C) having exactly k neighbors in C.

Since G is (P6, diamond)-free: Z(3) = Z(4) = ∅.
Similarly to the previous subsection, one has the following fact.

Lemma 7 Every component of G[Z(0)] is green. 2

Let us fix any vertex of C, say v2.
Let us prove that WIS can be solved for G[V \N(v2)] in O(n6) time.
A partition of V \ N(v2) is given by {{v2, v4},M1,3,M3,4,M4,1,M1,M3,M4, Z(0)}. Then, by Ob-

servation 1, to our aim it is sufficient to prove that WIS can be solved for each induced subgraph of G[U ]
in polynomial time, where a partition of U is given by {M1,3,M3,4,M4,1,M1,M3,M4, Z(0)},

Let us introduce some preliminary definitions and lemmas.
Let us write:

M0
1 = {x ∈M1 : x does not contact M4}

M0
3 = {x ∈M3 : x does not contact M4}

M0
4 = {x ∈M4 : x does not contact M1 ∪M3}
X = {x ∈M1 : x contacts M4} ∪ {x ∈M4 : x contacts M1}
Y = {x ∈M3 : x contacts M4} ∪ {x ∈M4 : x contacts M3}

Let us write:

Z1 = M0
1 ∪ {z ∈ Z(0) : z contacts M0

1 }
Z3 = M0

3 ∪ {z ∈ Z(0) : z contacts M0
3 }

Z4 = M0
4 ∪ {z ∈ Z(0) : z contacts M0

4 }
ZX = X ∪ {z ∈ Z(0) : z contacts X}
ZY = Y ∪ {z ∈ Z(0) : z contacts Y }
Z̃ = {z ∈ Z(0) : z does not contact M1 ∪M3 ∪M4}.

Lemma 8 The following facts hold:

(i) each pair of the sets Z1, Z3, Z4, ZX , ZY , Z̃ has a co-join;

(ii) each component of G[Z1 ∪ Z3 ∪ Z4 ∪ Z̃] is green;

(iii) each component of G[ZX ∪ ZY ] is either P3-free or bipartite.

Proof:
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Proof of i. Since G is C5-free, M1 has a co-join with M3. Then, since G is C6-free, no vertex in M4

can be adjacent to a vertex in M1 and to a vertex in M3 at the same time. It follows that each pair of
the sets M0

1 ,M
0
3 ,M

0
4 , X, Y has a co-join. Furthermore, since G is (P6, C6)-free, one can verify that two

vertices chosen in two different sets − among the mentioned sets − cannot contact a component of Z(0)
at the same time. Finally, since G is P6-free, if a vertex in y ∈ M1 ∪M3 ∪M4 contacts a component K
of G[Z(0)], then y is universal for K. Then i follows.

Proof of ii. It is enough to deal with G[Z1], as the other subsets can be treated similarly. If Z1 = M0
1 ,

then G[Z1] is P3-free. Otherwise, since G is (P6,diamond)-free, one can verify (similarly to the argument
of Lemma 2) that each component of G[Z1] is green.

Proof of iii. It is enough to deal with G[Z1], as the other subsets can be treated similarly. If ZX = X ,
then since G is (diamond,C5)-free, each component of G[ZX ] is bipartite. Otherwise, since G is P6-free,
each vertex in Z(0) contacting a component K of G[X] dominates K. Then, since G is diamond-free,
each component of G[ZX ] is a clique. 2

Lemma 9 If M1 6= ∅ and M3 6= ∅, then:

(i) Z(0) has a co-join with M1 ∪M3;

(ii) X = Y = ∅.

Proof:

Proof of i. It follows since G is (P6, C6, C5)-free.

Proof of ii. By symmetry, let us only prove that X = ∅. Assume for a contradiction that X 6= ∅. Then
let x1 ∈ M1 be adjacent to x4 ∈ M4. Let x3 ∈ M3. By i of Lemma 8, x1 and x4 are nonadjacent to x3.
Then x4, x1, v1, v2, v3, x3 induce a P6. 2

Lemma 10 If a vertex y ∈ M1,3 contacts a component K of G[ZX ∪ ZY ], then K \ N(y) is either a
clique or an independent set.

