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Let G be a graph with n vertices, with independence number «, and with no K4 1-minor for some ¢ > 5. It is proved
that (2cc — 1)(2t — 5) > 2n — 5. This improves upon the previous best bound whenever n > 2¢*.
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1 Introduction

In 1943, Hadwiger [7] made the following conjecture, which is widely considered to be one of the most
important open problems in graph theor see [19] for a survey.

Hadwiger’s Conjecture. For every integer t > 1, every graph with no K 1-minor is ¢-colourable. That
is, x(G@) < n(Q) for every graph G.

Hadwiger’s Conjecture is trivial for ¢ < 2, and is straightforward for ¢ = 3; see [4, 7, 22]]. In the cases
t = 4 and t = 5, Wagner [20] and Robertson et al. [[16] respectively proved that Hadwiger’s Conjecture
is equivalent to the Four-Colour Theorem [2| 3| |6, [15]. Hadwiger’s Conjecture is open for all £ > 6.
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by the projects MEC MTM2006-01267 and DURSI 2005SGR00692.

@ All graphs considered in this note are undirected, simple and finite. Let G be a graph with vertex set V(G). Let X C V(G).
X is connected if the subgraph of G induced by X is connected. X is dominating if every vertex of G \ X has a neighbour
in X. X is independent if no two vertices in X are adjacent. The independence number o(G) is the maximum cardinality of
an independent set of G. X is a clique if every pair of vertices in X are adjacent. The cligue number w(G) is the maximum
cardinality of a clique in G. A k-colouring of G is a function that assigns one of k colours to each vertex of GG such that adjacent
vertices receive distinct colours. The chromatic number x(G) is the minimum integer k such that G is k-colourable. A minor
of G is a graph that can be obtained from a subgraph of G by contracting edges. The Hadwiger number n(G) is the maximum
integer n such that the complete graph K, is a minor of G.
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Progress on the ¢ = 6 case has been recently been obtained by Kawarabayashi and Toft [[10] (without
using the Four-Colour Theorem). The best known upper bound is x(G) < ¢ - n(G)+/log n(G) for some
constant ¢, independently due to Kostochka [[11] and Thomason [[17}[18].

Woodall [21]] observed that since «(G) - x(G) > |V (G)| for every graph G, Hadwiger’s Conjecture
implies that

a(G) - n(G) = [V(G)]. (1)

Equation (I} holds for n(G) < 5 since Hadwiger’s Conjecture holds for ¢ < 5. For example, o(G) >
1IV(G)| for every planar graph G. It is interesting that the only known proof of this result depends on
the Four-Colour Theorem. The best bound not using the Four-Colour Theorem is ol(G) > 2|V(G)| due
to Albertson [[1]].

Equation (I)) is open for (G) > 6. In general, (I)) is weaker than Hadwiger’s Conjecture, but for graphs
with «(G) = 2 (that is, graphs whose complements are triangle-free), Plummer et al. [13]] proved that
(1) is in fact equivalent to Hadwiger’s Conjecture. The first significant progress towards (1)) was made by
Duchet and Meyniel [3] (also see [12]), who proved that

2a(G) = 1) - n(G) = [V(G)] - )
This result was improved by Kawarabayashi et al. [8] to
2a(G) = 1) - 0(G) = [V(G)| + w(G) - 3)
Assuming a(G) > 3, Kawarabayashi et al. [8] proved that
(4a(G) = 3) - n(G) = 2|V(G)], @)
which was further improved by Kawarabayashi and Song [9] to
(2a(G) = 2) - n(G) 2 [V(G)]. 5
The following theorem is the main contribution of this note.
Theorem 1 Every graph G with n(G) > 5 satisfies
(20(G) = 1)(2n(G) = 5) = 2[V(G)[ =5 .
Observe that Theorem [I| represents an improvement over (2)), and (3) whenever n(G) > 5 and

V(@) > %U(G)z. For example, Theorem implies that «(G) > %\V(G)\ for every graph G with
n(G) < 6, whereas each of (2), @) and () imply that o(G) > 5|V (G)|.

