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The distribution of ascents of size d or more
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A composition of a positive integer n is a finite sequence of positive integers a1, a2, . . . , ak such that a1 + a2 +

· · ·+ ak = n. Let d be a fixed nonnegative integer. We say that we have an ascent of size d or more if ai+1 ≥ ai +d.
We determine the mean, variance and limiting distribution of the number of ascents of size d or more in the set of
compositions of n. We also study the average size of the greatest ascent over all compositions of n.
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1 Introduction
A composition of a positive integer n is a finite sequence of positive integers a1, a1, . . . , ak such that
a1 + a2 + · · · + ak = n. It is well known that there are 2n−1 compositions of n. The compositions
(denoted by a1a2a3 . . . ak) for n = 1, 2, . . . , 5 are:

n

1 1
2 11 2
3 111 12 21 3
4 1111 13 31 22 112 121 211 4
5 11111 14 41 23 32 113 131 311 122 212 221 1112 1121 1211 2111 5

Let d ≥ 0 be a fixed integer. We say, that we have an ascent of size d or more, whenever ai+1 ≥ ai+d. For
example, there are 3 ascents of size 2 or more that occur in the compositions of 5: 14, 113, and 131 .
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In Sections 2, 3 and 4, respectively, we determine the mean, variance and asymptotic distribution of the
number of ascents of size d or more in compositions of n. Ordinary ascents (the cases d = 0 and d = 1)
have previously been studied by Carlitz (1) and more recently by Chinn, Heubach and Grimaldi in (2).
Finally in Section 5 we investigate the maximum value of d for which compositions of n can expect to have
an ascent of size d. That is, we find the average value of the largest ascent that occurs in the compositions
of n. For example, the compositions of 4 in the table have maximum ascents of sizes 0, 2, 0, 0, 1, 1, 0, 0,
respectively, giving an average largest ascent size per composition of 1/2 when n = 4.
We note that the asymptotic expression for the maximum ascent size in Theorem 4 involves a fluctuating
function of n of mean zero. A similar phenomenon has been observed when studying averages of certain
other statistics for compositions, such as the largest part size (11) or the number of distinct part sizes (8),
(7).

2 The average number of ascents of size d or more in composi-
tions

For fixed d ≥ 0 we wish to find the average number of ascents of size d or more per composition of n.
We use the “adding-the-slice” technique which was originally used by Flajolet and Prodinger in (4) and
more recently, for example, by Knopfmacher and Prodinger in (9).
Let j be the value of the last component of the composition with k parts, i.e. ak = j. We proceed from
a composition with k parts to a composition with k + 1 parts. We denote by fk(z, u, v) the generating
function where z marks the size n, u the value of j and v the number of ascents of size d or more in
compositions with k parts.
In moving from a composition with k parts to a composition with k + 1 parts, where ak = j, we have an
ascent whenever the new last integer has any value from j + d onwards. This gives the following rule for
adding a new part or “slice” to the end of the composition:

uj −→zu+ (zu)2 + (zu)3 + · · ·+ (zu)j+d−1 + v
{

(zu)j+d + (zu)j+d+1 + · · ·
}

= zu
1− (zu)j+d−1

1− zu
+ v(zu)j+d

1
1− zu

.

This implies that

fk+1(z, u, v) =
zu

1− zu
fk(z, 1, v)− (zu)d

1− zu
fk(z, zu, v) +

v(zu)d

1− zu
fk(z, zu, v)

=
zu

1− zu
fk(z, 1, v)− (1− v)(zu)d

1− zu
fk(z, zu, v). (2.1)

Now define F (z, u, v) :=
∑
k≥1

fk(z, u, v) . Then summing (2.1) over k ≥ 1 gives

F (z, u, v)− f1(z, u, v) =
zu

1− zu
F (z, 1, v)− (1− v)(zu)d

1− zu
F (z, zu, v) ,

so that

F (z, u, v) =
zu

1− zu
F (z, 1, v) +

zu

1− zu
− (1− v)(zu)d

1− zu
F (z, zu, v) ,
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where we have used
f1(z, u, v) = zu+ (zu)2 + (zu)3 + · · · = zu

1− zu
.

