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We present an extensive study of the Eulerian distribution on the set of centrosymmetric involutions, namely, involu-
tions in Sn satisfying the property σ(i) + σ(n+ 1− i) = n+ 1 for every i = 1 . . . n. We find some combinatorial
properties for the generating polynomial of such distribution, together with an explicit formula for its coefficients.
Afterwards, we carry out an analogous study for the subset of centrosymmetric involutions without fixed points.
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1 Introduction
The distribution of the descent statistic (classically known as Eulerian distribution) on peculiar subsets of
permutations has been object of intensive studies in recent years. In particular, several authors examined
the properties of the polynomial In(x) =

∑n−1
j=0 in,jx

j , where in,j denotes the number of involutions on
[n] = {1, 2, . . . , n} with j descents. More specifically, in (13) V. Strehl proved that the coefficients of
this polynomial are symmetric, and recently V.J. Guo and J. Zeng (5) showed that the polynomial In(x) is
unimodal. In a previous paper (2) the present authors proved that the polynomial In(x) is not log-concave.
The calculation involved in founding a counterexample to this property is based on a (not bijective) cor-
respondence between involutions on [n] with j descents and generalized involutions on length n on m
symbols, with m > j. This correspondence yields an explicit formula for the coefficients in,j of the
polynomial In(x).

In this paper we study the polynomial Sn(x) =
∑n−1
j=0 sn,jx

j , where sn,j denotes the number of cen-
trosymmetric involutions on [n] with j ascents (and hence n− 1− j descents).
We say that σ ∈ Sn is a centrosymmetric permutation if σ(i)+σ(n+1−i) = n+1 for every i = 1, . . . , n.
We observe that the group consisting of centrosymmetric permutations in S2k is isomorphic to the hype-
roctahedral group Bk, namely, the group of permutations of the set {−k, . . . − 1, 1, . . . , k} such that
σ(i) = −σ(−i).
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Centrosymmetric involutions appear in many different contexts. For instance, it is well known (see (11)
and (7) for more details) that an involution σ is centrosymmetric if and only if the Young tableau P corre-
sponding to σ via the Robinson–Schensted algorithm is fixed under the Schützenberger map. Moreover,
the permutation matrix associated with a centrosymmetric involution is both symmetric and centrosym-
metric.
The descent statistic on the set of centrosymmetric involutions is equivalent to the statistic fdes(σ) intro-
duced in (1) for the hyperoctahedral group.

First of all, we exhibit an explicit formula and a recursive rule for the total number of centrosymmetric
involutions on [n]. Then, following along the lines of (2), we obtain some enumerative results for the
sequence sn,j by exploiting a map that associates a centrosymmetric involution with a suitable set of
generalized involutions. In particular, we deduce an explicit formula for the integers sn,j , which allows
us to prove that the polynomials In(x) and Sn(x) share some properties, such as the symmetry of the
coefficients and the non log-concavity.

The last section is devoted to the study of the Eulerian distribution on centrosymmetric involutions with-
out fixed points. Also in this case, we find an explicit formula for the number s∗n,j of centrosymmetric
involutions on [n] without fixed points and j ascents. The main result of this section is the proof of the
symmetry s∗2k,d = s∗2k,2k−d−2, based on the proof of the analogous result for all fixed point free involu-
tions due to V.Strehl (13). Since Strehl’s proof does not appear in the cited paper, we decided to describe
it in full detail at the end of this paper.

2 Preliminary notions
In this section, we give some definitions and general results about involutions and generalized involutions.

We recall that the descent set of a permutation σ is defined as Des(σ) = {1 ≤ i < n : σ(i) > σ(i+ 1)}.
An analogous definition can be given for the ascent set Asc(σ) of a permutation, by replacing ”σ(i) >
σ(i+ 1)” with ”σ(i) < σ(i+ 1)”.

Given a Ferrers diagram λ, a (dual) semistandard tableau of shape λ over the alphabet [m] is an array ob-
tained by placing into each box of the diagram λ an integer in [m] so that the entries are strictly increasing
by rows and weakly increasing by columns.

There are many different bijections between pairs of tableaux of the same shape and suitable two-lines
arrays, that are based on the classical Robinson–Schensted-Knuth procedure (see (6)). These procedures
differ in the definition of the insertion rule and the characterization of the two-line array involved. In the
following, we will use the variation described below that concerns pairs of dual semistandard tableaux.

A generalized permutation is defined to be a biword:

α =
(
x

y

)
=
(
x1 x2 · · · xn
y1 y2 · · · yn

)
,
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such that:

• xi ≤ xi+1,

• xi = xi+1 =⇒ yi ≥ yi+1.

The integer n is called the length of the generalized permutation α. The word x = x1 · · ·xn is called the
x-content of α and, similarly, The word y = y1 · · · yn is called the y-content of α.

A generalized involution will be a generalized permutation α satisfying the further condition that each
pair

(
a
b

)
occurs as many times as the pair

(
b
a

)
. In this case, the x-content and the y-content of α coincide

and we will call each of them the content of α.

We associate a generalized permutation with a pair (P,Q) of dual semistandard tableaux as follows. The
tableau P is obtained from the empty tableau by inserting the sequence y1, . . . , yn in accordance with the
following variation of the row-insertion procedure. Suppose that we inserted the symbols y1, . . . , yi−1,
obtaining the tableau Pi−1. Then, we insert yi in the tableau Pi−1, getting the tableau Pi as follows

• if yi is strictly greater than each symbol in the first row of Pi−1, add yi in a new box to the end of
the first row;

• otherwise, find the left-most entry in the first row of Pi−1 that is larger than or equal to yi. Put the
symbol yi in the box of this entry, and remove the entry. Take this entry and repeat the process on
the second row.

