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Tiling a Pyramidal Polycube with Dominoes
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The notion of pyramidal polycubes, namely the piling-up of bricks of a non-increasing size, generalizes in
Rn the concept of trapezoidal polyominoes. In the present paper, we prove that n-dimensional dominoes
can tile a pyramidal polycube if and only if the latter is balanced, that is, if the number of white cubes
is equal to the number of black ones for a chessboard-like coloration, generelizing the result of (BC92)
when n = 2.
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Introduction

The problem of domino tiling is a rather classical problem in the literature. It consists in decid-
ing whether a polyomino (a simply-connected finite union of unit integer squares) is tilable by
dominoes (a union of two edge-adjacent squares), and possibly, in computing such a tiling.

In 1990, Thurston (Thu90), using Conway’s groups, introduced new important ideas which have
provided a linear time algorithm to solve the problem of domino tiling. Since then, many authors
have generalized these concepts. They have considered tilings with bars (KK92), domino tilings of
polyominoes with holes (Thi03), enumeration on the structure of the set of tilings (DMRR04), ran-
dom generation of tilings (LRS01; Wil04). Meanwhile, Moore and Robson (MR01) and Beauquier,
Nivat, Remila and Robson (BNRR95) studied the NP-completeness of several tiling problems.

In 1992, Bougé and Cosnard (BC92) proved that a trapezoidal polyomino, that is, a piling-up
of rectangles of a non-increasing size, is tilable by dominoes if and only if it is balanced (that is,
the number of white squares is equal to the number of black ones for a chessboard-like coloration
of Z2).

The aim of this paper is to extend this theorem to pyramidal polycubes, namely a natural
extension of trapezoidal polyomino to any dimension.

Roughly speaking, a pyramidal polycube is a piling-up of bricks of a non-increasing size (see
Figure 1).
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Fig. 1: Left: A trapezoidal polyomino. Right: A 3-dimensional pyramidal polycube.

To prove this result, we introduce a subset of the set of pyramidal polycubes, that is, the well-
unfoldable pyramidal polycubes. Roughly speaking, a pyramidal polycube P is well-unfoldable
if it contains a Hamiltonian path w of its basis (its lower brick) allowing us to unfold P as a
pyramidal polyomino Pw, which is tilable if and only if so is P (BC92). Moreover, any tiling of
Pw provides in a constructive way a tiling of P . Finally, we show that every pyramidal polycube
P contains a well-unfoldable one which is tilable if and only if P is tilable.

This paper is sketched as follows: in Section 1, we introduce several basic notions used in
the present paper (unit cubes, polycubes, trapezoidal polyominoes and pyramidal polycubes,
dominos, tilability by dominoes. . . ) and we give a shorter proof of L. Bougé and M. Cosnard’s
theorem (BC92), using a sub-class of trapezoidal polyominoes, namely the regular ones. Section 2
deals with the pyramidal polycubes. In this section, we introduce the well-unfoldable pyramidal
polycubes, and show that such a polycube is tilable if and only if it is balanced. Finally, we
prove that, for the domino-tiling problem, each pyramidal polycube can be supposed to be well-
unfoldable. To do this, we consider reduced pyramidal polycubes, obtained by removing balanced
bricks from the boundary of pyramidal polycubes. We conclude this section by stating the main
result of the present paper, namely, that a pyramidal polycube is tilable by dominoes if and only
if it is balanced.

1 Basic notions
The aim of this section is to introduce the basic notions we use in the sequel of this article.
Firstly, we define the notions of unit cubes, polyominoes, dominoes and the notion of tilability
by dominoes. Secondly, we provide the grid Zn with a chessboard-like coloration which gives a
necessary condition for a polyomino to be tilable by dominoes. Finally, we define the notion of
pyramidal polycubes for any dimension n, and give a short proof of L. Bougé and M. Cosnard’s
theorem, stating that a trapezoidal polyomino P , namely a pyramidal polycube in dimension 2,
is tilable by dominoes if and only if it is balanced, that is, the number of white unit squares is
equal to the number of black ones included in P .

From now on, n denotes a natural integer strictly greater than 1.

1.1 General notions

Assume {e1, . . . , en} to be the canonical basis of the R-vector space Rn. For any vector x ∈ Rn,
let us denote by xi ∈ R, its i-th component in the basis {e1, . . . , en}.

A point of Zn is called a unit cube. If n = 2, a unit cube is also called a unit square. The reason
of this terminology comes from the fact that one usually represents the unit cube x as the cube
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in Rn of edge 1 and centered at x, or with x as its lower vertex (i.e. with the lower coordinates).
In the sequel of the present article we indifferently use both representations. For instance, the
Zn-representation is more hepful for a graph theoretical approach whereas the Rn-one is more
helpful for a topological approach.