Proof: By symmetry, let us consider only G[ZX ]. Let K be a component of G[X]. If G[K] is P3-free,
then the assertion trivially follows. Then, by iii of Lemma 8, assume that G[K] is bipartite. Let y ∈M1,3

contact K. Notice that y cannot be adjacent to two adjacent vertices of K, otherwise a diamond arises
involving v1. Then, to avoid a P6, y is adjacent to all the vertices of a side of the bipartite graph, i.e.,
K \N(y) is an independent set. 2

Let us write Z = Z1 ∪ Z3 ∪ Z4 ∪ ZX ∪ ZY ∪ Z̃. Then {M1,3, Z} is a partition of U .
For any W ⊆ U , let us write W ∗ = W ∩ Z.
For any W ⊆ U , let us say that a component K of G[W ∗] is of:

type 1 if K is not a clique and there exists a vertex in W \ Z partial to K;

type 2 if K is a clique and there exists a vertex in W \ Z partial to K;

type 3 otherwise.
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Let T1(W ), T2(W ), T3(W ) respectively denote the union of components of G[W ∗] of type 1, 2, 3.
Let us fix a subset W ⊆ U .
Notice that M1,3 is an independent set, since G is diamond-free.
Let us consider the following binary relation ‘≤1’ on M1,3: for any a, b ∈ M1,3, a ≤1 b if NT1(W )(a) ⊆
NT1(W )(b). It is immediate to verify that (M1,3,≤1) is a partially ordered set.

Lemma 11 Let y ∈M1,3 be maximal for (M1,3,≤1). Then G[T1(W ) \N(y)] is P3-free.

Proof: If either M1 = ∅ or M3 = ∅, then one can apply an argument similar to that of Lemma 3, by
considering also (i) of Lemma 8 and Lemma 10− in detail, ifM1 = ∅ (ifM3 = ∅), then vertex v1 (vertex
v3) is universal for M1,3 and does not contact Z.

If M1 6= ∅ and M3 6= ∅, then one can apply an argument similar to that of Lemma 3, by considering
Lemma 9 and the fact that no element of M1,3 can be partial to a component of G[M1 ∪M3] (since G is
diamond-free). 2

Let us consider the following binary relation ‘≤2’ on M1,3: for any a, b ∈ M1,3, a ≤2 b if NT2(W )(a) ⊆
NT2(W )(b). It is immediate to verify that (M1,3,≤2) is a partially ordered set.

Lemma 12 Let y ∈ M1,3 be maximal for (M1,3,≤2). If T1(W ) = ∅, then G[(W \ N(y))∗] admits at
most one component of type 2.

Proof: One can apply the argument in the proof of Lemma 11, by considering Lemma 4 instead of
Lemma 3. 2

Now, let us consider the following cases.

Case 1 M3,4 = M4,1 = ∅.

Case 1.1 T1(U) = T2(U) = ∅.
Then each component K of G[Z] is a module of G[U ]. Then, to our aim, one can assume that K
is a singleton. In fact, one can contract K into a singleton k with w(k) = αw(G[K]): that can be
done in O(n3) time by ii– iii of Lemma 8 and Lemma 1.

So in general, one can assume that Z is an independent set. Then G[U ] is bipartite. In this case one
can solve WIS for G[U ] in time O(n3) by Theorem 2.

Case 1.2 T1(U) = ∅, T2(U) 6= ∅.
Based on (M1,3,≤2), the vertices y1, . . . , yh of M1,3 can be totally ordered so that yi is maximal
for ({yi, . . . , yh},≤2) for i = 1, . . . , h. Then one can solve WIS in G[U ] by sequentially solving
WIS in G[U \N(y1)], in G[(U \ {y1, . . . , yi−1}) \N(yi))] for i = 2, . . . , h, and in G[U \M1,3].

That can be done in O(n5) time. In fact, let us first consider G[U \ N(y1)]. If G[(U \ N(y1))∗]
admits no component of type 2, then one can refer to Case 1.1. Otherwise, by Lemma 12, G[(U \
N(y1))∗] admits a unique component of type 2, sayQ. Then one can solve WIS inG[U \N(y1)] by
solving WIS in G[(U \N(y1))\Q)] and in G[(U \N(y1))\N(q)], for every q ∈ Q: since for each
of such graphs G[H] one has that G[H∗] has no component of type 2, one can refer to Case 1.1, to
ii-iii of Lemma 8 and to Lemmas 7 and 1. Now, let us considerG[(U \{y1, . . . , yi−1})\N(yi))] for
i = 2, . . . , h: by the mentioned total order, one can apply the argument applied for G[U \N(y1)] in
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order to show that WIS can be solved for such graphs in polynomial time. Finally, let us consider
G[U \M1,3] = G[Z]: then one can refer to Case 1.1.