The tableau Q is obtained, as usual, filling the box bi created at the i-th step with the integer xi.

The above procedure appears in (3), Section 3 (see also (8), subsect. 4.4). It is easy to check that, when
we apply this procedure to a generalized involution, we obtain a pair (P,Q), where P = Q.

We recall that the standardization map Π associates with a generalized permutation

α =
(
x1 x2 · · · xn
y1 y2 · · · yn

)
,

the permutation

Π(α) =
(

1 2 · · · n
y′1 y′2 · · · y′n

)
,

where y′i = 1 if yi is the least symbol occurring in the word y, y′j = 2 if yj is the second least symbol in
y and so on. In the case yi = yj , with i > j, we consider yi to be less then yj .
Note that the polarization of a generalized involution is an involution, since the above given rule for han-
dling the case yi = yj is coherent with the rule for the ordering of biletters in a generalized permutation.

For example, the standardization of the generalized involution

α =
(

1 1 2 3 4 4 4 6
4 3 2 1 6 4 1 4

)
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is the involution

Π(α) =
(

1 2 3 4 5 6 7 8
7 4 3 2 8 6 1 5

)
.

Note that the map Π is not injective, since, for any given involution σ, there are infinitely many generalized
involutions whose standardization is σ. For example, the generalized involution

β =
(

1 1 1 3 4 4 5 6
5 3 1 1 6 4 1 4

)
has the same standardization as α in the previous example (i.e., Π(α) = Π(β)) .

We will denote by Genm(σ) the set of generalized involutions, with symbols taken from [m], whose
standardization is σ. Observe that two generalized involutions in Genm(σ) can not have the same content.
For this reason the set Genm(σ) corresponds bijectively with the set of contents of its elements.
We will say that a content x is compatible with σ if there exists a generalized involution in Genm(σ)
whose content is x, for some m.
It is easy to check that a content x = x1 · · ·xn is compatible with an involution σ if and only if

i ∈ Asc(σ) =⇒ xi < xi+1.

The key tool in the present paper is the interplay between involutions and generalized involutions. For this
reason we need to evaluate the cardinality of the set Genm(σ), for any given involution σ. It turns out that
this cardinality depends only on the number of ascents of σ. In fact, denoting by In the set of involutions
in Sn, we have the following result, formerly stated in (2):

Proposition 1 Let σ ∈ In be an involution with t ascents. Then,

|Genm(σ)| =
(
n+m− t− 1

n

)
. (1)

Proof: Choose an involution σ ∈ In with t ascents. As we remarked above, the set Genm(σ) corresponds
bijectively to the set of contents x = x1 . . . xn with 1 ≤ x1 ≤ x2 ≤ · · · ≤ xn ≤ m, where the inequalities
are strict at places corresponding to the ascents of σ. Every such content is uniquely determined by the
sequence δ := δ0δ1 . . . δn, with

δ0 = x1 − 1, δ1 = x2 − x1, . . . , δn = m− xn

which is a (weak) composition of the integerm−1 such that its i-th component δi is at least one whenever
σ has an ascent at the i-th position. For this reason we can consider the word δ′ = δ′0, δ

′
1, . . . , δ

′
n defined

as follows:

δ′i =
{
δi − 1 if σ has an ascent at the i-th position
δi otherwise ,

which is a composition of the integer m− t− 1 in n+ 1 parts. This gives the assertion. 2
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3 Centrosymmetric involutions
We say that a permutation σ ∈ Sn is centrosymmetric whenever σ(i) + σ(n + 1 − i) = n + 1 for every
i = 1, . . . , n. For instance, the permutation σ = 3 5 1 6 2 4 is centrosymmetric, while σ′ = 3 4 6 2 1 5 is
not centrosymmetric because, for instance, σ′(1) + σ′(6) = 8 6= 7.
In other terms, a permutation σ ∈ Sn is centrosymmetric if and only if it commutes with the involution
ψ ∈ Sn defined by ψ(i) = n+ 1− i.
When n = 2k, the set C2k of centrosymmetric permutations on 2k objects is a subgroup of S2k isomorphic
to the hyperoctahedral group Bk via the map Θ : C2k → Bk that associates a permutation σ ∈ C2k with
the signed permutation Θ(σ) defined by:

Θ(σ)(i) =
{
σ(k + i)− k if σ(k + i) > k
σ(k + i)− k − 1 otherwise.

For example, if σ = 2 1 6 5 4 3 8 7, then we have Θ(σ) = −1−2 4 3.

If n = 2k+ 1, for every σ ∈ C2k+1, we must have σ(k+ 1) = k+ 1 by definition. Hence, a permutation
in C2k+1 is associated to the unique permutation in C2k obtained by deleting the central symbol.

We denote by Sn the subset of Cn consisting of centrosymmetric involutions. Note that the classical
complementation and reversal maps

c : σ 7→ ψσ r : σ 7→ σψ

coincide when restricted to the set Sn. These two bijections map centrosymmetric involutions to cen-
trosymmetric involutions, while the whole set of involutions in not closed under such maps.

It is well known (see, e.g., (6) and (11)) that centrosymmetric involutions correspond via the Robinson–
Schensted bijection to standard Young tableaux that are fixed under the Schützenberger map (evacuation).
In fact, this map can be described in terms of involutions as

σ 7→ ev(σ) = ψσψ.

