Discrete Mathematics and Theoretical Computer Scidnd®97, 101-114

Finely homogeneous computations in free Lie
algebras

Philippe Andary

Universi& de Rouen, Facutdes Sciences, Laboratoire d’Informatique de Rouen, F-76821 Mont-Saint-Aigdan,C”
France
E-Mail: andary@dir.univ-rouen.fr

We first give a fast algorithm to compute the maximal Lyndon word (with respect to lexicographic ordex) (of)

for every given multidegree in N*. We then give an algorithm to compute all the words livind.ig. (A) for any

givena in N*. The best known method for generating Lyndon words is that of Duval [1], which gives a way to go
from every Lyndon word of length to its successor (with respect to lexicographic order by length), in space and
worst case time complexit®(r). Finally, we give a simple algorithm which uses Duval’s method (the one above) to
compute the next standard bracketing of a Lyndon word for lexicographic order by length. We can find an interesting
application of this algorithm in control theory, where one wants to compute within the command Lie algebra of a
dynamical system (letters are actually vector fields).

Keywords: Lie algebras, finely homogeneous computations

1 Introduction

Let A = {a1,aq,...,as} be aset withk elements, an)(A) the associative (non-commutative) algebra
on A. Defining aLie bracket([, y] = 2y — y«) on thisQ-module turns it into a Lie algebra, and we will
denote byC(A) its Lie subalgebra generated Hy(i.e. £(A) is thefree Lie algebraon A andQ(A) its
enveloping algebra A will now be called aralphabet whose elements are thetters andA* is thefree
monoid(the set of allwordg over A.

We know that((A) is a graded)-module

L(A) =P La(A) (1)

n>1

where£,,(A) is the submodule of (A) generated by homogeneous components with degréerrther-
more, £, (4) is the direct sum of finely homogeneous submodglegA) with multidegreey € I* such
that|«| = n. Hence we have

L(A) = P La() (2)
e

1365-805@ 1997 Chapman & Hall

102 Philippe Andary

All the classical monomial basis @f(4) are finely homogeneous (see Reutenauer [2], for example, or
Viennot [3]), i.e. their components are finely homogeneous Lie monomials, thus every computation on
Lie polynomials (the elements @f{ A)) is nothing but a computation in some fine homogeneity class.

We want to emphasize the use of a particular basis(ef), the Lyndon basis, introduced by Chet
al. in the late 1950s [4] (the interested reader can find all the details of its construction in Lothaire [5]).
For this purpose, we choose a total order as < ... < a; on A, which induces &xicographic order
onA*. Aword/ is aLyndon wordf it is primitive and minimal in its conjuguacy class. This means that
cannot be written ag” for givenu in A* andn > 2, and?¢ < vu wheneverl = uv. We denote by.y(A)
theset of Lyndon wordever A.

For every Lyndon word we define its(right) standard factorizatiori¢’, ') as the unique couple of
Lyndon words such that= ¢ ¢ and/ is of maximal length. Moreover, the recursive Lie bracketing of
the standard factorization will be called tfreght) standard bracketingf ¢, denoted by/].

It would be convenient to define theft standard factorizatiorju, v) of ¢ as the unique couple of
Lyndon words such thdt= uv andu is of maximal length. Then the recursive Lie bracketing of the left
standard factorization will be called theft standard bracketingf ¢, denoted by(¢).

Note thatA is included inLy(A) and thatla] = a = (a) for every lettera. As an exemple, let
A = {a,b} and? = aaabab, then’ is Lyndon kecause it is primitive and < s for each of its proper
suffix s. The standard bracketings 6re

[4]
(€)

Itis well known thatZy(A) is a factorization ofs* and thafLy(A)] is a basis of£(A) (called theLyndon
basisof £(A)).

The paper is organized as follows. First, we give a fast algorithm to compute the maximal Lyndon
word (with respect to lexicographic order) bf.,(A) for every given multidegree in IN*. We will see
that the letters of a Lyndon word which is maximal in its fine homogeneity class are as much ‘regularly
distributed’ as possible.