At this stage we iterate the recursion for F (z, u, v).

F (z, u, v) =
zu

1− zu
F (z, 1, v) +

zu

1− zu
− (1− v)(zu)d

1− zu
×

×
{

z2u

1− z2u
F (z, 1, v) +

z2u

1− z2u
− (1− v)(z2u)d

1− z2u
F (z, z2u, v)

}
=
[

zu

1− zu
− (1− v)z2u(zu)d

(1− zu)(1− z2u)

]
[F (z, 1, v) + 1] +

(1− v)2(zu)d(z2u)d

(1− zu)(1− z2u)
×

×
{

z3u

1− z3u
F (z, 1, v) +

z3u

1− z3u
− (1− v)(z3u)d

1− z3u
F (z, z3u, v)

}
=
[

zu

1− zu
− (1− v)z2u(zu)d

(1− zu)(1− z2u)
+

(1− v)2 z3u(zu)d(z2u)d

(1− zu)(1− z2u)(1− z3u)

]
[F (z, 1, v) + 1]

− (1− v)3(zu)d(z2u)d(z3u)d

(1− zu)(1− z2u)(1− z3u)
F (z, z3u, v).

We keep iterating, noting that F (z, zmu, v) → 0 as m → ∞ for |z| < 1
2 and u, v in a suitable small

neighbourhood of 1, and put u = 1 to obtain

F (z, 1, v) =
∑
i≥1

(−1)i−1zi(1− v)i−1zd(
i
2)

(1− z)(1− z2) · · · (1− zi)
[F (z, 1, v) + 1] . (2.2)

By adding the term 1 for the empty composition we obtain the bivariate generating function for composi-
tions according to the number of ascents of size d or more as

F (z, v) := 1 + F (z, 1, v) =
1

1− τ(z, v)
, (2.3)

where

τ(z, v) :=
∑
i≥1

(−1)i−1zi(1− v)i−1zd(
i
2)

(1− z)(1− z2) · · · (1− zi)
. (2.4)

The expected value of the number of ascents of size d or more is
[zn]

∂F (z,v)
∂v

∣∣
v=1

2n−1 . For this we shall need

τ(z, 1) =
∑
i≥1

(−1)i−1zi(1− v)i−1zd(
i
2)

(1− z)(1− z2) · · · (1− zi)

∣∣∣∣∣
v=1

=
z

1− z
, (2.5)

and
∂τ(z, v)
∂v

∣∣∣
v=1

=
∑
i≥2

(−1)izi(i− 1)(1− v)i−2zd(
i
2)

(1− z)(1− z2) · · · (1− zi)

∣∣∣∣∣
v=1

=
z2+d

(1− z)(1− z2)
. (2.6)
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In particular, the generating function for all compositions is F (z, 1) = 1
1−τ(z,1) = 1−z

1−2z .
Now

∂F (z, v)
∂v

∣∣∣∣
v=1

=
∂τ(z,v)
∂v

(1− τ(z, v))2

∣∣∣∣∣
v=1

=
z2+d

(1 + z)(1− 2z)2

= zd
[

1
9(1 + z)

+
1

6(1− 2z)2
− 5

18(1− 2z)

]
.

So that

[zn]
∂F (z, v)
∂v

∣∣∣∣
v=1

=
(−1)n−d

9
+

(n− d+ 1)2n−d

6
− 5 2n−d

18

=
(−1)n−d

9
+

(3n− 3d− 2)2n−d

18
.

After dividing by 2n−1, the total number of compositions of n, we have

Theorem 1 The expected number of ascents of size d or more in the compositions of n is

E(n) :=
2−d

9
(3n− 3d− 2) +

2
9

(−1)n−d

2n
, for n ≥ d.

Hence for fixed d, as n→∞,

E(n) =
2−d

3
n+O(1) .

Previously Chinn, Heubach and Grimaldi found the number of ascents for d = 0 and d = 1 in (2). The
case d = 0 corresponds to the number of rises plus the number of levels, whereas d = 1 corresponds to
the number of rises.