We now introduce some notation concerning the cycle decomposition of centrosymmetric involutions.
Recall that σ is an involution if and only if its disjoint cycle decomposition consists uniquely of fixed
points and transpositions. We will say that the transposition τ = (i, j) divides σ, in symbols τ |σ, when-
ever τ appears in the cycle decomposition of σ. We will say that (i, j) is a smooth transposition of Sn if
i 6= n+ 1− j. In this language, we have:

Proposition 2 An involution σ ∈ In is centrosymmetric if and only if the following two conditions hold:

σ(i) = i ⇐⇒ σ(n+ 1− i) = n+ 1− i, (2)

(i, j)|σ ⇐⇒ (n+ 1− i, n+ 1− j)|σ. (3)
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2

Note that Proposition 2 implies that, whenever a transposition τ divides an involution σ, this forces four
values of σ if τ is smooth, and two values otherwise.

Denote by sn the cardinality of the set Sn. By previous considerations, s2k = s2k+1. Hence, we restrict
our attention to the even case.
The sequence s2k satisfies the following well known recurrence (see, e.g., (10)):

Theorem 3 We have:
s2k = 2s2k−2 + (2k − 2)s2k−4 (4)

2

The characterization given in Proposition 2 allows us to give an explicit formula for the integers s2k:

Theorem 4 The number of centrosymmetric involutions on 2k symbols is

s2k =
b k

2 c∑
h=0

(2k)!!
(k − 2h)!h!22h

.

Proof: Fix an integer h ≤ bk2 c. We count the number of involutions in S2k with exactly 2h smooth
transpositions. Choose a word w = w1 · · ·wk consisting of k different letters taken from the alphabet
[2k] such that w does not contain simultaneously an integers i and its complement 2k + 1 − i. We have
(2k)(2k−2) · · · (2) = (2k)!! choices for such a word. This word corresponds to a unique centrosymmetric
involution τ with 2h smooth transpositions defined by the following conditions:

τ(w1) = w2, . . . , τ(w2h−1) = w2h;

τ(w2h+j) =
{
w2h+j if w2h+j ≤ k
2k + 1− w2h+j otherwise ,

with 0 < j ≤ k − 2h. It is easily checked that the involution τ arises from (k − 2h)!h!2h2h different
words w. This completes the proof. 2

4 Centrosymmetric generalized involutions
We recall that the Schützenberger map can be extended to semistandard tableaux (see, for instance, (12)).
In terms of generalized involution, this map can be described as follows: the image of the generalized
involution

α =
(
x1 x2 · · · xn
y1 y2 · · · yn

)
over the alphabet [m] is the generalized involution

ev(α) =
(
m+ 1− xn m+ 1− xn−1 · · · m+ 1− x1

m+ 1− yn m+ 1− yn−1 · · · m+ 1− y1

)
.
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A generalized involution α is said to be centrosymmetric whenever α = ev(α), namely,

xi + xn+1−i = yi + yn+1−i = m+ 1

for every i = 1 . . . n.

From now on, extending the previous notation, we will write
(
i
j

)
|α with multiplicity s whenever the pair(

i
j

)
appears exactly s times in the generalized involution α. Also in this case, we will say that

(
i
j

)
is a

smooth transposition if i 6= m + 1 − j and i 6= j. Obviously, if
(
i
j

)
is a smooth transposition of the

generalized involution α, also
(
j
i

)
is a smooth transposition of α (with the same multiplicity). Moreover:

Proposition 5 A generalized involution α is centrosymmetric if and only if, whenever
(
i
j

)
|α with multi-

plicity s, we have also
(
m+1−j
m+1−i

)
|α with the same multiplicity.

2

Proposition 5 yields a further characterization of centrosymmetric generalized involutions, which will be
useful in the following sections.

Proposition 6 A generalized involution α is centrosymmetric if and only if it satisfies the following prop-
erties:

• the content x = x1 . . . xn of α is symmetric, namely xi + xn+1−i = m+ 1,

• the standardization Π(α) of α is a centrosymmetric involution.

2

We denote by cn,m the number of generalized involutions of length n over the alphabet [m].

Setting n = 2k + 1, straightforward considerations lead to the following properties:

• if m = 2h, c2k+1,m = 0;

• if m = 2h+ 1, the central pair
(
xk+1
yk+1

)
of every centrosymmetric generalized involution of length n

over the alphabet [m] is necessarily the pair
(
h+1
h+1

)
. This implies that c2k+1,m = c2k,m.

Hence, the values of the sequences c2k+1,m can derived from the sequences c2k,m. For this reason we
restrict our considerations to the even case.

Theorem 7 The number of centrosymmetric generalized involutions of length 2k over [m] is:

c2k,m =
b k

2 c∑
j=0

( (m
2 )−bm

2 c
2 + j − 1

j

)(
m+ k − 2j − 1

k − 2j

)
. (5)

Proof: Fix h ≤ bk2 c. We count centrosymmetric generalized involutions of length 2k over [m] symbols
with exactly 2h smooth transpositions which, in the present case, can or can not be different. The set A
of all possible smooth transposition has cardinality(

m

2

)
−
⌊m

2

⌋
.
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Observe that, given a generalized involution α and a smooth transposition τ =
(
i
j

)
, we have that τ |α

with multiplicity s if and only if τ ′|α with the same multiplicity, where τ ′ =
(
m+1−j
m+1−i

)
. It is evident that

τ can be chosen in (
m
2

)
−
⌊
m
2

⌋
2

ways. Every such choice determines four pairs of α. The remaining 2k − 4h pairs can be chosen to be
either fixed points or non-smooth transpositions. This completes the proof. 2

Hence, the column generating function of the array c2k,m is∑
k≥0

c2k,mx
k =

1

(1− x)m(1− x2)
(m

2 )−bm
2 c

2

.