In the second part, we give an algorithm to compute all the words livirdgyifn(A) for any givena in
IN*. The best known method for generating Lyndon words is that of Duval [1], which gives a way to go
from every Lyndon word of length to its successor (with respect to lexicographic order by length), in
space and worst case time complexityn). It is easy to see that in the special case whete {a, b} and
0= a**+3ba* =10 (k > 0), there are*~! — 1 Lyndon words of lengti2k + 4 betweery and its successor
in the same fine homogeneity class (naméty?ba*b). Hence, this method has an exponential worst case
time complexity for our purpose.

Finally, we give a simple algorithm which uses Duval’s method (the one above) to compute the next
standard bracketing of a Lyndon word for lexicographic order by length. We can find an interesting appli-
cation of this algorithm in control theory, where one wants to compute within the command Lie algebra of
a dynamical system (letters actually are vector fields). Standard bracketing are very expansive to compute
in this context, and that is why we want to generate them as quickly as possible in the lexicographic order
by length.

Finely homogeneous computations in free Lie algebras 103

2 Maximal Finely Homogeneous Lyndon Words
2.1 Introduction

Givena in (IN*)*, the question is to find a description of the maximal finely homogeneous Lyndon word
with respect to lexicographic order

po(A) = max{Lya.(A)} (3)

We will merely denote it by:,, when no confusion is possible.
Before answering our question, let us give a short description of the problem’s backgroundelat
Lyndon word with fine homogeneity € (IN*)*; it is well known [5] that

(=04 ww 4)

L<w

Of course, iff = u,, the only Lyndon word appearing [#] is ¢ itself, but the reciprocal may, or may not,

be true. Anyhow, this led us to an algorithmic answer to our former question, whera, b} in a first

time, then for any finite alphabet. Just for fun now, we know that the reciprocal is not true and we were
able to find a lot of counter examples (with the help of computers) for which

supp([(]) N Lya (A) = {£} (5)
For example, each of the following wordgbbabaabbabababaabbabab, aabbabababaabbababababab and
aabbabababababababababab are inLy1212y({a, b}) and verify equation (5).
2.2 The Binary Case
Let us consider the cage= 2, thusA = {a, b}. We have the following:

Theorem 1 Given any couplén, m) of positive integers, thelFHLynd function below returns the max-
imal Lyndon word inLy,, . ({a, b}) with respect to lexicographic order:

function MFHLynd((n,m), {a,b})

Input (n,m) is a couple of positive integers.
{a,b} is the alphabet.

Output : max{Lyu,m)({a,b})}.

begin

if (n=1)or (m=1)

then Return(a™b™)

else if n>m

then g¢:=ndivm

r:=n modm
if r=20
then Return(a?t1ba?=1b(a?b)™=2)
else Return(MFHLynd((r,m), {a,a%}))

104 Philippe Andary

else ¢ :=mdivn
r:=m modn
if r=0
then Return(ab?=lab?tt(ab?)"=2)
else Return(MFHLynd((n — r,7), {ab?, ab?t1}))
end

Proof. Let (n, m) be any couple of positive integers. We will denote:bthe result of the MFHLynd
function. As this algorithm is recursive, we denoterhym; and A; the instances of formal parameters
during thei-th function call ¢; = n, m; = m andA; = {a, b}). Note that the algorithm will terminate
in a finite number of steps, say since througheach step the sumn; + m; will strictly decrease.
Furthermore, let us denote fpy the wordy(,, ..,y at each stage

If p = 1 thenn is a multiple ofm, or m is a multiple ofn, and we obviously have = pu; =
ﬂ(n,m)({aa b}).

So let us consider the cage> 1, i.e. eithern = ¢;m + ry withg; > 1 and0 < ry < m, or
m = qn+r withg > 1and0 < 7 < n. Then(nz,m2) is (r1, m) or (n — r1,r1), depending on
the value ofn andm, and A, is {a,a® b} or {ab?, ab@t1} accordingly. Of courseys < p; because
Ly(As) C Ly(A,), and if we prove that

p € A3 (6)

the previous inequality turns to an equality. Now the end of the proof is trivial: we havey,, but
relation (6) implies

H1 = M2 = ... = HUp (7)