2 Proof of Theorem

Theorem|[I]employs the following lemma by Duchet and Meyniel [5]. The proof is included for complete-
ness.

Lemma 1 ([S]) Every connected graph G has a connected dominating set D and an independent set
S C D such that |D| = 2|S| — 1.
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Proof: Let D be a maximal connected set of vertices of G such that D contains an independent set .S of
G and |D| = 2|S| — 1. There is such a set since D := S := {v} satisfies these conditions for each vertex
v. We claim that D is dominating. Otherwise, since G is connected, there is a vertex v at distance 2 from
D, and there is a neighbour w of v at distance 1 from D. Let D’ := D U {v,w} and S’ := S U {v}. Thus
D’ is connected and contains an independent set S’ such that |D’| = 2|S’| — 1. Hence D is not maximal.
This contradiction proves that D is dominating. a

The next lemma is the key to the proof of Theorem [I]

Lemma 2 Suppose that for some integer t > 1 and for some real number p > t, every graph G with
n(G) < t satisfies p - a(G) > |V(G)|. Then every graph G with n(G) > t satisfies

2V(G) —p 1
Gz @rp_n 2

Proof: We proceed by induction on n(G) — t. If n(G) = t the result holds by assumption. Let G be a
graph with 7(G) > ¢. We can assume that G is connected. By Lemma G has a connected dominating
set D and an independent set S C D such that |D| = 2|S| — 1. Now a(G) > |S| = |D|T+1. Thus we are

done if
|D|+1 S 2lV(G)|—p 1

2 *4n(G)+2p—4t+§' ©

Now assume that @ does not hold. That is,

|D| < 2|V(G)‘ —Pp
“29(G)+p—2t

Thus
G)+p—2t—2)|V(GQ)|+p
2n(G)+p—2t '

Since D is dominating and connected, (G \ D) < n(G) — 1. Thus by induction,

V(G\ D) = V(@) - p| > P

2)V(G\ D)| — 1
(@) > a(G\ D) > 4n(|G§D\) +)2|p_p4t +5
22n(G) +p—2t=2)|V(G)|+2p P L1
T (2@ +p-20)(4n(G) —4+2p—4t) 4An(G)—4+2p—4t 2
2V(G@)|-p 1

T @) +2p—4t 2

This completes the proof. a

Lemma 3 Suppose that Hadwiger’s Conjecture is true for some integer t. Then every graph G with
n(G) > t satisfies
(2n(G) =) (2(G) = 1) 2 2|V(G)[ -t .



174 David R. Wood

Proof: If Hadwiger’s Conjecture is true for ¢ then ¢t - a(G) > |V (G)| for every graph G with n(G) < t.
Thus Lemma 2] with p = ¢ implies that every graph G with n(G) > ¢ satisfies
2V(G)[ —t

1
S VAT L 2
== T2

which implies the result. O

Theorem [I] follows from Lemma 3| with ¢ = 5 since Hadwiger’s Conjecture holds for ¢ = 5 [16]].

3 Concluding Remarks

The proof of Theorem|T]is substantially simpler than the proofs of (B)—(3)), ignoring its dependence on the
proof of Hadwiger’s Conjecture with ¢ = 5, which in turn is based on the Four-Colour Theorem. A bound
that still improves upon (), @) and (3) but with a completely straightforward proof is obtained from
Lemmal3|with ¢ = 3: Every graph G with n(G) > 3 satisfies (2n(G) — 3)(2a(G) — 1) > 2|V(G)| — 3.

We finish with an open problem. The method of Duchet and Meyniel [5] was generalised by Reed and
Seymour [[14] to prove that the fractional chromatic number x ;(G) < 2n(G). For sufficiently large n(G),
is xf(G) < 2n(G) — c for some constant ¢ > 1?
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