Note that the expression of this generating function is closely similar to the classical expression of the
analogous generating function of generalized involutions an,m or, equivalently, of semistandard tableaux
(see (9)): ∑

n≥0

an,mx
n =

1

(1− x)m(1− x2)(
m
2 )
.

5 The Eulerian distribution on centrosymmetric involutions
We now study the distribution of the ascent statistic on the set of centrosymmetric involutions. The com-
binatorial relations between involutions and generalized involutions pointed out in the previous section
will play a crucial role for this analysis.

The distribution of the ascent statistic on the set of involutions behaves properly with respect to the action
of the Schützenberger map. In fact:

Proposition 8 For every involution σ ∈ I2k, we have:

|Asc(σ)| = |Asc(ev(σ))|.

Moreover, the ascent sets Asc(σ) and Asc(ev(σ)) are mirror symmetric, i.e. σ has an ascent at position
i if and only if ev(σ) has an ascent at position 2k − i.

Proof: Suppose that σ has an ascent at position i, namely, σ(i) < σ(i+ 1). Then,

ev(σ)(2k − i) = ev(σ)(2k + 1− (i+ 1)) = 2k + 1− σ(i+ 1) <

< 2k + 1− σ(i) = ev(σ)(2k + 1− i),

as desired. 2

For example, let

σ =
(

1 2 3 4 5 6 7 8
5 7 8 6 1 4 2 3

)
,
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where, from now on, the bold-faced numbers denote the ascent positions. Then,

ev(σ) =
(

1 2 3 4 5 6 7 8
6 7 5 8 3 1 2 4

)
.

The sets Asc(σ) = {1, 2, 5, 7} and Asc(ev(σ)) = {1, 3, 6, 7} are mirror symmetric (as defined before).

In particular, if σ is a centrosymmetric involution on 2k objects, then its ascent set must be mirror sym-
metric with respect to the k-th entry.

We are now interested in finding an explicit formula for the number s2k,d of centrosymmetric involutions
with d ascents. First of all, we have:

Proposition 9 The sequence s2k,d is symmetric, namely,

s2k,i = s2k,2k−1−i.

Proof: Given a centrosymmetric involution σ, it is easily checked that the permutation ψσ satisfies the
following properties:

• ψσ is an involution;

• ψσ is centrosymmetric;

• ψσ has a descent at position i whenever σ has an ascent at the same position.

Hence, the function σ 7→ ψσ maps an involution with i ascents into an involution with 2k− 1− i ascents.

2

For example, let

σ =
(

1 2 3 4 5 6 7 8
1 7 5 6 3 4 2 8

)
.

Then,

ψσ =
(

1 2 3 4 5 6 7 8
8 2 4 3 6 5 7 1

)
.

The preceding result shows that the integer s2k,d counts simultaneously the involutions in S2k with d
descents and those with d ascents.
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Now we want to express the number c2k,m of centrosymmetric generalized involutions of length 2k over
[m] in terms of the sequence s2k,d by exploiting the combinatorial relations between involutions and gen-
eralized involutions. As in the general case (Proposition 1), it turns out that the number of centrosymmetric
generalized involutions on m symbols whose standardization is a given involution σ, namely, belonging
to the set Genm(σ), depends only on the number of ascents of σ. In fact:

Theorem 10 We have:

c2k,m =
m−1∑
j=0

(
k +

⌊
j
2

⌋⌊
j
2

⌋ )
s2k,m−1−j . (6)

Proof: Let σ ∈ I2k be a centrosymmetric involution with t ascents. We want to determine the number of
centrosymmetric elements in the set Genm(σ). Combining Proposition 6 and the arguments used in the
proof of Proposition 1, we deduce that such elements correspond bijectively to those compositions δ′ of
the integer m− 1− t into 2k + 1 parts which are centrosymmetric, namely, such that δ′k−i = δ′k+i. Each
one of these compositions δ′ is determined as soon as we:

• choose an integer h ≤
⌊
m−1−t

2

⌋
,

• choose a composition η = η0η2 . . . ηk−1 of h into k parts;

The composition δ′ = δ′0, δ
′
1, . . . , δ

′
2k is now obtained as follows:

δ′ = η0, η1, . . . , ηk−1, δ
′
k, ηk−1, . . . , η1η0,

where δ′k+1 = m− 1− t− 2h.

Hence, the number of such compositions is

bm−1−t
2 c∑

h=0

(
h+ k − 1
k − 1

)
=
(⌊m−1−t

2

⌋
+ k

k

)
=
(⌊m−1−t

2

⌋
+ k⌊

m−1−t
2

⌋ )
.

By setting j = m− 1− t, we get the assertion. 2

Identity (6) yields the following expression for the row generating function of the array c2k,m:

∑
m≥1

c2k,mx
m =

∑
m≥1

m−1∑
j=0

(
k +

⌊
j
2

⌋⌊
j
2

⌋ )
s2k,m−1−jx

m =
x+ x2

(1− x2)k+1

∑
j≥0

s2k,jx
j .

We now exploit the described combinatorial relation between involutions and generalized involutions to
determine an explicit formula for s2k,d.

