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The construction of the universal ring of Witt vectors is related to Lazard’s factorizations of free monoids

by means of a noncommutative analogue. This is done by associating to a code a specialization of

noncommutative symmetric functions.
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1 Introduction

Among Ernst Witt’s many contributions to mathematics, one finds two apparently unrelated
ideas, both published in 1937 in two consecutive issues of Crelle’s journal. The first one, the
ring of Witt vectors [19] (a generalisation of p-adic numbers), solves a problem in commutative
algebra, whilst the second one, the introduction of the free Lie algebra [20], definitely pertains to
noncommutative mathematics.

The aim of this note is to point out a close connection between both constructions, through
the notion of noncommutative symmetric functions. What comes out is that the natural non-
commutative analogues of the symmetric functions classically associated to the construction of
universal Witt vectors can be related to another classical topic in the combinatorics of free Lie
algebras: Lazard’s factorizations of free monoids. This relation manifests itselfs when the ele-
mentary noncommutative symmetric functions are specialized by means of a code.

Our notations will be those of [11] and [7]. If S is a set of words, we denote by S =
∑

w∈S w
its characteristic series.

2 Noncommutative Witt symmetric functions

Let us first recall the construction of the universal ring W (R) of Witt vectors associated to a
commutative ring R. This is not Witt’s original construction, but a simpler one that he found
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much later, and that he communicated to S. Lang, who published it as a series of exercises in his
famous textbook of Algebra [9].

The ring W (R) can be characterized by the following properties [4] (see also [8, 5]):

(W1) As a set, W (R) = {a = (an)n≥1 , an ∈ R}, and for any ring homomorphism f : R → R′,
the map W (f) : a 7→ (f(an))n≥1 is a ring homomorphism.

(W2) The maps wn : a 7→∑

d|n da
n/d
d are ring homomorphisms W (R) → R.

Operations on Witt vectors are better understood in terms of symmetric functions. Let
X = {xn , n ≥ 1} be an infinite set of commuting indeterminates (called here an alphabet),
and following [14], define symmetric functions qn(X) by

∏

n≥1

1

1 − tnqn(X)
= σt(X) :=

∑

n≥0

tnhn(X) (1)

where the complete homogeneous functions hn(X) are defined by (cf. [11])

σt(X) =
∏

n≥1

(1 − txn)−1.

The qn’s are connected to the power-sums

pn(X) =
∑

i

xn
i ,

by

pn =
∑

d|n

dq
n/d
d , (2)

and condition (W2) can be regarded as expressing the familiar properties of power sums

pn(X + Y ) = pn(X) + pn(Y ),

pn(XY ) = pn(X)pn(Y ),

where we use the λ-ring notation (an alphabet is identified with the formal sum of its elements).
The transformation (1) is also used in [2, 12].

Reutenauer [14] studied the symmetric functions qn(X) and made the conjecture that for n ≥ 2,
(−qn) is Schur positive. This conjecture was proved in [17], in a generalised noncommutative
form. Denoting as in [7] the noncommutative complete homogeneous symmetric functions of an
alphabet A by Sn(A), one introduces noncommutative Witt symmetric functions Qn(A) by the
identity

→
∏

n≥1

1

1 − tnQn(A)
= σt(A) :=

∑

n≥0

tnSn(A). (3)

Then, it is proved in [17] that for n ≥ 2, (−Qn) is a positive, multiplicity free, sum of noncom-
mutative ribbon Schur functions RI .
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3 Noncommutative symmetric functions associated to a code

Let A be an alphabet and C ⊂ A+ a code, i.e. a minimal generating set of a free submonoid C∗

in A∗. Suppose we have a decomposition of C as a disjoint union

C =
∐

n≥1

Cn, (4)

of possibly empty subsets Cn. In what follows, we shall in general assume that Cn = C ∩ An,
but this restriction in not necessary. In any case, we will consider that the elements of Cn have
degree n.

We will denote by l(w) the length of a word w. Recall that, as a graded algebra, Sym =
Q〈Λ1, Λ2, . . . 〉 where Λn has degree n. We can define a specialization Sym[C] of the algebra of
noncommutative symmetric functions by setting

Λn[C] = (−1)n−1Cn . (5)

With this choice of signs, the complete symmetric functions are then given by

Sn[C] =
∑

w∈(C∗)n

w , (6)

the sum of all elements of degree n in C∗. We call C-Witt symmetric function the value Qi[C] of
Qi under this specialization. Let us give the first Qi[C] for three examples

Example 1 The Fibonacci prefix code C = {b, ab}.