Finally, for the proof to be complete, we have to justify relation (6). For this purpose, we will first
suppose that = ¢q;m + ry (thusAs = {a, a?b}). We can write

py = af e qirtemp (8)

and one can easily see that = 1, e, € {0,1} and—q; < g < 1for3 < i < m (sincey; €
Lyn,m)({a,b})). Next, the existence of = min{i : ¢; < 0} would imply the existence of a Lyndon
word? in Ly, m)({a, b}) which would be greater than . Indeed, let us writg; = wvvs ... v, Where
w=a?tlh. ater-1pan=%h (z = |¢,|) and they;’s are defined by the left standard bracketing:of

(1) = [- [[(w), (v1)], (v2)], ...], (ve)] 9)
Furthermore, we will consider

w = aBtly. . gnter-itly (20)
w’ = aBt) (12)

Somew;’s are greater tham’, some are not, but they are all greater thanSo we can split those;
betweenu andw’ in two words, and apply the same transformation as i (w’, w”). Now construct

Finely homogeneous computations in free Lie algebras 105

a sequence of Lyndon words, with thasehat are greater than’ on the one hand, and the splitted ones
(vi, v!") on the other. Then concatenating this reordered sequence will give us a new Lyndon word which
is greater tham; (because the former begins with, and the latter withy). But this fact contradicts the
maximality of 11, sok doesn't exist.

Now, the second case > n, m not a multiple ofr, is not substantially different from the previous
one. Let us denote byt® the alphabetd equipped with the reverse order< a. Theny : A — A°
such thatp(a) = b andyp(b) = a extends to an isomorphism froAT onto(A%)*. Moreover,y is order
preserving, and we have clearly

fin,m) ({a,03) = (@(p1(m,my ({a, 53)))” (12)
where(u; ... u;) = ug ... u; is the mirror image of the word. m|

The analysis of this algorithm is trivial, since its recurrence tree is structurally equivalent to that of
Euclide’s algorithm for computing the greatest common divisor ahdm. So we have

Theorem 2 For given positive integerg:, m), the worst case time complexity fdf=HLynd function is
O(log(max(n, m))).

Proof. See Knuth [6] for instanc& heorem 4.5.3-RndCorollary 4.5.3-L, p. 343. |

2.3 The General Case

In a second time, we were able to generalize the fundtiétidiLynd to any finite alphabeti in the
following manner:

function MFHLynd(«, A)

Input : «a=(a1,...,ar) is @ k-tuple of positive integers.
A={ay,...,ax} is the (ordered) alphabet.
Output : max{Ly,(A4)}.
begin
n.= o
k
mi=)i,

if (n=1)or (m=1)
then Return(afa.* ...a5?)
else if n>m
then g¢:=ndivm
r:=n modm
if r=20
then if k=2
then Return(a(f+1a2aq_1a2(a(fa2)m_2)
else Return(MFHLynd((as,...,a), {afas, ... alay}))
else Return(MFHLynd((7, s, ..., k), {a1,afas, ... afag}))
else h:=n
for ¢ decreasing from k downto 2 do

106 Philippe Andary

¢; = a;divh

r; ;= a; mod h

h:=h—r;
if (Vi, r;=0)
then Return(ajal* .. .o 'ayal* .. aPT (aradr .. af?)"?)
else t:=0

for ¢ increasing from 2 to k do
if ri >0

then ¢t :=t+1
1 =12
Return(MFHLYNA((n— 3"y 7ij,7iy -, 7,
{alazk .. .a%Q,alaZk .. .a?l”__lla?l”-l_l, o ,alazk .. .a?:’__f a?:’-l—l}))
end

We can reasonably expect the complexity of such an algorithmto be a functionin the size of the alphabet
and in the maximum of the components but unfortunately, we were not able to analyse the behaviour
of MFHLynd function in this case deeply enough.

3 Fine Homogeneous Generation of Lyndon Words

3.1 Introduction

Now the problem is to find all words ihy, (A), for everya in (I1*)*. We will need the following well
known reducing property (see, for example, Duchamp and Krcb [7] for a partially commutative version
of this proposition):

Proposition1 Letk > 1, A ={a1 < ... < az} andA’ = (A — ag)a}. ThenLy(A) = Ly(A") U {ax}.