Theorem 11 The number of centrosymmetric involutions of length 2k with d ascents is:

s2k,d =
d+1∑
j=1

(−1)b
d−j
2 +1c

(
k⌊

d+1−j
2

⌋) b k
2 c∑
i=0

( (j
2)−b j

2c
2 + i− 1

i

)(
j + k − 2i− 1

k − 2i

)
. (7)
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Proof: Formula (6) shows that, for every fixed integer k, the vector (c2k,1, . . . , c2k,2k) can be expressed
as the product of a lower triangular matrix M(k) and the vector (s2k,0, . . . , s2k,2k−1), where

M(k)ij =
(
k +

⌊
i−j
2

⌋⌊
i−j
2

⌋ )
.

for i ≥ j. The matrix M(k) is invertible, since it is lower triangular with unitary diagonal. The ma-
trix M(k)−1 can be easily computed and used to express the vector (s2k,0, . . . , s2k,2k−1) in terms of
(c2k,1, . . . , c2k,2k) as follows:

s2k,d =
d+1∑
j=1

(−1)b
d−j
2 +1c

(
k⌊

d+1−j
2

⌋)c2k,j . (8)

Combining Formulae (5) and (8), we derive (7). 2

Formula (7) allows to check that the polynomials S2k(x) =
∑2k−1
j=0 s2k,jx

j are not, in general, log-
concave, since we have, for example:

s6,0 · s6,2 = 37 > 36 = s26,1.

In the case of centrosymmetric involutions on an odd number of symbols, the Eulerian distribution can be
computed as follows:

Proposition 12

s2k+1,d =

 1 if d = 0
0 if d is odd
s2k,d−1 + s2k,d otherwise

Proof: We recall that an involution σ in S2k+1 is obtained from a unique involution σ′ in S2k by adding
the fixed point k + 1 and renormalizing the remaining symbols. In doing this, either the central ascent of
σ′ is changed into two ascents of σ if σ′ has an odd number of ascents, or the number of ascents remains
unchanged. 2

The first values of sn,d are shown in the following table:

n/d 0 1 2 3 4 5 6 7 8 9
0 1
1 1
2 1 1
3 1 0 1
4 1 2 2 1
5 1 0 4 0 1
6 1 3 6 6 3 1
7 1 0 9 0 9 0 1
8 1 4 13 20 20 13 4 1
9 1 0 17 0 40 0 17 0 1
10 1 5 23 49 78 78 49 23 5 1
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These first values lead to the belief that the polynomials S2k(x) are unimodal for every k ∈ N. It would
be interesting to find a combinatorial proof of this property.

6 Centrosymmetric involutions without fixed points
In this section we extend the study of the Eulerian distribution to the set of centrosymmetric involutions
on [n] without fixed points. Obviously, such involutions exist only if n is even.
Denote by S ∗2k the set of centrosymmetric involutions on 2k objects without fixed points and by s∗2k the
cardinality of S ∗2k. Then:

Theorem 13 We have:

s∗2k =
b k

2 c∑
h=0

k!
(k − 2h)!h!

, (9)

and
s∗2k = s∗2k−2 + (2n− 2)s∗2k−4. (10)

Proof: We count centrosymmetric involutions without fixed points with exactly 2h smooth transpositions,
2h ≤ k. Choose a word w = w1 · · ·wk consisting of k different letters taken from the alphabet 1, . . . , 2k
such that w does not contain simultaneously the integers i and 2k + 1 − i. We have (2k)!! choices for
such a word. This word corresponds to a unique centrosymmetric involution τ without fixed points with
2h smooth transpositions defined by the following conditions:

τ(w1) = w2, . . . , τ(w2h−1) = w2h,

τ(w2h+j) = 2k + 1− w2h+j , for 0 < j ≤ k − 2h.

It is easily checked that the involution τ arises from (k − 2h)!h!2h2h2k−2h. This gives Formula (9).

Let now σ ∈ S ∗2k. If σ(1) = 2k, and hence σ(2k) = 1, the restriction of σ to the set {2, . . . , 2k − 1}
is a centrosymmetric involution on 2k − 2 symbols without fixed points. If σ(1) = j, with j < 2k, the
symbol 1 is involved in a smooth transposition, hence we must have σ(j) = 1, σ(2k + 1 − j) = 2k
and σ(2k) = 2k + 1 − j. Then, the restriction of σ to the set {2, . . . , 2k − 1} \ {j, 2k + 1 − j} is a
centrosymmetric involution on 2k − 4 symbols without fixed points. Observing that there are 2k − 2
possible choices for the integer j, we get (10). 2

We point out that the proof of Theorems 13 suggests constructive rules for generating centrosymmetric
involutions without fixed points.

Denote by s∗2k,d the number of involutions in S ∗2k with d ascents. Once more, in order to find an explicit
formula for the integers s∗2k,d, we need to set up a connection between centrosymmetric involutions with-
out fixed points and a suitable set of generalized involutions.

First of all, let α be a generalized involution. We say that the integer a is a fixed point of multiplicity r if

xi = yi = xi+1 = yi+1 = · · · = xi+r−1 = yi+r−1 = a.
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It is easy to see that each fixed point of the standardization Π(α) corresponds to a fixed point a of α of
odd multiplicity. Hence we must consider the set of centrosymmetric generalized involutions with fixed
points of even multiplicity. Denote by c∗2k,m the number of such involutions of length 2k over the alphabet
[m]. Then:

Theorem 14 We have:

c∗2k,m =
b k

2 c∑
j=0

( (m
2 )+bm

2 c
2 + j − 1

j

)(⌈m
2

⌉
+ k − 2j − 1
k − 2j

)
. (11)

Proof: Fix j ≤ bk2 c. We count the number of centrosymmetric generalized involutions of length 2k on the
alphabet [m] containing only fixed points of even multiplicity, such that exactly 4j of its pairs are either
smooth transpositions or non central fixed points. A non central fixed point is an occurrence of a pair