Q1[C] = b
Q2[C] = ab
Q3[C] = ab2

Q4[C] = ab3

Q5[C] = ab2ab + ab4

Q6[C] = ab3ab + ab5

Q7[C] = ab6 + ab2(ab)2 + ab4ab + ab3ab2

Example 2 The infinite prefix code C = ba∗.

Q1[C] = b
Q2[C] = ba
Q3[C] = ba2 + bab
Q4[C] = bab2 + ba3 + ba2b
Q5[C] = bab2a + bab3 + ba2b2 + ba2b2 + ba4 + ba2ba
Q6[C] = ba4b + ba3b2 + ba2b2a + bab3a + bab4 + ba3ba + ba5 + ba2b3
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Example 3 The Dyck code D (for the Dyck language D∗ = 1 + aD∗bD∗.)

Q1[D] = Q3[D] = Q5[D] = Q7[D] = 0
Q2[D] = ab
Q4[D] = aabb
Q6[D] = aaabbb + aababb + aabbab
Q8[D] = aaaabbbb + aaababbb + aabaabbb + aaabbbab + aaabbabb
+aabbabab + aabababb + aababbab

On these examples, we remark that each Qi is multiplicity free and is the characteristic series of
a code. In the following section, we prove that it is always the case and give a characterization
of these codes in terms of Lazard’s factorizations.

4 Witt symmetric functions and factorization

4.1 Lazard elimination process

We recall that a factorization of a monoid M is an ordered family of monoids F = (Mi)i∈I such
that each element m ∈ M admits an unique decomposition

m = mi1 · · ·mik
(7)

where i1 > · · · > ik and mi1 ∈ Mi1 , . . . , mik
∈ Mik

. In the case of free monoids M = A∗, this
property can be stated in terms of generating series

∑

w∈A∗

w =

←
∏

i

∑

w∈Mi

w (8)

A submonoid M′ ⊂ M can be characterized by its generating set M′ \ M′2. In the sequel, a
factorization will be denoted by the sequence of the generating sets of its components, and for a
factorization F = (Ci)i∈I of A∗ into free submonoids, (8) reads

1

1 − A
=

←
∏

i

1

1 − Ci

. (9)

Factorisations of free monoids have been extensively studied and the reader can refer to [3, 18] for
a survey. A simple but relevant example is a Lazard bisection: considering a subalphabet B ⊂ A,
one has

A∗ = B∗((A \ B)B∗)∗. (10)

The pair (B, (A \ B)B∗) is a factorization of A∗ (cf.[18, 3], and [15] for applications to free Lie
algebras). Now, from (10) we can obtain a trisection (i.e. a factorization in three submonoids)
by iterating the process on the left or the right factor, and so on. Factorisations which can
be generated applying only Lazard bisections on the right factors will be called Lazard right

compositions. This is a simple particular case of a locally finite right regular factorization [18].
Let A be an alphabet (possibly infinite) and ω : A → N \ 0 a weight function. This function
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can be extended uniquely as a morphism ω : A∗ → (N, +). We can associate a factorization
F(A, ω) to this weight as follows. Let (Zi)i≥1 and (Ci)i≥1 be the sequences of codes defined by
the recurrence relations

1. Z1 = A,

2. for each integer i > 0, Ci = Zi ∩ {w ∈ A∗|ω(w) = i},

3. for each integer i > 0, Zi+1 = (Zi \ Ci)C
∗
i .

The sequence F(A, ω) = (Ci)i∈I obtained by omitting the empty elements in (Ci)i≥1 is a Lazard
right composition. Since each code C ∈ A∗ admits the length of words as weight function, we
define the right length factorization F(C∗) of C∗ by

F(C∗) = F(C, l). (11)

We can remark that a code is homogeneous if and only if F(C∗) = (C).

4.2 Computation of the C-Witt symmetric functions

The equality between formal series (3) can be rewritten as

1

1 − C
=

1

1 − Q1

1

1 − Q2

1

1 − Q3
· · · , (12)

and in this section, we prove that this factorization of series is the weight right factorization of
C∗.

