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Let G = (V, E) be a connected graph with a weight function w : V → Z+ and let q ≥ 2 be a positive integer.
For X ⊆ V , let w(X) denote the sum of the weights of the vertices in X . We consider the following problem
on G: find a q-partition P = (V1, V2, . . . , Vq) of V such that G[Vi] is connected (1 ≤ i ≤ q) and P maximizes
min{w(Vi) : 1 ≤ i ≤ q}. This problem is called Max Balanced Connected q-Partition and is denoted by BCPq .
We show that for q ≥ 2 the problem BCPq is NP-hard in the strong sense, even on q-connected graphs, and therefore
does not admit a FPTAS, unless P = NP. We also show another inapproximability result for BCP2. For the problem
BCPq restricted to q-connected graphs, it is known that for q = 2 the best result is a 4

3
-approximation algorithm

obtained by Chlebı́ková; for q = 3 and q = 4 we present 2-approximation algorithms. When q is not fixed (it is part
of the instance), the corresponding problem is called Max Balanced Connected Partition, and denoted as BCP. We
show that BCP does not admit an approximation algorithm with ratio smaller than 6/5, unless P = NP.

Keywords: spproximation algorithm, balanced connected partition, hardness of approximation, PTAS

1 Introduction
There are many applications in image processing, data bases, operating systems and cluster analysis [2,
5, 14, 15, 17] that can be modelled as a problem of breaking a connected graph into a certain number
of “balanced” connected subgraphs. Given an input graph G = (V,E) with weights on the vertices, we
may formalize the concept of “balancedness” as follows: find a partition of the vertex set V into q classes
V1, V2, . . . , Vq such that the weight of the ‘lightest’ class is as large as possible. The requirement that
makes the problem interesting, and also difficult, is that each class has to induce a connected subgraph
of G. This is the problem that we focus in this paper, called here Max Balanced Connected q-Partition
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Problem (BCPq), and defined formally in Section 2. We also consider a variant of this problem, denoted
as BCP, in which q (the number of desired classes) is given as part of the instance.

The design of approximation algorithms and the study of approximability properties of NP-hard combi-
natorial optimization problems are topics of research that have received much attention in the last decade.
The problem BCPq has been investigated under this perspective, but the existing results are very incipient,
and there is still much to be done to have a complete understanding of its approximability properties. This
problem is also known as Max-min q-Partition Problem [3, 4, 20].

The simpler unweighted version of BCPq is the special case of BCPq in which all vertices have weight 1.
This version will be denoted by 1-BCPq. We call attention of the reader to the fact that whenever we refer
to the problems BCPq or 1-BCPq, unless otherwise stated, we are assuming that the input graph is simply
connected. Sometimes we shall refer to these problems on graphs with higher connectivity or some other
special property. We do not use a different notation in this case, but we stress that the problem is on (or
for) such class of graphs. Thus, we may refer to BCPq on q-connected graphs or BCP2 on 3-connected
graphs.

It is easy to prove that 1-BCP2 is solvable in polynomial time for 2-connected graphs. It is also poly-
nomial for graphs in which every block has at most two articulation points [1, 7, 9, 10], and graphs in
which every block has at most p articulation points connected as a clique [1], where p is a constant. Dyer
and Frieze [8] proved that for every q ≥ 2 the problem 1-BCPq is NP-hard (even for bipartite graphs).
When the input graph has a higher connectivity, then the following result for 1-BCPq has been proved by
Lovász [13] (see also Györi [12]).

Theorem 1 (Lovász) Let G be a q-connected graph with n vertices, q ≥ 2, and let n1, n2, . . . , nq be
positive natural numbers such that n1 + n2 + . . . + nq = n. Then G has a connected q-partition
(V1, V2, . . . , Vq) such that |Vi| = ni for i = 1, 2, . . . , q.

Efficient algorithms for 1-BCPq on q-connected graphs appeared in the nineties. Initially, for the cases
q = 2 and q = 3 [23, 24]. Later, polynomial algorithms for all q ≥ 2 were also obtained [16]. In 1977,
Nakano, Rahman and Nishizeki [18] designed a linear time algorithm to find connected 4-partitions of
4-connected planar graphs [18].

For the more general weighted case, it is known that BCPq is polynomially solvable only for ladders [4]
and for trees [20]. Becker, Lari, Lucertini and Simeone [3] showed that BCPq restricted to grids Gm×n,
with n ≥ 3 is already NP-hard. They also designed approximation algorithms for which estimates for the
(relative) error are given under certain conditions; general approximation ratios are not given, except for
q = 2, for which a 3/2-approximation can be guaranteed.

For the problem BCP2 the following results have been proved: it is NP-hard on connected graphs [6],
bipartite graphs [8], and graphs with at least one block containing Ω(log |V |) articulation points [1]. In
the case of complete graphs, although apparently simpler, it is still NP-hard (a result easy to be proved).
In terms of algorithms, the best result is a 4

3 -approximation algorithm obtained by Chlebı́ková [7] in 1996.
It is not known whether BCPq admits a PTAS.

The remaining of this paper is organized as follows. In Section 2 we give some definitions and establish
the notation. In Section 3 we prove that for every q ≥ 2 the problem BCPq is NP-hard in the strong sense
even for q-connected graphs. We also show some inapproximability results: we prove that there is no
(1 + ε)-approximation algorithm for the problem BCP2, where ε ≤ 1/n2 and n is the number of vertices
of the input graph, unless P = NP. We also prove that BCP does not admit a PTAS; more precisely, we
prove that BCP does not admit an α-approximation algorithm with α < 6/5, unless P = NP. In Section 4
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we present a 2-approximation algorithm for BCP3 on 3-connected graphs. In Section 5 we generalize the
ideas of the previous section and present a 2-approximation for BCP4 on 4-connected graphs.