A polycube is a simply-connected (for the usual topology of Rn) finite union of unit cubes. In
dimension 2, a polycube is also called a polyomino.

Two unit cubes x ∈ Zn and y ∈ Zn are said to be adjacent if ‖x − y‖1 =
∑n

i=1 |xi − yi| = 1.
A union of two adjacent unit cubes is called a domino (see Figure 2).

Fig. 2: Left: A vertical domino. – Right: An horizontal domino.

A polycube P is said to be tilable by dominoes, or just tilable for short, if P is a disjoint union
of dominoes (see Figure 3).

Fig. 3: Left: A polyomino P . – Right: A domino-tiling of P .

Let x and y be two unit cubes and let us assume that {x,y} is a domino. Then, it is clear
that ‖x‖1 and ‖y‖1 do not have the same parity. Hence, a necessary condition for a polycube P
to be tilable is to include the same number of unit cubes with an even norm as the number of
unit cubes with an odd norm. For this reason, we provide Zn with a chessboard-like coloration
depending on the parity of ‖x‖1: a unit cube x ∈ Zn is said to be white (resp. black) if ‖x‖1

is even (resp. odd). As mentioned above, the unit cubes included in a domino are of different
colors, and, if a polycube P is tilable by dominoes, then the number of white cubes included in
P must be equal to the number of black ones. If this property holds, the polycube P is said to
be balanced.

Generally, the balance condition is not sufficient for a polycube to be tilable. See Figure 4 for
a counter-example.

In order to define the pyramidal polycubes, let us introduce the notion of brick. Let x ∈ Zn
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Fig. 4: An untilable balanced polyomino.

and d ∈ Nn. The (unit) brick B(x, d) is the polycube defined as follows:

B(x, d) =
n⋃

λ∈
Qn

j=1 {0,...,dj−1}

{
x +

n∑
i=1

λiei

}
.

The number dn is called the height of the brick B(x, d). In dimension 2, a brick is a usual
rectangle of width d1 and height d2. In dimension 3, a brick is a rectangular parallelepiped of
depth d1, width d2 and height d3 (see Figure 5).

Fig. 5: Left: a two-dimensional brick – Right: a three-dimensional brick.

Let us now define the notion of pyramidal polycubes. Roughly speaking, a pyramidal polycube
is a piling-up of bricks of a non-increasing size along the vector en. More precisely, a polycube
P is said to be a pyramidal polycube, and is denoted by P = (B1, . . . , Bk), if there exists a finite
non-increasing sequence B1 ⊇ B2 ⊇ · · · ⊇ Bk, such that:

P =
k⋃

i=1

Bi +
i−1∑
j=0

hjen

,

where h0 = 0 and hi denotes the height of the brick Bi, for i ∈ {1, . . . , k}. If n = 2, a pyramidal
polycube is also called a trapezoidal polyomino (see Figure 6 and Figure 7). The brick B1 is
called the basis of the pyramidal polycube P = (B1, . . . , Bk). From now on, we only con-
sider standard representations of pyramidal polycubes, namely the representation
(B1, . . . , Bk) where each brick is of height 1.

1.2 Trapezoidal polyominoes

Before proving L. Bougé and M. Cosnard’s theorem, let us first introduce a notation and a
terminology for the special case of trapezoidal polyominoes.

Notation. — Since, the tilability of a polyomino is invariant by an integer-vector translation,
one can identify a trapezoidal polyomino P with the heights (h1, . . . , hl) of the columns piled-up
over the unit cubes of the basis (see Figure 8).
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Fig. 6: Left: a trapezoidal polyomino. – Right: a 3-dimensional pyramidal polycube.

Fig. 7: Left: a sequence of bricks of a non-increasing size – Right: the associated pyramidal polycube.

A particular class of trapezoidal polyominoes is the class of regular ones. A trapezoidal
polyomino P = (h1, . . . , hk) is said to be regular if there exists i0 ∈ {1, . . . , k} such that
P = (1, 2, . . . , i0−1, i0, i0 +1, . . . , 2, 1) (see Figure 9). A first remark is that a regular trapezoidal
polyomino is not balanced. Indeed, the columns with even height are balanced while the ones
with odd height have always an excess of the same color. We can now easily deduce that:

Theorem 1 (BC92) A trapezoidal polyomino P is tilable by dominoes if and only if it is balanced.