In a more general setting, T. Scharf and one of the authors [17], gave a recursive algorithm
for computing the Q′ns. Recall that the algebra Sym of noncommutative symmetric functions
is the free associative algebra Q〈S1, S2, · · · 〉 generated by an infinite sequence of non commuting
variables Sn, graded by the weight function ω(Sn) = n. If I = (i1, · · · , in), one defines

S̃I = (−1)nSi1 · · ·Sin
. (13)

The term Qi can be computed following the rules given in [17]:

1. F1 = −
∑

i S̃i ,

2. Fn+1 = Fn + Qn(1 − Fn),

3. Qn is the term of weight n in Fn multiplied by −1.

Setting Zn = 1 − (1 − Fn)−1, we obtain

Fn+1 = 1 − (1 − Zn+1)
−1, (14)

and
Fn + Qn(1 − Fn) = 1 − (1 − Zn)−1 + Qn(1 − Zn)−1

= 1 − (1 − Qn)(1 − Zn)−1.
(15)
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This implies
Zn+1 = 1 − (1 − Zn)(1 − Qn)−1

= (Zn − Qn)(1 − Qn)−1.
(16)

Following [17], each Qi is multiplicity free on the S̃I .
Let Zi[C] and Fi[C] be respectively the values of Zi and Fi under the specialization Sn = Sn[C].

The definition of noncommutative complete functions gives

σ1[C] =
∑

Sn[C] =
1

1 − C
. (17)

Hence, one has

Z1[C] = 1 − (σ1[C])−1 = C, (18)

Q1[C] = S1[C] = C1, (19)

and

Z1[C] − Q1[C] = C − C1. (20)

It follows that Z1[C] and Q1[C] are the characteristic series of the codes Z1 = C and Q1 = C1.
By induction, for each n > 0 the series Zn+1[C] and Qn+1[C] are the characteristic series of
Zn+1 = (Zn \ Qn)Q∗n and Q∗n = Zn ∩ A≤n. Hence, the following statement holds.

Proposition 1 Let C be a code. Each C-Witt symmetric function Qi[C] is the characteristic

series of a code, and the sequence obtained by deleting the empty set from (Q1, Q2, . . . , Qn, . . . )
is the right length factorization of C∗.

Example 4 The sequence (a, Q1[ba
∗], Q2[ba

∗], . . . ) is a factorization of A∗. The same method is
applicable to compute homogeneous factorizations of non-homogeneous alphabets. For example,
considering the alphabet A = N \ 0 with the weight ω = id, one finds

Q1[A] = 1,
Q2[A] = 2,
Q3[A] = 21 + 3,
Q4[A] = 211 + 31 + 4,
Q5[A] = 2111 + 212 + 311 + 32 + 41 + 5,
Q6[A] = 21111 + 51 + 2112 + 6 + 3111 + 312 + 42 + 411.

It is easy to see that this can be obtained from Example 2 by the morphism ban → n + 1.

One has the following decomposition

Corollary 2 Let w ∈ C∗, then either w ∈ C either there exist w1, w2 ∈ C∗ such that w = w1w2,

with ω(w2) < ω(w1) < ω(w). Furthermore, if w1 6∈ C then w1 = w′1w
′′
1 with w′1, w

′′
1 ∈ C∗ and

ω(w′′1 ) ≤ ω(w2).

This follows from the standard bracketing process of regular factorizations, which is described in
[18].
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4.3 Noncommutative elementary symmetric functions and Lazard elimination

The link between Lazard elimination and noncommutative Witt symmetric functions can be
better understood in terms of elementary symmetric functions. The generating function of non-
commutative elementary symmetric function is

λt =
∑

k≥0

Λktk. (21)

These are related to noncommutative complete functions by

σt =
1

λ−t
=

1

1 − Λ1t + Λ2t2 − · · · + (−1)nΛntn + · · · . (22)

If we set Λ̃n = (−1)n+1Λn, the series σ1 can be considered as the characteristic series of the free
monoid Λ∗ = {Λ̃1, Λ̃2, . . . , Λ̃n . . . }∗. We endow this monoid with the weight function defined by
ω(Λ̃n) = n. Then,

Theorem 3 One has

F(Λ, ω) = (Q1[Λ], Q2[Λ], . . . ) = (Q1, Q2, . . . ) (23)

This provides a simple algorithm for computing the decomposition of the noncommutative sym-
metric Witt functions on the basis of elementary symmetric functions. Let us gives the compu-
tation of the first Qi’s,