Some of the results we shall present here have appeared in [22]. This paper contains the proofs that
were omitted and additional new results.

2 Definitions and Notation
Let G = (V,E) be a connected graph with a weight function w : V → Z+. For simplicity, we may
also say that G is a w-weighted graph. For any subset V ′ ⊆ V , we denote by G[V ′] the subgraph of G
induced by V ′; and we denote by w(V ′) the sum of the weights of the vertices in V ′, that is, w(V ′) =∑

v∈V ′ w(v). Throughout this paper we assume that q is a positive integer, q ≥ 2. Given a connected
graph G = (V,E), a partition (V1, V2, . . . , Vq) of V such that G[Vi] is connected for i = 1, 2, . . . , q is
called a connected q-partition. The Max Balanced Connected q-Partition Problem (BCPq) consists in
finding for a given w-weighted connected graph G = (V,E), a connected q-partition (V1, V2, . . . , Vq)
that maximizes the function min{w(Vi) : 1 ≤ i ≤ q}. We say that the value min{w(Vi) : 1 ≤ i ≤ q} is
the measure of the q-partition (V1, V2, . . . , Vq). The problem BCP is a slight variant of BCPq: it differs
only in the fact that the number q of desired classes is given as part of the instance.

Let P be an optimization problem and A an algorithm for P . For any instance I of P , we denote by
A(I) the solution returned by algorithm A for I , and opt(I) the value of an optimal solution for I . Let
r : N → [1,∞). If P is a maximization problem, then we say that A is an r(n)-approximation algorithm
if A runs in polynomial time, and, for any instance I of P of size n, the ratio opt(I)/A(I) is at most
r(n). In this case, we say that A(I) is an r(n)-approximate solution for I . An algorithm A is a PTAS,
Polynomial Time Approximation Scheme (resp. FPTAS, Fully Polynomial Time Approximation Scheme),
if for any instance I of P and for any rational ε > 0, A returns a feasible solution Aε(I) such that the
ratio opt(I)/Aε(I) is at most 1 + ε in time bounded by a polynomial in |I| (resp. polynomial both in |I|
and 1/ε).

3 NP-completeness and hardness of approximation
As the problem 1-BCPq on q-connected graphs can be solved in polynomial time, a natural question is
whether this also holds for the weighted version. We prove that this is not the case. We prove in this
section that BCPq restricted to q-connected graphs is NP-complete in the strong sense. We also show
other results on the hardness of approximation of BCP2 and BCP (for arbitrary graphs).

We show first that the decision version of Max Balanced Connected 2-Partition Problem (BCP2) is
NP-complete in the strong sense for 2-connected graphs. In our proof we use similar ideas from that
presented by Galbiati, Maffioli and Morzenti [6] for connected and unweighted graphs. We note that
the result proved by Becker et al. [3] on the NP-completeness of BCP2 restricted to grids (and thus for
2-connected graphs) is not in the strong sense.

For this purpose, consider the following NP-complete problem (see [19]), denoted by X3C, which is a
variant of the Exact Cover by 3-Sets. Given a set X with |X| = 3q and a family C of 3-element subsets
of X , |C| = 3q, where each element of X appears in exactly 3 sets of C, decide whether C contains an
exact cover for X , that is, a subcollection C ′ ⊆ C such that each element of X occurs in exactly one
member of C ′.

Theorem 2 The decision version of BCP2 is NP-complete in the strong sense for 2-connected graphs.
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Proof: Given an instance (X, C) of X3C, let G = (V,E) be the graph with vertex set V = X∪C∪{a, b}
and edge set E =

⋃3q
j=1[{Cjxi | xi ∈ Cj}∪{Cja}∪{Cjb}]. Clearly, G can be constructed in polynomial

time in the size of (X, C). It is also not difficult to see that G is 2-connected (see Figure 1).
Define a weight function w : V → Z+ as follows: w(a) = 9q2 + 2q; w(b) = 3q; w(xi) = 3q for

i = 1, . . . , 3q; and w(Cj) = 1 for j = 1, . . . , 3q. Note that w(V ) = 2(9q2 + 4q). We shall prove
that C contains an exact cover for X if and only if G has a connected 2-partition (V1, V2) such that
min{w(V1), w(V2)} ≥ W/2, where W := w(V ).

Given an exact cover C ′, consider the connected 2-partition (V1, V2) of G, where V1 = {a} ∪ {Cj :
Cj 6∈ C ′} and V2 = {b} ∪ {Cj , xi : Cj ∈ C ′ and xi ∈ Cj}. Since C ′ consists of q subsets, we have
w(V1) = w(a) + 3q − q = 9q2 + 4q = W/2.

Conversely, let (V1, V2) be a connected 2-partition of G such that min{w(V1), w(V2)} ≥ W/2. Then
min{w(V1), w(V2)} = W/2. Note that a and b cannot belong to the same set Vi, because w(a)+w(b) =
9q2 + 5q > W/2. Suppose, without loss of generality, that a ∈ V1 and b ∈ V2. No vertex of X is in V1,
otherwise w(V1) ≥ w(a) + 3q > W/2. Therefore V1 contains the vertex a and some vertices of C. Since
w(V1) = W/2 = 9q2 + 4q, this implies that V1 contains exactly 2q vertices of C. Thus, V2 has precisely
q vertices of C. Since these q vertices are independent and the vertices in X ∪ {b} are also independent,
it is easy to verify that these q vertices of C belonging to V2 define an exact cover for X . 2

PSfrag replaements
a b

x1 x2 x3 x4 x5 x6C1 C2 C3 C4 C5 C6
Fig. 1: Graph obtained by the reduction given in Theorem 2 for the instance (X, C), where C = {C1, C2, . . . , C6},
C1 = {x3, x4, x5}, C2 = {x1, x2, x3}, C3 = {x1, x3, x6}, C4 = {x1, x4, x6}, C5 = {x2, x5, x6} and C6 =
{x2, x4, x5}

We can generalize Theorem 2 as follows.