3 Variance of the number of ascents of size d or more in compo-
sitions

To find the variance we first need to compute ∂2F (z,v)
∂v2

∣∣
v=1

. In addition to formulas (2.3) to (2.6) from
Section 2 we require

∂2τ(z, v)
∂v2

∣∣∣
v=1

=
∑
i≥3

(−1)i−1zi (i− 1)(i− 2)(1− v)i−3zd(
i
2)

(1− z)(1− z2) · · · (1− zi)

∣∣∣∣∣
v=1

=
2z3(1+d)

(1− z)(1− z2)(1− z3)
.

Then
∂2F (z, v)
∂v2

∣∣∣∣
v=1

=
(1− τ)∂

2τ(z,v)
∂v2 + 2τ ′ 2

(1− τ)3

∣∣∣∣
v=1

.

Computing the nth coefficient of the second derivative amounts to expanding and combining binomial
series.
Finally, after adding the expectation and subtracting the square of the expectation we find
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Theorem 2 The variance of the expected number of ascents of size d or more in the compositions of n is

V(n) := 2−d
{
−2
9

+
n

3
− d

3

}
+ 2−2d

{
80
81

+
10d
9

+
d2

3
− 13n

27
− 2nd

9

}
+ 2−3d

{
−352

441
+

8n
21
− 8d

7

}
+ 2−n

{
(−1)n

(
5
27

+
2n
27
− 4d

27

)
− 1

3
+ 2α(n)

}
+ 2−n−d(−1)n−d

{
4d
27
− 4n

27
+

8
81

}
− 2−2n 4

81
,

for n ≥ 3d, where

α(n) =


26
147 if n = 3m,
−4
147 if n = 3m− 2,
−22
147 if n = 3m− 1, for m ∈ N.

For fixed d we have

V(n) ∼ n
{

2−d

3
− 2−2d

(
13
27

+
2d
9

)
+

2−3d 8
21

}
as n→∞ .

4 Limiting distribution
We are interested in finding the limiting distribution of our random variable. We make use of Theorem
IX.9 from Flajolet and Sedgewick (5). A short version is as follows:

Let F (z, u) be a bivariate function that is bivariate analytic at (z, u) = (0, 0) and has nonnegative
coefficients there. Assume that F (z, 1) is meromorphic in z ≤ r with only a simple pole at z = ρ for
some positive ρ < r. Then, under further conditions stated in (5), the random variable with probability
generating function

pn(u) =
[zn]F (z, u)
[zn]F (z, 1)

converges in distribution to a Gaussian variable with a speed of convergence that is O(n−1/2).
Let us introduce the notation

ci,j :=
∂i+j

∂zi∂uj
C(z, u)

∣∣∣∣
(ρ,1)

. (4.1)

From Theorem IX.9 we need to show that

c0,1c1,0 6= 0. (4.2)

In addition, we must show that

ρc21,0c0,2 − ρc1,0c1,1c0,1 + ρc2,0c
2
0,1 + c20,1c1,0 + c0,1c

2
1,0ρ 6= 0. (4.3)

For our specific problem

F (z, v) =
1

1− τ(z, v)
≡ B(z, v)
C(z, v)

,
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so that

C(z, v) = 1−
∑
i≥1

(−1)i−1zi(1− v)i−1zd(
i
2)

(1− z)(1− z2) · · · (1− zi)
.

We have ρ(1) = ρ = 1
2 and using (4.1),

c0,1 = −21−d

3
, c1,0 = −4, c1,1 = −3d+ 11

9
22−d, c0,2 = −24−3d

21
, c2,0 = −16.

We are now in a position to check the conditions listed in the theorem.
Equation (4.2) is satisfied since

c0,1c1,0 = 8
2−d

3
6= 0.

Equation (4.3) is equivalent to

24−3d

(
23

21
+ 2d

3d+ 11
27

− 21+d

9
− 22+2d

9

)
6= 0

for non-negative integer values of d. Thus we deduce

Theorem 3 The distribution of the number of ascents of size d or more in compositions of n converges to
a Gaussian distribution with a speed of convergence of O(n−1/2) with the mean µn and the variance σ2

n

are as given in Theorems 1 and 2.

