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Let G be a graph with n vertices, with independence number α, and with no Kt+1-minor for some t ≥ 5. It is proved
that (2α− 1)(2t− 5) ≥ 2n− 5. This improves upon the previous best bound whenever n ≥ 2

5
t2.
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1 Introduction
In 1943, Hadwiger [7] made the following conjecture, which is widely considered to be one of the most
important open problems in graph theory(i); see [19] for a survey.

Hadwiger’s Conjecture. For every integer t ≥ 1, every graph with no Kt+1-minor is t-colourable. That
is, χ(G) ≤ η(G) for every graph G.

Hadwiger’s Conjecture is trivial for t ≤ 2, and is straightforward for t = 3; see [4, 7, 22]. In the cases
t = 4 and t = 5, Wagner [20] and Robertson et al. [16] respectively proved that Hadwiger’s Conjecture
is equivalent to the Four-Colour Theorem [2, 3, 6, 15]. Hadwiger’s Conjecture is open for all t ≥ 6.

†Research supported by a Marie Curie Fellowship from the European Commission under contract MEIF-CT-2006-023865, and
by the projects MEC MTM2006-01267 and DURSI 2005SGR00692.
(i) All graphs considered in this note are undirected, simple and finite. Let G be a graph with vertex set V (G). Let X ⊆ V (G).

X is connected if the subgraph of G induced by X is connected. X is dominating if every vertex of G \ X has a neighbour
in X . X is independent if no two vertices in X are adjacent. The independence number α(G) is the maximum cardinality of
an independent set of G. X is a clique if every pair of vertices in X are adjacent. The clique number ω(G) is the maximum
cardinality of a clique in G. A k-colouring of G is a function that assigns one of k colours to each vertex of G such that adjacent
vertices receive distinct colours. The chromatic number χ(G) is the minimum integer k such that G is k-colourable. A minor
of G is a graph that can be obtained from a subgraph of G by contracting edges. The Hadwiger number η(G) is the maximum
integer n such that the complete graph Kn is a minor of G.
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Progress on the t = 6 case has been recently been obtained by Kawarabayashi and Toft [10] (without
using the Four-Colour Theorem). The best known upper bound is χ(G) ≤ c · η(G)

√
log η(G) for some

constant c, independently due to Kostochka [11] and Thomason [17, 18].
Woodall [21] observed that since α(G) · χ(G) ≥ |V (G)| for every graph G, Hadwiger’s Conjecture

implies that
α(G) · η(G) ≥ |V (G)|. (1)

Equation (1) holds for η(G) ≤ 5 since Hadwiger’s Conjecture holds for t ≤ 5. For example, α(G) ≥
1
4 |V (G)| for every planar graph G. It is interesting that the only known proof of this result depends on
the Four-Colour Theorem. The best bound not using the Four-Colour Theorem is α(G) ≥ 2

9 |V (G)| due
to Albertson [1].

Equation (1) is open for η(G) ≥ 6. In general, (1) is weaker than Hadwiger’s Conjecture, but for graphs
with α(G) = 2 (that is, graphs whose complements are triangle-free), Plummer et al. [13] proved that
(1) is in fact equivalent to Hadwiger’s Conjecture. The first significant progress towards (1) was made by
Duchet and Meyniel [5] (also see [12]), who proved that

(2α(G)− 1) · η(G) ≥ |V (G)| . (2)

This result was improved by Kawarabayashi et al. [8] to

(2α(G)− 1) · η(G) ≥ |V (G)|+ ω(G) . (3)

Assuming α(G) ≥ 3, Kawarabayashi et al. [8] proved that

(4α(G)− 3) · η(G) ≥ 2|V (G)|, (4)

which was further improved by Kawarabayashi and Song [9] to

(2α(G)− 2) · η(G) ≥ |V (G)|. (5)

The following theorem is the main contribution of this note.

Theorem 1 Every graph G with η(G) ≥ 5 satisfies

(2α(G)− 1)(2η(G)− 5) ≥ 2|V (G)| − 5 .

Observe that Theorem 1 represents an improvement over (2), (4) and (5) whenever η(G) ≥ 5 and
|V (G)| ≥ 2

5η(G)2. For example, Theorem 1 implies that α(G) > 1
7 |V (G)| for every graph G with

η(G) ≤ 6, whereas each of (2), (4) and (5) imply that α(G) > 1
12 |V (G)|.