Theorem 3 For every q ≥ 2, the decision version of BCPq is NP-complete in the strong sense for
q-connected graphs.

Proof: Denote by DBCPq the decision version of BCPq. Suppose q ≥ 3. We prove, by induction on q,
that the problem DBCPq−1 can be reduced to the problem DBCPq.

Let I = (G, w,m) be an instance of DBCPq−1 that consists of a (q− 1)-connected graph G = (V,E),
a function w : V → Z+ and a positive integer m. The goal is to decide whether this instance has a
solution with measure at least m.

We construct an instance I ′ = (G′, w′,m) of DBCPq that consists of a q-connected graph G′ =
(V ′, E′), with V ′ = V ∪ {v′}, where v′ /∈ V , and E′ = E ∪ {v′u : u ∈ V }, and a function w′ on the
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vertices of G′ such that: w′(v′) = w(V )/(q− 1) and w′(v) = w(v) for each v in V . It is obvious that G′

can be constructed in polynomial time in the size of I and G′ is q-connected.
We claim that the instance I of DBCPq−1 has a connected (q − 1)-partition with measure at least

m if only if the instance I ′ of DBCPq has a connected q-partition with measure at least m. In fact,
let P = (X1, . . . , Xq−1) be a connected (q − 1)-partition of G with measure at least m. In this case,
(X1, . . . , Xq−1, {v′}) is a connected q-partition of G′ with measure at least m.

Now, suppose that P ′ = (X ′
1, . . . , X

′
q) is a connected q-partition of G′ with measure m′, where m′ ≥

m. Without loss of generality, suppose that X ′
q contains v′ and w′(X ′

1) ≤ w′(X ′
i) for 2 ≤ i ≤ q−1. Since

w′(X ′
q) ≥ w′(V ′)/q, we have that m′ = w′(X ′

1). Let R = X ′
q \ {v′}. If R = ∅, then (X ′

1, . . . , X
′
q−1)

is a connected (q − 1)-partition of G with measure m′. If R 6= ∅, as G is (q − 1)-connected, we can
distribute the vertices of R among the sets X ′

i for 1 ≤ i ≤ q − 1 in such a way that the new sets X ′
i ∪Ri,

where
⋃q−1

i=1 Ri = R, induce connected subgraphs of G. In this case, (X ′
1 ∪ R1, . . . , X

′
q−1 ∪ Rq−1) is

a connected (q − 1)-partition of G with measure at least m′. Since m′ ≥ m, the proof of the claim is
complete.

To conclude the proof note that for q = 2 the statement corresponds to Theorem 2. Now for q ≥ 3, in
view of the above reduction we can conclude, by induction, that the result follows. 2

From the above result we obtain immediately the following inapproximability result for q-connected
graphs.

Corollary 1 For every q ≥ 2, the problem BCPq restricted to q-connected graphs does not admit a
FPTAS, unless P = NP.

Moving now to an inapproximability result for BCP2, we mention first the following result obtained by
Chlebı́ková [7].

Theorem 4 (Chlebı́ková) For any rational δ > 0, it is NP-hard to find in polynomial time a solution for
BCP2 with an absolute error guarantee of n1−δ , where n is the number of vertices of the input graph G.

We note that the approximation measure mentioned in the above result is the absolute error. This lead
us to ask what happens if we consider the ratio bound measure. A result we obtained in this direction is
the following.

Theorem 5 There is no (1 + ε)-approximation algorithm for the problem BCP2, where ε ≤ 1/n2 and n
is the number of vertices of the input graph, unless P = NP.

Proof: Suppose there exists an algorithm A for BCP2, on graphs with n vertices that is an (1 + ε)-
approximation, where ε ≤ 1/n2. We show that this algorithm can be used to solve the X3C problem,
obtaining a contradiction, unless P = NP.

Let (X, C) be an instance of the X3C problem where C = {C1, C2, . . . , C3q} is a family of subsets
of X = {x1, x2, . . . , x3q}. Construct a graph G = (V,E) as follows. Set V = C ∪ X ∪ {a, b} and
E =

⋃3q
j=1[{Cjxi | xi ∈ Cj} ∪ {Cja} ∪ {Cjb}]. Assign weights w(v) to the vertices v of G as follows:

w(a) = 6q3 + q2; w(b) = 2q2; w(Cj) = q for j = 1, . . . , 3q; and w(xi) = 2q2 for i = 1, . . . , 3q.
Observe that w(V ) = 2(6q3 + 3q2) and |V | = 6q + 2.

Recall that the measure of a connected 2-partition (V1, V2) of G is min{w(V1), w(V2)}.
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Claim 1 If there exists a subfamily C ′ of C that covers X exactly, then G has a connected 2-partition
with measure w(V )/2.

Proof: Given an exact cover C ′ of X , consider the connected 2-partition (V1, V2) of G, where
V1 = {a} ∪ (C \ C ′) and V2 = {b} ∪ X ∪ C ′. Clearly, we have that w(V1) = 6q3 + 3q2 =
w(V )/2 = w(V2).