Remark In Flajolet and Sedgewick (5) it is also shown that under the conditions of Theorem IX.9, the
mean µn and variance σ2

n are of the form

µn = m

(
ρ(1)
ρ(u)

)
n+O(1), σ2

n = v

(
ρ(1)
ρ(u)

)
n +O(1),

where

m(f) =
f ′(1)
f(1)

and v(f) =
f ′′(1)
f(1)

+
f ′(1)
f(1)

−
(
f ′(1)
f(1)

)2

.

These asymptotic expressions are easily checked to be in agreement with the exact results for the mean
and variance found previously in Theorems 1 and 2.

5 Size of the maximum ascent
Given a composition a1 a2 . . . ak of nwe shall study the size of the maximum ascent, that is, the parameter
X where

X := max{ai+1 − ai | 1 ≤ i < k and ai+1 ≥ ai} .

We assign a value of 0 if no pair of consecutive integers satisfies this condition. The mean value of X is
given by the expression

n∑
d=0

P(X > d) =
n∑
d=0

(1− P(X ≤ d)) .
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Therefore for each fixed d we need to compute the probability that a composition of n has maximum
ascent X ≤ d.
We already know the generating function for compositions with no ascents of size d or more, which we
will denote by Fd(z). For this we use (2.3) with d+ 1 instead of d and v = 0, giving

Fd+1(z) :=
1

1− τ(z, 0)
=

1

1−
∑
i≥1

(−1)i−1z
i+(d+1)(i2)

(1−z)(1−z2)···(1−zi)

.

We want the generating function of compositions with X ≤ d . This is equivalent to the generating
function of the compositions with no ascent of size d + 1 or more, which is Fd+1(z). We now need to
study the dominant poles, ρd, of Fd+1(z), that is, the dominant zeros of

1−
∑
i≥1

(−1)i−1zi+(d+1)(i2)

(1− z)(1− z2) · · · (1− zi)
= 0 . (5.1)

We follow the approach used by Gourdon and Prodinger in (6), which is also analogous to the one found
in (10). Now for |z| ≤ 3

5 , say, using the first two terms of the series above, the root ρd above can be
approximated by the smallest positive root of

1− z

1− z
+

zd+3

(1− z)(1− z2)
+O(z3d) = 0 ,

since the omitted terms in (5.1) are O
(
z3d
)
. This error will be majorized by subsequent O terms below.

That is we want the root of

1− 2z +
zd+3

1− z2
+O(z3d) = 0 .

The bootstrapping method gives a suitable approximation to ρd.
Let ρd := 1

2 + εd, then

1− 2
(

1
2

+ εd

)
+

4
3

2−d−3 = O

((
3
5

)3d
)

+O

(
d

22d

)
,

from which we find

εd =
2−d

12
+O

(
d

22d

)
as d→∞.

As Fd+1(z) has a simple pole at ρd, and by means of Rouche’s Theorem, see IX.6.2 in (5), by comparing
| 1
Fd+1(z)

| with |1− z
1−z | on the circle |z| = 3

4 , we see that 1
Fd+1(z)

has no other zeros in |z| ≤ 3/4.

It follows that

[zn]Fd+1(z) = [zn]
Ad

1− z/ρd
+O

((
4
3

)n)
with Ad =

1

ρd
dτ(z,0)
dz

∣∣
z=ρd

=
2 +O(2−d)
dτ(z,0)
dz

∣∣
z=ρ

,
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where from (2.4) as d→∞

dτ(z, 0)
dz

∣∣
z=ρ

=
∂

∂z

∑
i≥1

(−1)i−1zi+(d+1)(i2)

(z; z)i

∣∣∣∣∣
z=ρ

=
(

z

(1− z)2
+O(zd)

) ∣∣∣
z=ρ

= 4 +O(2−d) .

Therefore as d → ∞, Ad = 1
2 + O(2−d) . Let us now restrict our attention to those d for which n−3 ≤

2−d ≤ logn
n . The probability that X ≤ d is then approximated as n→∞ by

Ad ρ
−n
d = Ad

(
1
2

+
2−d

12
+O

(
d

22d

))−n
= 2n−1 exp

(
−2−d n

6

)(
1 +O

(
2−d) +O

(
nd 2−2d

))
= 2n−1 exp

(
−2−d n

6

)(
1 +O

(
log3 n

n

))
.