Q1 = Λ1,
Q2 = −Λ2,
Q3 = −Λ2Λ1 + Λ3,
Q4 = −Λ2Λ1Λ1 + Λ3Λ1 − Λ4,
Q5 = −Λ2Λ

3
1 + Λ2Λ1Λ2 + Λ3Λ1Λ1 − Λ3Λ2 − Λ4Λ1 + Λ5,

Q6 = −Λ2Λ
4
1 + Λ5Λ1 + Λ2Λ1Λ1Λ2 − Λ6 + Λ3Λ

3
1 − Λ3Λ1Λ2 + Λ4Λ2

−Λ4Λ1Λ1,
Q7 = −Λ3Λ

2
1Λ2 + Λ3Λ

4
1 − Λ3Λ1Λ2Λ1 + Λ3Λ1Λ3 + Λ3Λ

2
2 − Λ4Λ

3
1

+Λ4Λ1Λ2 − Λ4Λ3 + Λ4Λ2Λ1 + Λ5Λ
2
1 − Λ5Λ2 − Λ6Λ1 + Λ7

−Λ2Λ
5
1 + Λ2Λ

3
1Λ2 + Λ2Λ

2
1Λ2Λ1 − Λ2Λ

2
1Λ3 − Λ2Λ1Λ

2
2.

(compare Examples 2 and 4).
The decomposition of the elementary functions on the basis QI = Qi1 · · ·Qin

is obtained by
inspection of the series

1

σt
= λ−t = 1 −

∑

n

Λ̃ntn =
←
∏

i

(1 − Qit
i). (24)

One finds
Λ̃n =

∑

k

(−1)k
∑

i1>···>ik
i1+···+ik=n

Qi1 · · ·Qik
. (25)
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5 Examples involving Gaudier’s ∗-multinomials

5.1 Gaudier’s ∗ multinomials

Classical (commutative) Witt vectors give rise to examples involving interesting integer sequences.
Let us recall for example the construction of ∗-multinomial coefficients and ∗-factorials given by
Gaudier in [6]. If R is a Q-algebra, there is a commutative diagram

W (R)
e−−−−→ Λ(R) = 1 + tR[[t]]

w





y





y
∂

RN
∗ ι−−−−→ R[[t]]

where

∂ =
d

dt
ln,

l(c1, · · · , cn, · · · ) =
∑

n≥1

cntn−1,

w = (w1, · · · , wn, · · · ),

e(a1, . . . , an, . . . ) =

→
∏ 1

1 − antn
.

These maps are all isomorphisms. Let i1, i2, . . . , ik be k positive integers and n = i1 + · · ·+ ik. In

[6] Gaudier has defined the ∗-multinomial coefficient ∗
(

n
i1,...,ik

)

∈ W (Q) as the Witt vector such

that wp =
(

np
pi1,...,pik

)

. In the same paper, he has defined the ∗-factorial ∗n!/n! by wp(∗n!/n!) =

1
n!

(pn)!
p!n . In particular, he has computed e(∗2!/2!) = e( 1

2 ∗
(

2
1

)

) in closed form and related it to
the Catalan numbers

e(∗2!/2!) =

(

1 +
√

1 − 4t

2

)−1

. (26)

This raised the question whether it was possible to find similar expressions for other ∗-factorials
and ∗-multinomials, and to give combinatorial interpretations.

5.2 Non-commutative analogues of 1
n
∗
(

n

1

)

Consider the Dyck code of example 3. The free monoid D∗ is a submonoid of {aa, ab, bb}∗, graded
by ρ(aa) = ρ(bb) = ρ(ab) = 1. Under the D-specialization,

Λn = (−1)n+1
∑

w∈D
ρ(w)=n

w. (27)

Recall that the noncommutative power sums of the second kind Φn are defined by

∑

n≥1

Φn
tn

n
= log σt . (28)
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If one interprets Dyck words as binary trees, the Φn can be regarded as sums over forests

Φn = n
∑

k

1

k

∑

w1,...,wk∈D

ρ(w1)+···+ρ(wk)=n

w1 · · ·wk. (29)

Example 5 The first values of Φn are
Φ1 = ab,

Φ2 = 2aabb + ab.ab,

Φ3 = 3aaabbb + 3aababb + 3
2aabb.ab + 3

2ab.aabb + ab.ab.ab,

Φ4 = 4aaaabbbb + 4aaabbabb + 4aabaabbb + 4aabababb + 4aaababbb
+2aaabbb.ab + 2aababb.ab + 2ab.aaabbb + 2ab.aababb + 4

3aabb.ab.ab
+ 4

3ab.aabb.ab + 4
3ab.ab.aabb + ab.ab.ab.ab.