Claim 2 If G has a connected 2-partition (V1, V2) with measure at least w(V )/2−q+1, then there exists
a subfamily of C that covers X exactly.

Proof: Let (V1, V2) be a connected 2-partition of G with measure m, such that m ≥ w(V )/2−q+1.
Observe that a and b cannot belong to the same set Vi (i = 1, 2). Otherwise, a, b and Cj for some
j ∈ {1, 2, . . . , 3q} would belong to the same set and thus the weight of this set would be at least
6q3 + 3q2 + q = w(V )/2 + q. But, then m ≤ w(V )/2− q, a contradiction.

Suppose that a ∈ V1 and b ∈ V2. Using a similar counting argument, we can prove that X ⊆ V2. As
the subgraph induced by V2 has to be connected, we have |C ∩ V2| ≥ q. But |C ∩ V2| > q implies
that |C∩V1| ≤ 2q−1. In this case, w(V1) ≤ 6q3 +q2 +(2q−1)q = 6q3 +3q2−q = w(V )/2−q,
and we have a contradiction again. Thus |C ∩ V2| = q, and hence C ∩ V2 covers X exactly.

Now let us show that, using the algorithm A (mentioned at the beginning of this proof), it is possible to
solve the X3C problem. Let A′ be the following algorithm for X3C. Given an instance (X, C), construct
a graph G, as described above. Now, apply the algorithm A to G. If this algorithm finds a connected
2-partition with measure at least w(V )/2− q + 1, then return the message “C has an exact cover.” If the
connected 2-partition found has measure smaller than w(V )/2− q + 1, then return the message “C does
not have an exact cover.”

Clearly, the algorithm A′ solves the X3C problem. Indeed, suppose first that C has an exact cover.
Then, by Claim 1, G has a connected 2-partition with measure w(V )/2. Since the algorithm A is a
(1 + ε)-approximation, where ε ≤ 1/n2 and n = |V |, then A returns a solution with measure m ≥
(n2/(n2 + 1)) opt. As opt = w(V )/2, it follows that

m ≥
(

n2

n2 + 1

)
w(V )

2
=

(
1− 1

n2 + 1

)
w(V )

2
=

w(V )
2

− w(V )
2(n2 + 1)

.

Since n = 6q + 2 and w(V ) = 2(6q3 + 3q2), we have that w(V )/2(n2 + 1) < q. Thus, m ≥
w(V )/2− q + 1.

Suppose now that C does not have an exact cover. Then, by Claim 2 the graph G has only solutions
with measure smaller than w(V )/2 − q + 1. In this case, obviously the algorithm A returns a solution
with measure smaller than w(V )/2− q + 1.

As the construction of G can be done in polynomial time in the size of (X, C), and the algorithm A
is polynomial in the size of G, it follows that A′ is polynomial in the size of (X, C). This concludes the
proof of the theorem. 2

This is —to our knowledge— the strongest inapproximability result for BCP2.

All the results shown so far are on the problem BCPq. When q is part of the instance, that is, for the
problem BCP, the following stronger inapproximability result can be obtained.
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Theorem 6 The problem BCP does not admit an α-approximation algorithm with α < 6/5, unless
P = NP.

Proof: We show a reduction from X3C to BCP, with the following property. Given an instance I of X3C,
we construct an instance I ′ =

(
G = (V,E), w, Q

)
of BCP such that: either I ′ has an optimal solution

with measure w(V )/Q if I has an exact cover, or it has an optimal solution with measure 5
6w(V )/Q, if I

does not have an exact cover.
Let I = (X, C) be an instance of X3C, where C = {C1, C2, . . . , C3q} is a family of subsets of X =

{x1, x2, . . . , x3q}. Let ε > 0 be a small number. Construct an instance I ′ = I ′(ε) =
(
G = (V,E), w, Q

)
of BCP in the following way:

• Take Q = 10q.

• For each xi in X , let H(xi) be the graph with 16 vertices, we will call gadget, defined as follows
(see Figure 2). It consists of 3 vertical paths of length 3, say P1, P2 and P3, all ending at a common
vertex xi, and internally vertex-disjoint. Each such a path Pj starts at a vertex named ti,ij . The start
vertices ti,i1 , ti,i2 , ti,i3 correspond to the 3 sets Ci1 , Ci2 , Ci3 that contain xi. These vertices will
be referred as t-vertices. For each of the 3 possible choices of two paths (among P1, P2 and P3),
we attach two other new vertices, as follows. Let Pj = (ti,ij , zi,j , yi,j , xi), for j = 1, 2, 3. Take
two new vertices li,1 and ri,1 and attach each of them to the vertices yi,1 and yi,2; take two other
new vertices li,2 and ri,2 and attach each of them to the vertices zi,2 and yi,3; take two other new
vertices li,3 and ri,3 and attach each of them to the vertices zi,1 and zi,3.

ti,i1 ti,i2 ti,i3

li,3

li,2

li,1

ri,3

ri,2

ri,1

yi,3

yi,2

yi,1

zi,3

zi,2

zi,1

P1 P2 P3

xi

Fig. 2: The gadget H(xi)

• Let G = (V,E) be the graph obtained from the union of the gadgets H(xi), i = 1, . . . , 3q with
some additional 3q vertices and 9q edges, in the following way. Let v1, v2, . . . , v3q be the additional
vertices, where each vi corresponds to a set Ci of the instance I of X3C. Now, whenever there is
a set Cp = {xi, xj , xk} in the instance I , add three edges linking vertex vp to the vertices ti,p,
tj,p and tk,p of the gadgets H(xi), H(xj), and H(xk), respectively. The vertices vj will be called
v-vertices. In Figure 3 we show the graph G that we obtain for the instance of X3C mentioned in
Figure 1.