(
i
i

)
in α, with i 6= m+1

2 . Observe that, if
(
i
h

)
is a smooth transposition of the generalized involution α, then

α must contain the four pairs
(
i
h

)
,
(
h
i

)
,
(
m+1−h
m+1−i

)
, and

(
m+1−i
m+1−h

)
. Moreover, if

(
i
i

)
is a non central fixed

point of α, then α must contain two occurrences of the pair
(
i
i

)
(in order to be fixed point free), and two

occurrences of the pair
(
m+1−i
m+1−i

)
. Hence, if we want α to contain exactly 4j among smooth transpositions

and non central fixed points, it is sufficient to choose j (not necessarily distinct) pairs
(
i
h

)
with i ≤ h and

i < m+1
2 . There are (

m
2

)
+
⌊
m
2

⌋
2

such pairs.
The remaining pairs must be chosen to be either central fixed points or non smooth transpositions. This
completes the proof. 2

Repeating the same arguments as in the proofs of Theorems 10 and 11, we obtain the following result:

Theorem 15 We have:

c∗2k,m =
m−1∑
j=0

(
k +

⌊
j
2

⌋⌊
j
2

⌋ )
s∗2k,m−1−j . (12)

Hence:

s∗2k,d =
d+1∑
j=1

(−1)b
d−j
2 +1c

(
k⌊

d+1−j
2

⌋) b k
2 c∑
i=0

( (j
2)+b j

2c
2 + i− 1

i

)(⌈ j
2

⌉
+ k − 2i− 1
k − 2i

)
. (13)

2

The next table contains the first values of the sequences s∗2k,d:

2k/d 0 1 2 3 4 5 6 7 8 9
0 1
2 1
4 1 1 1
6 1 1 3 1 1
8 1 2 7 5 7 2 1
10 1 2 12 12 27 12 12 2 1
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This table shows that the polynomial S∗2k(x) is not in general unimodal, and hence not log-concave.
These values suggest that the Eulerian distribution on centrosymmetric involutions without fixed points
has the following symmetry:

s∗2k,d = s∗2k,2k−2−d. (14)

The analogous symmetry of the Eulerian distribution on the whole set of centrosymmetric involutions has
been proved exploiting the map σ 7→ ψσ (see Proposition 9). In this case, this approach fails, since this
map does not preserve fixed point freeness. The last part of this section is devoted to the proof of such
symmetry.

Denote by I∗2k the set of fixed point free involutions in S2k and by i∗2k,d the number of fixed point free
involutions in S2k with d ascents. The symmetry of the ascent distribution on involutions without fixed
point

i∗2k,d = i∗2k,2k−d−2. (15)

is a well known result due to Strehl (13). In fact, (13) is the summary of a talk given at the first session of
Séminaire Lotharingien de Combinatoire and does not contain any proof. For this reason, we describe in
full detail Strehl’s argumentations, communicated to us by the author.
Strehl’s proof of Identity (15) is based on a bijection θ that maps an involution in I∗2k with d ascents into
an involution in I∗2k with 2k − d − 2 ascents. Identity (14) will be proved as soon as we show that the
bijection θ preserves centrosymmetry.

In order to define the map θ we need some preliminaries. We recall that a permutation σ has an excedence
at position i whenever σ(i) > i. Denote by Rσ the set of all excendences and by Cσ the set of all non
excedences of σ. Of course, if σ ∈ I∗2k, both these two sets have cardinality k.
We associate with a given σ ∈ I∗2k a path Dσ defined as follows: the i-th step of Dσ is an up-step if
i ∈ Rσ , a down-step otherwise. Since σ ∈ I∗2k, such a path is easily seen to be a Dyck path. Observe
that the map σ 7→ Dσ is not injective. We denote by I∗D2k the set of all involutions in I∗2k with a given
associated Dyck path D . The Dyck path D can be written as:

D = Ur1Dc1Ur2Dc2 . . . UrpDcp .

The set of up-steps Uri will be called the i-th rise of the Dyck path D and, similarly, the set of down-steps
Dcj the j-th fall of D . We associate with D two families of sets R1, . . . , Rp, C1, . . . , Cp, as follows: the
integer x belongs to Ri (respectively Cj) whenever the x-th step of D belongs to the i-th rise (resp. j-th
fall) of D . Obviously, we have:

R =
⋃

1≤i≤p

Ri C =
⋃

1≤j≤p

Cj ,

|Ri| = ri |Cj | = cj .

If σ ∈ I∗D2k , we denote by ρσi the restriction of the permutation σ to the set Ri. Clearly, we have:

ρσi : Ri →
⋃

i≤j≤p

Cj .
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Similarly, we denote by γσj the restriction of the permutation σ to the set Cj :

γσj : Cj →
⋃

1≤i≤j

Ri.

Note that the involution σ is completely determined by the Dyck path D and the maps ρσi . In the follow-
ing, if σ is clear from the context, we will omit the symbol σ in the previous notation.

We consider the further (possibly empty) sets

Rij = σ(Cj) ∩Ri,

Cij = σ(Ri) ∩ Cj ,

and denote by
ρij : Rij → Cij ,

γij : Cij → Rij ,

the restrictions of the maps ρi and γj to the domains indicated. Note that these maps are bijections.

For example, consider the involution in I∗16

σ =
(

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
11 5 9 10 2 8 16 6 3 4 1 13 12 15 14 7

)
The Dyck path associated with σ is the path in Figure 1, and we have:

 

Fig. 1: The Dyck path associated with σ.