Case 1.3 T1(U) 6= ∅.
Based on (M1,3,≤2), the vertices y1, . . . , yh of M1,3 can be totally ordered so that yi is maximal
for ({yi, . . . , yh},≤2) for i = 1, . . . , h. Then one can solve WIS in G[U ] by sequentially solving
WIS in G[U \N(y1)], in G[(U \ {y1, . . . , yi−1}) \N(yi))] for i = 2, . . . , h, and in G[U \M1,3].

That can be done in O(n6) time. In fact, let us first consider G[U \ N(y1)]. By Lemma 11,
G[T1(W )\N(y1)] is P3-free. ThenG[(U \N(y1))∗] admits no component of type 1. Then one can
refer to Case 1.2 and to Lemmas 7 and 1. Now, let us consider G[(U \ {y1, . . . , yi−1}) \ N(yi))]
for i = 2, . . . , h: by the total order, one can apply the argument applied for G[U \ N(y1)] in
order to show that WIS can be solved for such graphs in polynomial time. Finally, let us consider
G[U \M1,3] = G[Z]: then one can refer to Case 1.1.

Case 2 M3,4 ∪M4,1 6= ∅.
Since G is diamond-free, M3,4 and M4,1 are cliques. Since G is (P6,diamond,C6, C5)-free, the
following facts hold: M3,4 ∪M4,1 has a co-join with N(C) \ (N(v2) ∪M3,4 ∪M4,1); a vertex
in M3,4 ∪M4,1 and a vertex in N(C) \ (N(v2) ∪M3,4 ∪M4,1) cannot contact a component of
G[Z(0)] at the same time; M3,4 has a co-join with M4,1.

First assume that M3,4 6= ∅ and M4,1 6= ∅. Then M3,4 ∪M4,1 has a co-join with Z(0) (otherwise a
P6 or a C6 arises). In general, by the above facts,M3,4∪M4,1 has a co-join with U \(M3,4∪M4,1).
Then, since M3,4 and M4,1 are cliques, one can directly refer to Case 1.

Then assume that M3,4 = ∅. One can solve WIS for G[U ] by solving WIS in G[U \M4,1] and in
G[U \N(y)], for every y ∈M4,1. Since M4,1 is a clique, one can directly refer to Case 1.

The case in which M4,1 = ∅ can be similarly treated, by symmetry.

Let us summarize the above argument as follows.

Theorem 5 Let G = (V,E) be a (P6,diamond,C6,C5)-free graph containing a 4-cycle C. Then one can
solve WIS for G[V \N(c)] in O(n6) time, for any vertex c of C. 2

3.4 A solution for WIS and WID in (P6,diamond)-free graphs
In this subsection we formalize an efficient method for solving WIS (or WID) in (P6,diamond)-free
graphs. To this end, let us first summarize the results of the previous subsections in the following theorem.

Theorem 6 Let G = (V,E) be a connected (P6,diamond)-free graph containing a C6 or a C5 or a
C4. Then there exists a vertex c (which can be easily found) such that one can solve WIS (or WID) for
G[V \N(c)] in O(n6) time.

Proof: If G contains a C6, then the assertion follows by Theorem 3. If G is C6-free and contains a C5,
then the assertion follows by Theorem 4. If G is (C6, C5)-free and contains a C4, then the assertion
follows by Theorem 5. 2

To prove that WIS (or WID) is solvable in polynomial time on the class of (P6,diamond)-free graphs,
it suffices to find a polynomial upper bound p(n) = O(n7) on the number of steps sufficient for any
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allowed input of order n. If G is chordal, then we are done by Theorem 1. Otherwise, there exists a
sixth-degree polynomial q(n) with the property that in any (P6,diamond)-free non-chordal graph one can
determine a vertex x such that WIS (or WID) can be solved on G1 = G[V \ N(x)] in q(n) time. If
G′1 = G − x is not chordal, then again one can find a vertex x′ such that the problem can be solved on
G2 = G[V (G′1) \ N(x′)] in q(n) time, and so on. In this way we obtain some graphs G1, G2, . . . , Gk

with k < n, such that each Gi is either chordal or admits an efficient WIS (or WID) algorithm. Thus,
the total running time is O(n(q(n) + r(n))) where r(n) is the time needed to check whether the current
graph is chordal and if it is not, then to find a suitable vertex under the conditions of Theorem 6.

Now, by Theorems 1 and 6 one obtains:

Theorem 7 Both the WIS and the WID problems can be solved for (P6,diamond)-free graphs in O(n7)
time. 2
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