Proof: We have already mentioned that the balance condition is necessary. Conversely, let us
suppose that P is balanced. Then, P is not regular and, by definition contains at least one
domino on its boundary (see Figure 10). By removing it from P , we obtain an other balanced
trapezoidal polyomino strictly included in P . We conclude by induction on the number of unit
cubes of P . 2

2 The pyramidal polycubes

In this section, we investigate the general case of pyramidal polycubes. For clarity issues, we
give all the proofs for the 3-dimensional case. The forthcoming material extends in a
straightforward way to any dimension.
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Fig. 8: The trapezoidal polyomino whose height-representation is P = (1, 1, 3, 5, 4, 2, 2).

Fig. 9: The regular trapezoidal polyomino whose height-representation is P = (1, 2, 3, 4, 3, 2, 1).

A first intuitive idea to tile a pyramidal polycube P with dominoes is to proceed by erosion, that
is, by removing balanced bricks from the boundary of P with the constraint to keep a pyramidal
polycube. It is exactly what we did in the proof of Theorem 1 in the two-dimensional case. In
fact, this method fails in the general case (see Figure 11): we obtain a pyramidal polycube from
which we cannot remove any balanced brick from the boundary by keeping a pyramidal polycube.
Such a pyramidal polycube is said to be reduced. More precisely, a reduced pyramidal polycube
is a pyramidal polycube P , such that, for any balanced brick B intersecting P , P \ B is not a
pyramidal polycube.

A quite unexpected fact is that the n-dimensional tiling problem for pyramidal polycubes can
be reduced to a two-dimensional tiling problem for trapezoidal polyominoes. In fact, given a
pyramidal polycube P , after having removed all the balanced bricks we can from the boundary
of P , we obtain a pyramidal polycube P1, which is tilable if and only if so is P . Moreover, P1

can be associated to a trapezoidal polyomino P2 with the same balance. Finally, every tiling of
P2 provides in a canonical way a tiling of P1, and then provides a tiling of P .

In this section, we first introduce the notion of well-unfoldable pyramidal polycubes and show
that, such a polycube is tilable if and only if it is balanced. Next, we introduce the stratifiable
pyramidal polycubes which are shown to be unfoldable. Finally, we prove that every reduced
pyramidal polycube is stratifiable, and hence is tilable if and only if it is balanced. By definition
of reduced pyramidal polycubes, we deduce that a pyramidal polycube is tilable if ad only if it is
balanced.

2.1 The well-unfoldable pyramidal polycubes

The aim of this section is to show that such a pyramidal polycube includes a particular Hamilto-
nian path in its basis, called an Ariadne’s thread, reducing the tiling problem to a tiling problem
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Fig. 10: Tiling a non-regular balanced trapezoidal polyomino.

Fig. 11: A tilable pyramidal polycube untilable by erosion.

in two dimensions.
Let us begin with giving several definitions. Let P be a polycube. The adjacency graph of P

is the bipartite graph GP whose vertices are the unit cubes included in P partitioned by their
color and whose edges are the adjacency relations between unit cubes. With this point of view,
a tiling of P by dominoes is equivalent to a perfect matching of P (see Figure 12). Let P be a

Fig. 12: Left to right: a polycube – its adjacency graph – a perfect tiling.

pyramidal polycube. The adjacency graph of its basis is called the adjacency basis graph of P .
In 3 dimensions, another way to define pyramidal polycubes is to consider them as a union of

columns piled-up over a plane. Let us formulate a similar point a view in the any dimension case.
We denote by C(x, h) and we call column of height h ∈ N? piled-up over the unit cube x ∈ Z2,
the following polycube:

C(x, h) =
h−1⋃
i=0

{x + (i− 1)en}.

Let us notice that the colum of height 1 over the unit cube x is nothing but x itself.
Hence, viewing the n-dimensional polycube as a union of columns piled-up over an hyperplane,

we can consider a pyramidal polycube P = (B1, . . . , Bk) as a map P̃ : B1 −→ N? mapping each
unit cube of B1 to the height of the column piled-up over it. Considering a standard representation



248 Olivier Bodini and Damien Jamet

of P = (B1, . . . , Bk), that is, each brick is of height 1, an explicit formula of P̃ is (see Figure 13):

P̃ : B1 −→ N?

x 7→ max {j ∈ {1, . . . , k} | x ∈ Bj} .