R = {1, 2, 3, 4, 6, 7, 12, 14} C = {5, 8, 9, 10, 11, 13, 15, 16},

R1 = {1, 2, 3, 4} R2 = {6, 7} R3 = {12} R4 = {14},

C1 = {5} C2 = {8, 9, 10, 11} C3 = {13} C4 = {15, 16},

and the non empty Rij and Cij associated with σ are:

R1,1 = {2} R1,2 = {1, 3, 4} R2,2 = {6} R2,4 = {7} R3,3 = {12} R4,4 = {14},
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C1,1 = {5} C1,2 = {9, 10, 11} C2,2 = {8} C2,4 = {16} C3,3 = {13} C4,4 = {15}.

Now define three bijections θ1, θ2, θ3 : I∗2k → I∗2k, as follows:

• if σ ∈ I∗2k, its image θ1(σ) is the unique element of I∗2k associated with the Dyck path Dσ and such
that:

ρ
θ1(σ)
i = ρσi ◦ revRi ,

where, given a linearly ordered set A = {a1, . . . , an}, revA : A → A is the correspondence that
maps the element as into an+1−s.

• if σ ∈ I∗2k, its image θ2(σ) is the unique element of I∗2k associated with the Dyck path Dσ and such
that:

γ
θ2(σ)
j = γσj ◦ revCj ,

• the definition of the map θ3 is more complicated than the previous two and requires some prelimi-
nary notions.

Given a permutation τ corresponding via the Robinson–Schensted algorithm to the pair (P,Q)
of standard Young tableaux, denote by δ(τ) the unique permutation associated with the pair of
transposed tableaux (P T, QT). The map τ 7→ δ(τ) will be called the transposition map.

For every σ ∈ I∗2k, its image θ3(σ) is the unique element of I∗2k such that:

R
θ3(σ)
ij = Rσij ,

C
θ3(σ)
ij = Cσij ,

ρ
θ3(σ)
ij = δ(ρσij),

for every 1 ≤ i, j ≤ p, where p is the number of rises of the Dyck path Dσ .

Loosely speaking, θ1 acts by reversing the maps ρi, θ2 acts by reversing the maps γj , and θ3 acts by
applying the δ-procedure to all the ”local” maps ρij .
It is immediately checked that each one of these bijections maps the set I∗2k into itself.

We can also describe the maps θ1 and θ2 in algebraic language as follows: given σ ∈ I∗2k, for every set Ri
we define the reversal map αi to be the permutation in S2k that fixes all the integers x /∈ Ri and reverses
the symbols appearing in Ri. Similarly, for every set Cj we denote by βj the permutation that fixes all
the integers x /∈ Cj and reverses the symbols appearing in Cj . Define α and β to be the compositions of
the permutations αi and βj , respectively. The following commutation properties of the reversal maps can
be easily verified:

αiαh = αhαi, βjβl = βlβj , αiβj = βjαi.

Hence, we do not need to specify the order of such permutations in the compositions α and β. With this
notation, we can readily deduce that

θ1(σ) = ασα, (16)
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θ2(σ) = βσβ. (17)

Finally, we define the bijection θ to be the composition

θ = θ3 ◦ θ2 ◦ θ1.

We are now in position to state Strehl’s theorem:

Theorem 16 The bijection θ maps involutions in I∗2k with t ascents into involutions with 2k − 2 − t
ascents.

Proof: First of all, a given ascent of σ at position x ∈ Ri (respectively x ∈ Cj) will be called

• small ascent if x+ 1 ∈ Ri (resp. x+ 1 ∈ Cj) and and there exists h such that σ(x), σ(x+ 1) ∈ Ch
(resp. σ(x), σ(x+ 1) ∈ Rh).

• large ascent, otherwise.

The notion of small descent and large descent are defined analogously.

The maps θ1, θ2 and θ3 act on the ascents of σ as follows:

[θ1 ]

– If Ri = {z, z+ 1, . . . , z+ ri − 1} and z+ x is an ascent (descent) of ρσi , then z+ ri − 2− x
is a descent (ascent) in θ1(σ).

– If y ∈ Cj is a large ascent (descent) in γσj , then y is a large ascent (descent) in θ1(σ).

– If y ∈ Cj is a small ascent (descent) in γσj , then y is a small descent (ascent) in θ1(σ);

[θ2 ]

– If Cj = {z, z+ 1, . . . , z+ cj − 1} and z+x is an ascent (descent) of γσj , then z+ rj − 2− x
is a descent (ascent) in θ2(σ).

– If y ∈ Ri is a large ascent (descent) in ρσi , then y is a large ascent (descent) in θ2(σ).

– If y ∈ Ri is a small ascent (descent) in ρσi , then y is a small descent (ascent) in θ2(σ);

[θ3 ]

– Large ascents and descents of ρσi and γσj remain unaffected by the map θ3.

– The properties of the Robinson–Schensted algorithm imply that, if x ∈ Ri is a small ascent
(descent) in ρσi , then x is a small descent (ascent) in θ3(σ).

– Similarly, if y ∈ Cj is a small ascent (descent) in γσj , then y is a small descent (ascent) in
θ3(σ).

Combining now the previous remarks, we deduce that:
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• if Ri = {z, z + 1, . . . , z + ri − 1} and z + x is an ascent (descent) of ρσi , then z + ri − 2− x is a
descent (ascent) in θ(σ).

• if Cj = {z, z + 1, . . . , z + cj − 1} and z + x is an ascent (descent) of γσj , then z + rj − 2− x is a
descent (ascent) in θ(σ).

• ascents and descents of σ that are not ascents or descents of any ρσi or γσj remain unaffected by the
map θ.