• Let n be the number of vertices of the graph G (note that n = 51q), and let a be an integer such that
a ≥ n/ε.
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• The weight function w : V → Z+ is defined as follows. We assign weight 2a to the vertices xi;
weight 3a to the vertices li,j and ri,j , i = 1, . . . , 3q, j = 1, 2, 3; and weight 1 to the remaining
vertices. Note that each gadget has weight 20a + 9 and w(V ) = (60a + 30)q.

v1 v2
v3 v4 v5

v6

x1 x2 x3 x4 x5 x6

t1,2 t1,3 t1,4 t2,2 t2,5 t2,6 t3,1 t3,2 t3,3 t4,1 t4,4 t4,6 t5,1 t5,5 t5,6 t6,3 t6,4
t6,5

Fig. 3: The graph G obtained for the instance of X3C mentioned in Figure 1

In what follows, we refer to the connected subgraphs induced by a connected partition of the graph G
as the connected classes.

The idea behind the gadget H(xi) is the following: if the instance I of X3C has an exact cover, we want
to ensure that the instance I ′ of BCP will have an optimal connected Q-partition with measure close to
6a. Such an optimal connected partition will consist of 10q connected classes: q of them are “induced” by
an exact cover for I , and the other 9q connected classes are those containing precisely one pair of vertices
of type li,j and ri,j that belong to a same gadget. Note that, since w(V ) = (60a + 30)q, the measure of
an optimal connected 10q-partition will not exceed 6a + 3.

The role of the gadgets is also to guarantee that, if I does not have an exact cover, then an optimal
connected 10q-partition for the instance I ′ will have a measure smaller than 5a + O(1).

We now make more precise and prove the statements above about the instances I and I ′.

Claim 3 If the instance I has an exact cover, then I ′ has a solution with measure 6a + O(1).

Proof: Let Ci1 , Ci2 , . . . , Ciq be an exact cover for I . Construct a connected 10q-partition for the
instance I ′ as follows. First, construct q connected classes by considering the q sets in the exact
cover. (For example, for the instance I corresponding to the graph shown in Figure 3, consider
the exact cover consisting of C3 and C6.) Each of these connected classes consists of a vertex
vj corresponding to a set Cij together with the 3 edges leaving it, each of them extended (in a
connected way) with the unique vertical path that starts at one of its extremes (a t-vertex). Clearly,
each of these q connected classes has weight 6a + 10. Consider the graph G′ obtained from G
after removing the vertices in the q connected classes we have constructed so far. The other 9q
connected classes can be obtained from G′ as follows: first, in the remaining part of each gadget
H(xi), construct 3 sets of paths, each one linking pairs of vertices of type li,j and ri,j . Note that
this is possible, as only the vertices of one vertical path in each gadget were removed. Now, put
each of the remaining vertices (all of weight 1) in any of the 10q connected classes constructed so
far, so as to obtain a connected 10q-partition of G. Clearly, all the connected classes have weight at
least 6a + 1.
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Claim 4 If I ′ has a solution with measure at least (5 + ε)a, then I has an exact cover.

Proof: Let (V1, V2, . . . , VQ) be a solution of I ′ with measure at least (5 + ε)a. Since n ≤ εa, the
connected classes in this solution all have to contain one or more vertices with weigth 2a or 3a, and
therefore the weight of any connected class G[Vj ] must satisfy Kj a ≤ w(Vj) < Kj a + εa, for
some integer Kj .

Since the average weight of a connected class is 6a + 3, if there existed a connected class with
weight at least 7a, then there would exist another connected class with weight at most 5a + 6, and
therefore smaller than (5 + ε)a, a contradiction to our hypothesis.

Thus, w(Vj) < 7a, and therefore w(Vj) = 6a + o(a), for j = 1, . . . , Q. Thus each connected class
must contain either 2 vertices with weight 3a or 3 vertices with weight 2a.

Let Y be a connected class containing xi. Suppose Y contains no t-vertex. Then Y can additionally
contain only vertices with weights 1 or 3a in the gadget H(xi), and therefore it will not have weight
6a + o(a). Thus, Y must contain a t-vertex of the gadget H(xi). Since Y has weight 6a + o(a),
it has to contain precisely 3 vertices with weight 2a and some vertices of weight 1. But the only
way to connect 3 vertices with weight 2a is passing through a v-vertex vj . Since the v-vertices have
degree 3, one of the two cases may happen: (1) either Y contains exactly one vertex vj , or (2) Y
contains at least two v-vertices.

In case (2), Y must contain two t-vertices belonging to a same gadget, and furthermore they must
be connected by a path contained in this gadget. In this case, since no vertex with weight 3a can be
used in such a path, two vertical paths in this gadget must be used. But then, these vertical paths
separate a pair of vertices with weight 3a, and therefore some connected class will have weight 3a,
a contradiction. Thus, case (1) must occur, and in this case, Y contains 3 vertices with weight 2a,
precisely one vertical path in the corresponding 3 gadgets and one vertex vj . Since each vertex xi

belongs to a connected class with precisely one v-vertex, there are exactly q connected classes that
induce an exact cover for the instance I of X3C. This completes the proof of Claim 4.