2 Proof of Theorem 1
Theorem 1 employs the following lemma by Duchet and Meyniel [5]. The proof is included for complete-
ness.

Lemma 1 ([5]) Every connected graph G has a connected dominating set D and an independent set
S ⊆ D such that |D| = 2|S| − 1.
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Proof: Let D be a maximal connected set of vertices of G such that D contains an independent set S of
G and |D| = 2|S| − 1. There is such a set since D := S := {v} satisfies these conditions for each vertex
v. We claim that D is dominating. Otherwise, since G is connected, there is a vertex v at distance 2 from
D, and there is a neighbour w of v at distance 1 from D. Let D′ := D ∪ {v, w} and S′ := S ∪ {v}. Thus
D′ is connected and contains an independent set S′ such that |D′| = 2|S′| − 1. Hence D is not maximal.
This contradiction proves that D is dominating. 2

The next lemma is the key to the proof of Theorem 1.

Lemma 2 Suppose that for some integer t ≥ 1 and for some real number p ≥ t, every graph G with
η(G) ≤ t satisfies p · α(G) ≥ |V (G)|. Then every graph G with η(G) ≥ t satisfies

α(G) ≥ 2|V (G)| − p

4η(G) + 2p− 4t
+

1
2

.

Proof: We proceed by induction on η(G) − t. If η(G) = t the result holds by assumption. Let G be a
graph with η(G) > t. We can assume that G is connected. By Lemma 1, G has a connected dominating
set D and an independent set S ⊆ D such that |D| = 2|S| − 1. Now α(G) ≥ |S| = |D|+1

2 . Thus we are
done if

|D|+ 1
2

≥ 2|V (G)| − p

4η(G) + 2p− 4t
+

1
2

. (6)

Now assume that (6) does not hold. That is,

|D| ≤ 2|V (G)| − p

2η(G) + p− 2t
.

Thus

|V (G \D)| = |V (G)| − |D| ≥ (2η(G) + p− 2t− 2)|V (G)|+ p

2η(G) + p− 2t
.

Since D is dominating and connected, η(G \D) ≤ η(G)− 1. Thus by induction,

α(G) ≥ α(G \D) ≥ 2|V (G \D)| − p

4η(G \D) + 2p− 4t
+

1
2

≥ 2(2η(G) + p− 2t− 2)|V (G)|+ 2p

(2η(G) + p− 2t)(4η(G)− 4 + 2p− 4t)
− p

4η(G)− 4 + 2p− 4t
+

1
2

=
2|V (G)| − p

4η(G) + 2p− 4t
+

1
2

.

This completes the proof. 2

Lemma 3 Suppose that Hadwiger’s Conjecture is true for some integer t. Then every graph G with
η(G) ≥ t satisfies

(2η(G)− t)(2α(G)− 1) ≥ 2|V (G)| − t .
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Proof: If Hadwiger’s Conjecture is true for t then t · α(G) ≥ |V (G)| for every graph G with η(G) ≤ t.
Thus Lemma 2 with p = t implies that every graph G with η(G) ≥ t satisfies

α(G) ≥ 2|V (G)| − t

4η(G)− 2t
+

1
2

,

which implies the result. 2

Theorem 1 follows from Lemma 3 with t = 5 since Hadwiger’s Conjecture holds for t = 5 [16].

3 Concluding Remarks
The proof of Theorem 1 is substantially simpler than the proofs of (3)–(5), ignoring its dependence on the
proof of Hadwiger’s Conjecture with t = 5, which in turn is based on the Four-Colour Theorem. A bound
that still improves upon (2), (4) and (5) but with a completely straightforward proof is obtained from
Lemma 3 with t = 3: Every graph G with η(G) ≥ 3 satisfies (2η(G)− 3)(2α(G)− 1) ≥ 2|V (G)| − 3.

We finish with an open problem. The method of Duchet and Meyniel [5] was generalised by Reed and
Seymour [14] to prove that the fractional chromatic number χf (G) ≤ 2η(G). For sufficiently large η(G),
is χf (G) ≤ 2η(G)− c for some constant c ≥ 1?
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