In conclusion, consider an involution σ ∈ I∗2k with d ascents. Observe that p − 1 of these ascents
correspond to positions x such that x ∈ Cj and x + 1 ∈ Rj+1 and are unaffected by θ. Similarly,
the p descents corresponding to positions y such that y ∈ Ri and y + 1 ∈ Ci remain unchanged. We
now focus on the remaining (2k − 1)− (2p− 1) = 2k − 2p positions. The involution σ has d− (p− 1)
ascents within these positions, and hence (2k− 2p)− (d− (p− 1)) = 2k− p− d− 1 descents. Previous
argumentations show that these descents are transformed into ascents of θ(σ) in suitable positions. This
implies that the involution θ(σ) has

(2k − p− d− 1) + (p− 1) = 2k − d− 2

ascents, as required. 2

For example, if σ is the involution in I∗16 of the previous example, then:

θ1(σ) =
(

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
10 9 5 11 3 16 8 7 2 1 4 13 12 15 14 6

)

π = θ2(θ1(σ)) =
(

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
9 10 5 8 3 15 11 4 1 2 7 13 12 16 6 14

)
Then, we have:

Rπ1,1 = {3} Rπ1,2 = {1, 2, 4} Rπ2,2 = {7} Rπ2,4 = {6} Rπ3,3 = {12} Rπ4,4 = {14},

Cπ1,1 = {5} Cπ1,2 = {8, 9, 10} Cπ2,2 = {11} Cπ2,4 = {15} Cπ3,3 = {13} Cπ4,4 = {16}.

The map θ3 leaves unchanged every Rij except R1,2:

θ(σ) =
(

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
10 8 5 9 3 15 11 2 4 1 7 13 12 16 6 14

)
.

Observe that, since σ has 7 ascents, then θ(σ) has 16− 2− 7 = 7 ascents, as expected.

We now switch to the centrosymmetric case. The following properties can be readily verified:

Proposition 17 If σ is a centrosymmetric involution in I∗2k, then:

• for every 1 ≤ i ≤ p, if Ri = {x1, . . . , xri}, then Cp+1−i = {2k + 1− xri , . . . , 2k + 1− x1} and,
hence, cp+1−i = ri,

• for every 1 ≤ i, j ≤ p, ifRij = {x1, . . . , xh}, thenCp+1−i,p+1−j = {2k+1−xh, . . . , 2k+1−x1},
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• the Dyck path associated with σ is symmetric.

2

The maps θ2 ◦ θ1 and θ3 preserve centrosymmetry. In fact:

Lemma 18 If σ ∈ I∗2k is centrosymmetric, then (θ2 ◦ θ1)(σ) is centrosymmetric.

Proof: Consider a centrosymmetric element σ ∈ I∗2k. Proposition 17 implies that the reversal maps αi
and βj associated with σ are related as follows:

ψβjψ = αp+1−j ,

where ψ ∈ Sn is defined by ψ(i) = n+ 1− i, and hence

ψβψ = α.

Then, recalling Identities (16) and (17), we have:

ψ((θ2 ◦ θ1)(σ))ψ = ψβασαβψ =

= (ψβψ)(ψαψ)(ψσψ)(ψαψ)(ψβψ) =

αβσβα = (θ2 ◦ θ1)(σ).

Hence, the permutation (θ2 ◦ θ1)(σ) is centrosymmetric. 2

Lemma 19 If σ ∈ I∗2k is centrosymmetric, then θ3(σ) is centrosymmetric.

Proof: Note that the map θ3 consist in applying the transposition map δ defined above to each subset
Rij , and adjusting the entries in the corresponding Cij in order to get an involution. We denote by δij the
transposition map δ referred to the set Rij , and by δ̂ij the unique permutation in S2k such that

δij(σ) = δ̂ijσ.

Clearly, the permutation δ̂ij fixes all the elements of the interval [2k] belonging neither to Rij nor to
Cij . We denote by δ̂ the composition of such permutations (we do not need to specify the order in the
composition, since the permutations δ̂ij commute). We have:

θ3(σ) = δ̂σ.

Let now σ be a centrosymmetric element of I∗2k. Then

ψθ3(σ)ψ = ψδ̂σψ =

= (ψδ̂ψ)(ψσψ) = (ψδ̂ψ)σ.

Since σ is centrosymmetric, for every pair i, j we have

ψδ̂ijψ = δ̂p+1−j,p+1−i,
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namely, the conjugate with respect to ψ of the transposition map on Rij is the transposition map on
Rp+1−j,p+1−i. Hence, since the permutations δ̂ij commute, we have

ψδ̂ψ = δ̂.

This yields the assertion. 2

These two lemmas immediately imply the following theorem:

Theorem 20 The map θ preserves centrosymmetry.

2

As a consequence, we have:

Theorem 21 For every positive integer k, we have:

s∗2k,d = s∗2k,2k−2−d.

2

For example, consider the centrosymmetric fixed point free involution

σ =
(

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
6 10 5 11 3 1 12 15 17 2 4 7 18 16 8 14 9 13

)
with 10 ascents. Then,

θ1(σ) =
(

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
11 5 10 6 2 4 17 15 12 3 1 9 16 18 8 13 7 14

)
,

(θ2 ◦ θ1)(σ) =
(

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
11 6 12 5 4 2 16 18 10 9 1 3 17 15 14 7 13 8

)

θ(σ) =
(

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
12 5 11 6 2 4 18 16 10 9 3 1 15 17 13 8 14 7

)
,

that is centrosymmetric with 18− 2− 10 = 6 ascents.
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