See Example 3 for the first values of Qn.

Setting π(w) = 1 for all words w, one has

π(Φn) = wn(
1

2!
∗ 2!) = wn(

1

2
∗
(

2

1

)

), (30)

and one recovers (26).
More generally, for ∗ 1

n

(

n
1

)

, an easy application of the Lagrange inversion formula gives that

e

(

1

n
∗
(n

1

)

)

=
∑

k≥0

(

nk
k

)

(n − 1)k + 1
tk, (31)

is also the generating series of n-ary trees. Consider the free monoid Fn = T ∗n over the alphabet
Tn = {at} whose letters are labelled by n-ary trees and weighted by ρ(at) = E(t)/n, where E(t) is
the number of edges of t. Instead of specializing Λk as in the case n = 2, we set Sk =

∑

ρ(t)=k at.
Then, we obtain

Φk = k
∑

p

(−1)p+1

p

∑

t1,...,tp

ρ(t1)+···+ρ(tp)=k

at1 · · · atp
. (32)

Again, applying the morphism π(w) = 1, we obtain

π(Φk) = wk(
1

n
∗
(n

1

)

), (33)

that is, we recover (31). Remark that this implies the identity

∑

p

(−1)p+1

p

∑

i1+···+ip=k

∏

m

(

nim

im

)

(n − 1)im + 1
=

1

nk

(

nk

k

)

. (34)
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5.3 Combinatorial interpretations of some ∗-binomial coefficients

Remark that, as in section 5.2, the specialization Sk =
∑

ρ(t)=k+1 at gives a non-commutative
analogue of

e(∗
(n

1

)

)(z) =

∞
∑

k=1

(

nk
k

)

(n − 1)k + 1
tk−1 =

e( 1
n ∗
(

n
1

)

) − 1

z
. (35)

This last equality can be generalized as follows.

Proposition 5.1 Let p ≥ 1 and ω = e2iπ/p.

e(∗
(

np

p

)

) =
−1

z

p−1
∏

k=0

(

1 − e(
1

n
∗
(n

1

)

)

(ωkz
1
p )) (36)

=

p−1
∏

k=0

e
(

∗
(n

1

))

(ωkz
1
p ). (37)

Proof: We first prove (37), by computing

ln

(

p−1
∏

k=0

e
(

∗
(n

1

))

(ωkz
1
p )

)

=

p−1
∑

k=0

ln
(

e
(

∗
(n

1

))

(ωkz
1
p )
)

=

p−1
∑

k=0

∑

j≥1

(

jn
j

)

j
ωjkz

j
p =

∑

k≥1

(

knp
kp

)

k
zk

= ln(e
(

∗
(

np
p

))

.

Next (36) follows from the equality

e

(

∗
(

np

p

))

=

p−1
∏

k=0

e
(

1
n ∗
(

n
1

))

(ωkz
1
p ) − 1

ωkz
1
p

.

2

From [13] (Theorem 1, p.7), the series e(∗
(

np
p

)

) is the generating series of the number qm of

lattice paths from (0, 0) to ((n − 1)pm, pm) that never go above the path (↑(n−1)p→p)m (lattice
paths are represented by words over the alphabet F = {→, ↑}, where → means the elementary
horizontal path (1, 0) and ↑ the elementary vertical path (0, 1)).

Example 6 The series

e(∗
(

4
2

)

)(z) = 1 + 6z + 53z2 + 554z3 + 6362z4 + · · ·
= e(∗

(

2
1

)

)(z
1
2 )e(∗

(

2
1

)

)(−z
1
2 )

,
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is also the generating series of ordered trees on 2n nodes with every subtree at the root having an
even number of edges(see Sloane [16] ID number:A066357). See also [1] for another enumeration.

e(∗
(

6
2

)

)(z) = 1 + 15z + 360z2 + 10463z3 + · · ·
= e(∗

(

3
1

)

)(z
1
2 )e(∗

(

3
1

)

)(−z
1
2 ),

e(∗
(

6
3

)

)(z) = 1 + 20z + 662z2 + 26780z3 + · · ·
= e(∗

(

2
1

)

)(z
1
3 )e(∗

(

2
1

)

)(exp{ 2iπ
3 }z 1

3 )×
×e(∗

(

2
1

)

)(exp{ 4iπ
3 }z 1

3 ),

e(∗
(

12
3

)

)(z) = = 1 + 220z + 91498z2 + 47961320z3 + · · ·
= e(∗

(

4
1

)

)(z
1
3 )e(∗

(

4
1

)

)(exp{ 2iπ
3 }z 1

3 )×
×e(∗

(

4
1

)

)(exp{ 4iπ
3 }z 1

3 ).