Suppose there exists a polynomial time algorithm Aε for the problem BCP with approximation ratio
r(ε) ≤ 6/(5 + ε), for 0 < ε < 1. Take an instance I of X3C and reduce it (in polynomial time) to an
instance I ′ of BCP, as we have shown, and apply the algorithm Aε to I ′. If I has an exact cover, then by
Claim 3 the instance I ′ has a solution with measure at least 6a. Thus, the algorithmAε will find a solution
for I ′ with measure at least 6a/r(ε) ≥ (5 + ε)a. If I has no exact cover, then by Claim 4 an optimal
solution for I ′ has measure smaller than (5 + ε)a. Thus, I has an exact cover if and only if the algorithm
Aε produces a solution with measure at least (5 + ε)a. Since X3C is NP-complete, such an algorithm Aε

with approximation ratio r(ε) ≤ 6/(5 + ε) may not exist, unless P = NP. 2

Corollary 2 The problem BCP does not admit a PTAS, unless P = NP.

4 Max balanced connected 3-partition
In this section we present a 2-approximation algorithm for BCP3 restricted to 3-connected graphs. Before
that, we present some results that are useful in the analysis of the algorithm we propose.
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Theorem 7 Let I be an instance of BCPq, q ≥ 2, that consists of a w-weighted 2-connected graph
G = (V,E) such that max{w(v) : v ∈ V } ≥ W/q, where W = w(V ). Then the following holds:

(a) The instance I has an optimal solution (V ∗
1 , . . . , V ∗

q ) such that V ∗
i = {v∗} for some i,

1 ≤ i ≤ q, where v∗ = arg max{w(v) : v ∈ V }.

(b) If q ≥ 3 and BCPq−1 admits an r-approximation algorithm for some r, then there exists
an r-approximate solution for the instance I of BCPq.

The algorithm A for BCP3 that we describe makes use of the following property: if G is a 3-connected
graph with at least 5 vertices, then G has an edge e such that G/e, the graph obtained from G by contract-
ing e, is 3-connected. In this case, we say that the edge e is contractible.

The subroutine Contract-edge, used in this algorithm receives a 3-connected weighted graph and returns
a 3-connected weighted graph that results from the contraction of an edge. If G is a w-weighted graph,
after the contraction of an edge uv, the new vertex that results from the identification of the vertices u and
v receives weight w(u) + w(v); and the weights of the other vertices do not change.

Another subroutine that is used in the algorithm is called BalBicon2; this routine is precisely the 4
3 -

approximation algorithm for BCP2 designed by Chlebı́ková [7]. As we need a few properties that are
more precise than those in [7], we will essentially rephrase the results to establish these properties. Before
we describe BalBicon2, let us present a concept that is used in the algorithm.

Let G be a 2-connected graph and (V1, V2) a connected 2-partition of G. We say that a vertex u of V2 is
admissible (for V1) if (V1 ∪ {u}, V2 \ {u}) is also a connected 2-partition of G. It is not difficult to prove
that if |V2| ≥ 2, then there are at least two distinct vertices v′ and v′′ in V2 that are admissible (for V1).
The proof of this statement can be easily obtained by considering the block graph of G[V2], and observing
that it is a tree.

The algorithm BalBicon2 for BCP2 on 2-connected graphs, obtained by Chlebı́ková, works as follows.
Let G = (V,E) be the input graph and w : V → Z+. Let β := w(V )/2 and v1 be a vertex of maximum
weight. Set V1 := {v1}, V2 := V \ V1. While w(V1) < β perform the following steps: (a) find a vertex
u ∈ V2 that is admissible and has the minimum weight; (b) If w(u) < 2(β − w(V1)) then update the
partition: take V1 := V1 ∪ {u} and V2 := V2 \ {u}; else leave the while-loop. Return the partition
(V1, V2).

We now present the result of Chlebı́ková [7] in a parameterized form (hidden in the proof she gave), as
we need it in the sequel.

Theorem 8 (Chlebı́ková) Let I be a instance of BCP2 which consists of a 2-connected graph G = (V,E)
and a function w : V → Z+. Let V = {v1, v2, . . . , vn}, n ≥ 3, w(v1) ≥ w(v2) ≥ . . . ≥ w(vn) and
t := w(V )/w(v3). Then, the algorithm BalBicon2, applied to I returns in polynomial time a connected
2-partition of G with measure m, such that

(1) If w(v1) ≥ 1
2 w(V ) then m = opt(I);

(2) If w(v1) < 1
2 w(V ) then m ≥ 1

2 [w(V )− w(v3)] ≥ t−1
2t w(V );

(3) opt(I)
m ≤ 2t−4

t−1 , if 3 ≤ t ≤ 4; and opt(I)
m ≤ t

t−1 , if t ≥ 4.

The next two results follows immediately from Theorem 8 and the fact that t ≥ 3.
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Corollary 3 The algorithm BalBicon2 is a 4/3-approximation for BCP2 restricted to 2-connected graphs.
Moreover, the ratio 4/3 is tight.

Corollary 4 Let I be an instance of BCP2 which consists of a 2-connected w-weighted graph G =
(V,E). Let v1 be a vertex of V such that w(v1) = max{w(v) | v ∈ V }. If w(v1) ≤ w(V )/2, then the
algorithm BalBicon2 applied to the instance I returns in polynomial time a connected 2-partition with
measure at least w(V )/3.

We note that the ratio 4/3 of algorithm BalBicon2 is tight. To see this, consider the 2-connected graph
G = (V,E) exhibited in Figure 4 (the weights are indicated on the vertices). Note that w(V ) = 24, β =
12 and t = 4. If the algorithm BalBicon2 chooses first the vertex v1 then it outputs a connected 2-partition
with measure m = 9 = w(v1)+w(v4)+w(v5). As opt(I) = 12, we have that opt(I)/m = 12/9 = 4/3.