Fig. 13: Left: a sequence of bricks of non-increasing size – Center: the associated pyramidal polycube.
– Right: its height-represention

Let P = (B1, . . . , Bk) be a pyramidal polycube. Let w = (w1, . . . , wm) be a Hamiltonian path
of the adjacency basis graph of P . Let hi ∈ N? be the height of the columns piled-up over the
unit cube wi, i ∈ {1, . . . ,m}. Then,

P =
m⋃

i=1

C(wi, hi).

Let us consider the polyomino Pw = (h1, . . . , hm) (in a height-representation), called the w-
unfold of P (see Figure 14). Since Pw is connected, we easily deduce that Pw and P have the

Fig. 14: Left to right: a pyramidal polycube – a Hamiltionian path of its adjacency basis graph – the
corresponding unfold.

same balance. Moreover, a quite interesting fact is:

Proposition 2 The adjacency graph of Pw is isomorphic to a partial graph of the adjacency
graph of P . In particular, if Pw is tilable then so is P .
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Proof: Roughly speaking we want to show that unfolding a pyramidal polycube does not create
any adjacency relation. Let Φ : P −→ Pw be the map defined by:

Φ : P −→ Pw

wi + jien 7→ ie1 + jie2,

for i ∈ {1, . . . ,m} and ji ∈ {0, . . . , hm − 1}. It is clear that Φ is one-to-one. Let ie1 + je2

and i′e1 + j′e2 be two unit squares of Pw and let us assume them to be adjacent, that is,
|i′ − i|+ |j′ − j| = 1.

• If |i′− i| = 1, then j = j′. Since wi and wi′ are adjacent by definition of w, we deduce that
wi + jen and wi′ + j′en are adjacent too.

• If |j′ − j| = 1, then i = i′ and wi + jen and wi′ + j′en are adjacent.

2

A particular class of pyramidal polycubes is the class of the ones admitting a trapezoidal unfold.
Such a pyramidal polycube is said to be well-unfoldable. A Hamiltionian path of the adjacency
basis graph of a pyramidal polycube P providing a trapezoidal unfold is called an Ariadne’s
thread of P . A direct consequence of the previous proposition is:

Corollary 3 A well-unfoldable pyramidal polycube is tilable by dominoes if and only if it is
balanced.

Proof: We have already seen that the balance condition is necessary. Conversely, let P be a
well-unfoldable balanced pyramidal polycube, w be an Ariadne’s thread of P and Pw be the
w-unfold of P . Then, Pw is balanced and is tilable from Theorem 1, and we conclude that P is
tilable by Proposition 2. 2

Unfortunately, every pyramidal polycube is not necessarily well-unfoldable (see Figure 15). It

Fig. 15: A non well-unfoldable pyramidal polycube.

remains now to exhibit a non-empty set of well-unfoldable pyramidal polycubes.

2.2 The stratifiable pyramidal polycubes

Roughly speaking, a pyramidal polycube P = (B1, . . . , Bk) is said to be stratifiable if each
brick Bi is a disjoint union of unbalanced bricks. In this section, we show that each stratifiable
pyramidal polycube is well-unfoldable and then, is tilable if and only if it is balanced.



250 Olivier Bodini and Damien Jamet

Definition 1 (Stratifiable pyramidal polycube) A pyramidal polycube P = (B1, . . . , Bk) is
said to be stratifiable if there exist a finite sequence (S1, . . . , Sm) of unbalanced bricks such that,
for all j ∈ {1, . . . ,m},

⋃j
i=1 Si is a brick, and a finite non-increasing sequence (m1, . . . ,mk) of

{1, . . . ,m} such that, for all j ∈ {1, . . . , k},
⋃j

i=1 Si = Bj.

S4

S5

S3 S2

S1

Fig. 16: Left to right: a pyramidal polycube – a stratification such that S1 = B2 and S1 ∪ S2 ∪ S3 ∪
S4 ∪ S5 = B1.

We state now the main result of this section:

Theorem 4 A stratifiable pyramidal polycube is well-unfoldable.

Proof: Let us first notice that a brick B(x, d) is balanced if and only if one of the di’s is even.
Indeed, if all the di’s are odd, then the number of unit cubes included in B(x, d) is odd and
B(x, d) cannot be balanced. Conversely, let Dk =

∏k
j=1 {0, . . . , dj − 1}, for k ∈ {1, 2, 3}. If one

di’s is even, for instance d3, then

B(x, d) =
⋃

λ∈D3

{x + λ1e1 + λ2e2 + λ3e3}

=
⋃

λ∈D2

d3−1⋃
λ3=0

{x + (λ1e1 + λ2e2) + λ3e3}.