So after dividing by 2n−1 we have for n→∞ and n−3 ≤ 2−d ≤ logn
n ,

P(X ≤ d) = exp
(
− n

2d 6

)(
1 +O

(
log3 n

n

))
. (5.2)

Turning now to smaller values of d ≥ 1, that is, d such that 2−d > logn
n , a similar computation shows

that (5.2) remains valid in this range, although now the probabilities P(X ≤ d) are small, since for such
d, exp

(
− n

2d 6

)
= O( 1

n ) as n→∞. Finally we must consider larger values of d ≤ n that is, d for which
n−3 > 2−d, or equivalently, d ≥ 3 log2 n. In this range we find that

P(X ≤ d) = 2n−1 exp
(
−2−d n

6

)(
1 +O

( 1
n2

))
. (5.3)

In view of the O estimates in (5.2) and (5.3) we may deduce that the mean value of X satisfies

Emax(n) :=
n∑
d=0

(1− P(X ≤ d)) =

(
n∑
d=0

(
1− exp

(
− n

2d 6

)))(
1 +O

(
log4 n

n

))
as n→∞.

We now use the Mellin transform, (see (3)), to estimate the function

f(t) =
∑
d≥0

(
1− exp

(
− t

2d 6

))
as t→∞.

The Mellin transform of f(t) is

f ∗(s) = −
∑
d≥0

(
2d 6

)s
Γ(s) = −Γ(s) 6s

1− 2s
for − 1 < <s < 0 .

Next we apply the Mellin inversion formula to recover f(t):

f(t) = − 1
2πi

∫ − 1
2+i∞

− 1
2−i∞

Γ(s)
6s

1− 2s
t−s ds .
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We then shift the line of integration to the right and collect the (negative) residues at s = 2kπi
L where

k ∈ Z and L = log 2.

f(t) =
∑
k≥0

Res Γ(s)
6s

1− 2s
t−s

∣∣∣∣∣
s= 2kπi

L

+
1

2πi

∫ 1
2+i∞

1
2−i∞

Γ(s)
6s

1− 2s
t−s ds .

To evaluate the residue at the double pole s = 0, we need the expansion of the terms in the integrand to
two terms as s→ 0, (here γ denotes Euler’s constant),

Γ(s) ∼ 1
s
− γ ,

6s ∼ 1 + s log 6 ,

t−s ∼ 1− s log t ,
1

1− 2s
∼ 1

2
− 1
sL

.

Hence the (negative) residue at s = 0 is

[s−1]
{(

1
2
− 1
sL

)
(1 + s log 6)

(
1
s
− γ
)

(1− s log t)
}

= log2 t−
1
2
− log2 3 +

γ

L
.

For the residue at s = 2kπi
L for k 6= 0, let ε = s− 2kπi

L we have

[ε−1]Γ
(

2kπi
L

)(
t

6

)− 2kπi
L −1

εL
= − 1

L
Γ
(

2kπi
L

)(
t

6

)− 2kπi
L

.

The remainder integral 1
2πi

∫ 1
2+i∞
1
2−i∞

is of smaller order, so we have found

Theorem 4 The mean value of the size of the greatest ascent in the compositions of n satisfies as n→∞,

Emax(n) ∼ log2 n−
1
2
− log2 3 +

γ

L
− δ

(
log2

n

6

)
where δ(x) is a continuous periodic function of mean zero, period one and small amplitude with Fourier
series

δ(x) =
1
L

∑
k 6=0

Γ
(
−2kπi

L

)
e2kπix .

Computations show that δ(x) < 1.7 × 10−6, as a result of the fast decrease of the gamma function with
imaginary argument.
The diagram below shows the plot of δ(log2

n
6 ) for 1 ≤ n ≤ 100.



10 Charlotte Brennan and Arnold Knopfmacher

20 40 60 80 100

-1.5·10-6
-1·10-6
-5·10-7

5·10-7
1·10-6

1.5·10-6

Fig. 1: δ(log2
n
6
) for 1 ≤ n ≤ 100
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