1

1

11

2 6

6

6

v1

v2

v3

v4

v5

v6

v7

v8

Fig. 4: An example showing that the ratio 4/3 is tight

Now we are ready to describe the algorithm A for BCP3 on 3-connected graphs.

Algorithm A3

Input: A 3-connected graph G = (V,E) and w : V → Z+.
Output: A connected 3-partition of G.

1. v1 = arg max{w(v) | v ∈ V }.
2. X = {v1}.
3. if w(X) ≥ w(V )/3 then

3.1. Let G′ = G−X and w′ be the restriction of w to G′.
3.2. (Y, Ȳ ) = BalBicon2(G′, w′).
3.3. return (X, Y, Ȳ ) and halt.

4. if w(X) < w(V )/6 then
4.1. (Ĝ, ŵ) = (G, w); V̂ = V .
4.2. while there is no vertex v̂ ∈ V̂ such that ŵ(v̂) ≥ ŵ(V̂ )/6 do

(Ĝ, ŵ) = Contract-edge(Ĝ, ŵ).
4.3. X = {v̂}, where ŵ(v̂) ≥ ŵ(V̂ )/6.

5. G′ = Ĝ−X , w′ = ŵ.
6. (Y, Ȳ ) = BalBicon2(G′, w′).
7. if X 6= {v1} then reconstruct from (X, Y, Ȳ ) the 3-partition (X, Y, Ȳ ) of G.
8. return (X, Y, Ȳ ).
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The next result will be used to show the approximation ratio of algorithm A3.

Lemma 1 Let G = (V,E) be a 3-connected graph and w : V → Z+. Let p be an integer, p ≥ 1,
G1 = G, and for i = 1, . . . , p let Gi+1 = Gi/ei, where ei is a contractible edge of Gi. Suppose that after
the contraction of each edge e = xy, the weight of the new vertex ve is defined as w(ve) = w(x) + w(y),
and the other vertices keep their weights. If Qp = (Ṽ1, . . . , Ṽq) is a connected q-partition of Gp, then this
partition induces a connected q-partition (V1, . . . , Vq) of G such that w(Ṽi) = w(Vi) for i = 1, . . . , q.

Proof: We show this result by induction on p. For p = 1, consider G1 = G/e1, and suppose that
e = e1 = xy. Let (Ṽ1, . . . , Ṽq) be a connected q-partition of G1. Without loss of generality, suppose that
ve ∈ Ṽ1. We can obtain a connected q-partition (V1, . . . , Vq) of G by taking Vi = Ṽi for i = 2, . . . , q and
V1 = (Ṽ1 \ {ve}) ∪ {x, y}. Clearly this q-partition has the required properties.

Suppose that the statement holds when we contract up to p − 1 edges, p ≥ 2. Let us prove that it
also holds when we perform p contractions. Consider the graph Gp = Gp−1/ep−1. By mimicking our
proof for p = 1, given a connected q-partition Qp = (Ṽ1, . . . , Ṽq) of Gp, we know how to construct a
connected q-partition Qp−1 of Gp−1. At this point, by our inductive hyphotesis, from Qp−1 we can obtain
a connected q-partition Q = (V1, . . . , Vq) for the original graph G such that Q has the required properties.
2

Theorem 9 The algorithm A3 is a 2-approximation for BCP3 restricted to 3-connected graphs.

Proof: Let I = (G, w) be an instance of BCP3 that consists of a 3-connected graph G = (V,E) and a
function w : V → Z+. Suppose that v1 = arg max{w(v) | v ∈ V }. Let (X, Y, Ȳ ) be a solution returned
by the algorithm A3 applied to the instance I and let m = min{w(X), w(Y ), w(Ȳ )}.

By Lemma 1 and Theorem 8, we first note that the solution returned by A3 is a connected 3-partition.
We also observe that, since the graph Ĝ at the end of step 4.2 of algorithm A3 is 3-connected, then the
graph G′ constructed in step 5 is 2-connected. Thus, the algorithm BalBicon2 is used apropriately in
step 6. Note that the procedure Contract-edge can always be executed since at the moment of the call of
this procedure the graph Ĝ is 3-connected and it has at least 6 vertices. By Lemma 1, we also remark that
the reconstruction mentioned in step 7 can be performed. It is not difficult to conclude that A3 can be
implemented to run in polynomial time.

Next we analyse three cases to show its approximation ratio.
CASE 1. There exists v ∈ V such that w(v) ≥ w(V )/3.

In this case, we have that the 3-partition (X, Y, Ȳ ) was returned in step 3.3. By Theorem 7, the quality
of the solution is that guaranteed by the algorithm BalBicon2 used in step 3.2. As a consequence, by
Corollary 3 we conclude that opt(I) ≤ (4/3) m.
CASE 2. There exists v ∈ V such that w(V )/6 ≤ w(v) < w(V )/3.

In this case, X = {v1} and w(V )/6 ≤ w(X) < w(V )/3. (a) If m = w(X), then clearly, m ≥
w(V )/6. (b) Assume m = min{w(Y ), w(Ȳ )}. In this case, (Y, Ȳ ) = BalBicon2(G′, w′), where G′ =
(V ′, E′) and V ′ = V \X . Hence, w(V ′) > (2/3)w(V ), since w(X) < w(V )/3. As w(v) < w(V )/3 for
each v ∈ V ′, we have that w(v) < w(V ′)/2. Thus, by Corollary 4 we have that m ≥ w(V ′)/3. Hence,
m > (2/9)w(V ).