One can construct noncommutative analogues of the ∗
(

np
p

)

by specializing Sm to the sum of

the words coding the lattice paths from (0, 0) to ((n − 1)mp, mp) that never go above the path
(↑(n−1)p→p)m.

Example 7 Let us consider the non-commutative analogue of ∗
(

2
1

)

. Under this specialization,
the first values of the Sn are

S1 =↑→ + →↑,
S2 =→2↑2 +(→↑)2+ →↑2→ + ↑→2↑ +(↑→)2,
S3 = →3↑3 + →2↑→↑2 + →2↑2→↑ + →2↑3→

+ →↑→2↑2 +(→↑)3 + (→↑)2 ↑→ + →↑2→2↑
+ →↑2→↑→ + ↑→3↑2 + ↑→2↑→↑ + ↑→2↑2→ + ↑→↑→2↑ +(↑→)3,

and the first values of the Λn are
Λ1 =↑→ + →↑,
Λ2 = − →2↑2,
Λ3 =→2↑→↑2 + →3↑3 .

More generally, from

Λm = (−1)m+1
m
∑

k=1

(−1)k
∑

i1+···+ik=m

Si1 · · ·Sik
,

one obtains

Λm = (−1)m+1
∑

w

w, (38)

where the sum is over all lattice paths from (0, 0) to ((n − 1)mp, mp) that never go above
(↑(n−1)p→p)m and which avoid the points ((n − 1)kp, kp) for 0 < k < m. Hence,

Φm = m
∑

w

w

c(w) + 1
, (39)

where the sum is over the lattice paths from (0, 0) to ((n − 1)mp, mp) below (↑(n−1)p→p)m, and
c(w) is the number of points ((n − 1)kp, kp) belonging to the path w, with 0 < k < m.
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Example 8 Let us consider the noncommutative analogue of ∗
(

4
2

)

. The first values of the Λn

are
Λ1 =→2↑2 +(→↑)2+ →↑2→ + ↑→2↑ + ↑→↑→ + ↑2→2,
Λ2 = −(→4↑4 + →3↑→↑3 + →3↑2→↑2 + →3↑3→↑ + →3↑4→

+ →2↑→2↑3 + →2↑ (→↑)2 ↑ + →2↑→↑2→↑ + →2↑→↑3→
+ →↑→3↑3 + →↑→2↑→↑2 + →↑→↑2→↑ + →↑→↑3→
+ ↑→4↑3 + ↑→3↑→↑2 + ↑→2↑2→↑ + ↑→2↑3→).

A natural question is whether it is possible to find similar interpretations for other ∗-binomials.

5.4 Shuffle analogues of ∗-multinomials in non commutative Witt vectors

We shall now construct another noncommutative analogue of ∗-multinomials. Let A be an al-
phabet and w1, · · · , wk be k words of respective lengths m1, . . . , mk. Let w = w1 · w2 · · ·wk and
m = m1 + · · · + mk. The shuffle w1 tt · · · tt wk contains

(

m
m1,...,mk

)

terms, and we can denote

it by
(

w
w1,...,wk

)

to emphasize this point. Then, we introduce the noncommutative Witt vector
analogue

∗
(

w

w1, . . . , wk

)

= (Q1, Q2, · · · , Qn, · · · ), (40)

given by the sequence of Witt symmetric functions under the specialization

Φn = wn
1 tt wn

2 tt · · · tt wn
k . (41)

Example 9 If wi = api , one has

∗
(

w

w1, . . . , wk

)

= (w1(∗
(

p1 + · · · + pk

p1, . . . , pk

)

ap1+···+pk ,

· · · , wn(∗
(

(p1 + · · · + pk)

p1, . . . , pk

)

an(p1+···+pk), · · · ). (42)

Sending a to 1, one recovers ∗-multinomials.
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