Moreover, for any 2-uple λ ∈ D2, the polycube
⋃d3−1

λ3=0 {x + (λ1e1 + λ2e2) + λ3e3} is balanced
since d3 is even and the result follows.

Secondly, by a similar decomposition of a brick, we deduce that a balanced (resp. unbalanced)
brick admits a Hamiltonian path linking any couple of endpoints of an even edge (resp. linking
two diametrically opposite unit cubes).



Tiling a Pyramidal Polycube with Dominoes 251

Let (S1, . . . Sm) be a stratification of P and let (m1, . . . ,mk) be the corresponding non-
increasing sequence. Let Tj =

⋃j
i=1 Si. Then, for all j ∈ {1, . . . , k}, Tmk

= Bk and Tj is
balanced if and only if j is even.

• Assume that mk is even. Then Bk admits a Hamiltonian path linking two endpoints of
an even edge of Bk. Since Smk+1 is unbalanced, it is adjacent to Bk by an odd edge
(see Figure 17). Then, we extend the Hamiltonian path of Bk to an Ariadne’s thread of

Fig. 17: Left to right: adjoining an unbalanced brick to a balanced one.

(Bk, Bk ∪ Smk+1) linking two diametrically opposite unit cubes of Bk ∪ Smk+1.

• If mk is odd, then Bk admits a Hamiltonian path linking two diametrically opposite unit
cubes of Bk and, whatever the common edge between Smk+1 and Bk, we can extend the
Hamiltonian path of Bk to an Ariadne’s thread of (Bk, Bk ∪ Smk+1) linking the endpoints
of one of its even edges (see Figure 18).

Fig. 18: Left to right: adjoining two unbalanced bricks.

We conclude by iteration on m. 2

Unfortunately, every pyramidal polycube is not stratifiable (see Figure 19).

2.3 The reduced pyramidal polycubes

In the present section we show that every pyramidal polycube contains a stratifiable pyramidal
polycube, also called reduced pyramidal polycube. The main significance of a reduced pyramidal
polycubes is that it is tilable by dominoes if and only if the original pyramidal polycube from
which it is computed is tilable by dominoes.
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Fig. 19: An unstratifiable pyramidal polycube.

Let us now recall the notion of reduced pyramidal polycube:

Definition 2 (Reduced pyramidal polycube) A pyramidal polycube P is said to be reduced
if for any balanced brick B intersecting P , P \B is not a pyramidal polycube.

Let us now prove the main result of this section:

Theorem 5 A reduced pyramidal polycube is stratifiable.

Proof: Similarly as before, we only treat the three-dimensional case. Let P = (B1, . . . , Bk) be
a reduced pyramidal polycube. If k = 1, then P is clearly stratifiable. Let us suppose that any
reduced pyramidal polycube with height k− 1 is stratifiable. Since P = (B1, . . . , Bk) is supposed
to be reduced, then so is P ′ = (R2, . . . , Rk), and hence, P ′ is stratifiable.Several cases can occur
depending on B1 and B2. First let us notice that B1 has at most one even edge (see Figure 20).
We deduce that the configurations of B2 in B1 can only be the following ones (see Figure 21),

Fig. 20: If B1 has two even edges, then P is not reduced.

and we see in each case how to deduce a stratification of P from a stratification of (B2, . . . , Bk).
Indeed, it is sufficient to see that B1 is a union of B2 and unbalanced brick (S1, . . . , Sm) with
B2 ∪ S1 ∪ · · · ∪ Sj , for all j ≤ m is a brick, which is immediate (see Figure 21). 2

A consequence of this theorem is:

Corollary 6 Let P be a pyramidal polycube and P ′ be a reduced pyramidal polycube of P , com-
puted by removing balanced bricks from the boundary of P . Then P is tilable by dominoes if and
only if so is P ′.

Proof: By construction, it is clear that P is tilable if so is P ′. Conversely, let us suppose that P
is tilable. Then P is balanced and P ′ too. From Theorem 5, we deduce that P ′ is well-unfoldable
and by Corollary 3, we conclude that P ′ is tilable by dominoes. 2

We can now state the main result of this paper:

Theorem 7 A pyramidal polycube is tilable by dominoes if and only if it is balanced.
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Fig. 21: The different possible configurations for B1 and B2.

Proof: The balance condition is clearly necessary. Conversely, assume P to be a balanced
pyramidal polycube and P ′ be a reduced pyramidal polycube computed from P by removing
balanced bricks from the boundary of P . Then, P ′ is balanced and is tilable by dominoes by
Theorems 5 and 4 and Corollary 3. We conclude with Corollary 6. 2
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