Thus, in both cases (a) and (b) we have that m ≥ w(V )/6. Since opt(I) ≤ w(V )/3, we obtain
opt(I) ≤ 2 m.
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CASE 3. w(v) < w(V )/6 for each v ∈ V .
By step 4.3 of the algorithm, we have that X = {v̂}, where ŵ(v̂) ≥ ŵ(V̂ )/6. Let us consider two

cases. (a) If m = w(X), then m ≥ ŵ(V̂ )/6 = w(V )/6. (b) Assume m = min{w(Y ), w(Ȳ )}. Note
that X = {v̂} where v̂ is the first vertex of Ĝ obtained by the contraction of one or more edges such that
ŵ(v̂) ≥ ŵ(V̂ )/6. Thus, if v̂ is a result of the contraction of a edge xy, then ŵ(v̂) = ŵ(x) + ŵ(y) <

ŵ(V̂ )/6 + ŵ(V̂ )/6 = ŵ(V̂ )/3 = w(V )/3.
Since G′ = G − X , we conclude that each vertex in G′ has weight less than w(V )/6. As w(V ′) =

w(V ) − w(X) > (2/3)w(V ), it follows that each vertex of G′ has weight less than w(V ′)/4. Thus, by
Corollary 4, the connected 2-partition (Y, Ȳ ) of the graph G′ returned by the algorithm BalBicon2 has
measure m ≥ w(V ′)/3. Hence, m ≥ w(V ′)/3 > (2/9)w(V ).

Putting together the two cases (a) and (b), we conclude that m ≥ w(V )/6; and therefore, opt(I) ≤ 2 m.
This concludes the proof of the theorem. 2

Corollary 5 Let I be an instance of BCP3 that consists of a 3-connected w-weighted graph G = (V,E).
Let v1 = arg max{w(v)|v ∈ V }. If w(v1) < w(V )/3 then the algorithm A3 applied to I returns in
polynomial time a connected 3-partition with measure m such that m ≥ w(V )/6.

5 A general framework for connected q-partition
The ideas discussed in Section 4 can be used to obtain a general framework for BCPq on q-connected
graphs for q ≥ 4. We shall discuss later under which conditions we have a 2-approximation for BCP4.

Algorithm Aq

Input: A q-connected graph G = (V,E) and w : V → Z+.
Output: A connected q-partition of G (q ≥ 4).

1. Let v1 = arg max{w(v) | v ∈ V }.
2. V1 = {v1}.
3. If w(V1) ≥ (1/q)w(V ) then

3.1. Let G′ = G− V1 and w′ the restriction of w to the vertices of G′.
3.2. (V2, . . . , Vq) = Aq−1(G′, w′).
3.3. return (V1, V2, . . . , Vq) and halt.

4. If w(V1) < 1
2q w(V ) then

4.1. (Ĝ, ŵ) = (G, w); V̂ = V .
4.2. while there is no v̂ ∈ V̂ such that ŵ(v̂) ≥ 1

2q ŵ(V̂ ) do
(Ĝ, ŵ) = Contract-edge (Ĝ, ŵ).

4.3. V1 = {v̂}, where ŵ(v̂) ≥ 1
2q ŵ(V̂ ).

5. G′ = Ĝ− V1, w′ = ŵ.
6. (V2, . . . , Vq) = Hypoq−1(G′, w′). /* G′ is 2-connected */
7. If V1 6= {v1} then recover from (V1, V2, . . . , Vq) the q-partition (V1, V2, . . . , Vq) of G.
8. return (V1, V2, . . . , Vq).
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At step 6, Hypoq−1 is any algorithm that finds a connected (q − 1)-partition on a 2-connected graph.
If the input graph has high connectivity then the graph G′ obtained at step 5 is possibly 3-connected. We
know that the graph Ĝ obtained at the end of step 4 is 3-connected; and therefore G′ is at least 2-connected.

If we had an algorithm Hypoq−1 that finds for a 2-connected graph a connected (q − 1)-partition with
measure at least w(V )/α, we could guarantee that Aq has approximation ratio max{2, α/(q − 1)}.

When q = 4 we can use the algorithm A3 at step 3.2 and guarantee that the solution returned at
step 3.3 is a 2-approximation. If w(v) ≥ w(V )/8 for some vertex v then step 4 is not executed and
the 3-partition returned at step 6 — obtained using algorithm A3 — has measure at least w(V ′)/6, by
Corollary 5. Thus, the solution returned at step 8 has measure at least w(V )/8. This follows from the fact
that w(v1) < w(V )/4 and therefore w(V ′) > (3/4)w(V ). Hence, we have the following result.

Theorem 10 Let I be an instance of BCP4 that consists of a w-weighted 4-connected graph G = (V,E)
such that w(v) ≥ 1

8w(V ) for some vertex v in V . Then the algorithm A4 applied to I and using A3 at
step 6, returns in polynomial time a connected 4-partition with measure m such that opt(I) ≤ 2 m.

We close this section observing that to use the algorithm Aq for q ≥ 5, we need an algorithm to obtain
a connected (q − 1)-partition of 2-connected graphs with good guarantee.

6 Concluding remarks
We have shown some hardness results for the problem BCPq and some inapproximability results for
BCP2 and BCP. We have also shown 2-approximation algorithms for BCP3 and BCP4 on 3-connected
and 4-connected graphs, respectively. We have shown that BCP does not admit a PTAS, but it remains
open whether the same holds for BCP2. It would be very interesting to show either the existence or non-
existence of a PTAS for the problem BCP2. Other approximation results for q > 2 would also be of
interest.

The problem BCPq is related to another problem called Min-max q-Partition Problem, in which the
objective is to minimize the ‘heaviest’ class. We note that these problems are equivalent only when q = 2.
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