Let us see, with an example, how we will dissect Lyndon words to solve our problem. Suppose
(3,3)andA = {a,b} (k = 2). By proposition 1, ifA’ = ab* thenLy(A) = Ly(A’) Ub. Denoting byB
the minimal subset afi’ such thatLy.(A4) C B*, we mean the code

B = {a,ab, abb, abbb} (13)

We want to find out all Lyndon words of that are inLy, (A) ; we know their fine homogeneity, but we
don’t know how they look like: there can be either tw@nd oneabbd, or onea, oneab and oneabb.
(Note that we cannot take three timés since Lyndon words are primitive.)

Hence, our initial problem breaks down into two ‘smaller’ subproblems — find all of the words in
Ly,1y({a, abbb}) and Ly 1 1y({a, ab, abb}). These subproblems are smaller insofar as the length of
the involved Lyndon words are smaller over the new alphabets than over the previous one (here, we have
to compare{a, abbb} and{a, ab, abb} with {a,b}). It is still necessary to detail the way we compute
Lya,1,1y({a, ab, abb}). Here we haver = (1,1, 1), A = {a, ab, abb} (k = 3) and B is the code

B = {a,aabb, ab, ababb} (14)

Finely homogeneous computations in free Lie algebras 107

Every word inLy, (A) is a Lyndon word oveB, with either onezabb and onewb, or oneq and onezbabb.
Thus

Ly(lylyl)({a, ab, abb}) = Ly(lyl)({aabb, ab})u Ly(lyl)({a, ababb}) (15)

Clearly, iterating this process will give, in a finite number of steps, every Lyndon wofd dr} with
fine homogeneity3, 3). In fact, our algorithm will ultimately construct all alphabets with only one letter
which is a word inLy(s 3y({a, b}). For example, the subproblems’ decomposition tree in this case is

Ly(s,3)({a, b})
Lyz,1)({a, abbb}) Lyq 1.1)({a, ab, abb})
Lyq,1y({a,aabbb}) Lyq,1y({a,ababb}) Ly 1)({aabb, ab})

Ly(1y({aaabbb}) Ly(1y({aababb}) Ly ({aabbab})

and finally, Ly 3y ({a, b}) = {aaabbb, aababb, aabbab}.

3.2 Translation in Terms of Partition

Looking closely at our process gives the feeling that breaking down our problem into smaller ones is
exactly the same as finding a set of partitions under some constraints. For example, in the first stage of our
previous computation we have searched for the set of elemeénts* such that:, + zo + 25 + 24 = 3,

verifying the constraint; + 2x» + 3x3 + 424 = 6. We have accepte@, 0,0, 1) and(1, 1, 1, 0), refused
(0,3,0,0) (since Lyndon words are primitive), and thereby found all the solutions ilNext, during

the decomposition oLy, 1,1)({a, ab, abb}), we have searched for the set of elementse’) in (Nz)2

verifying

r1+x2 = 1
i+, = 1
x4+ 20y +2) + 225 = 3

Here, again, we have found all the solutionganz’), namely((1, 0), (0, 1)) and((0, 1), (1, 0)).
For a good formulation of the problem in terms of composition and partition, we will need some nota-
tions and definitions. For evenryin ¥, we define
2| =214+ 224+ ...+ 2p (16)

and

[lz]| = &1+ 222+ ...+ pap a7

108 Philippe Andary

A compositiorof the positive integer into p parts is g-tuplex in N such thatz| = n. Furthermore,
when||z|| = n + A we say that: is constrained by. We will denote byy(n, p) (resp.xx(n, p)) the set
of all compositions of: into p parts (resp. the set of all compositions constrained)by

A partition of the positive integer into p parts is ap-tupley in (IN*)? such thatly| = » andy; >
... >y, > 1. We will denote byr(n, p) the set of all partitions of into p parts, and byr, (n, p) the set
of all partitions ofn into p parts whose value does not exceefthus >).

For consistency with our previous notations, we will aal (z;,, ... , x;,) the composition: without
any0’s (thus, foralll < j <t,x;, > 0 and every otheg; are zero), and we will denote by, the subset
of elements o3 at thei;-th place for lexicographic ordet < j < t).

Here is a trivial property which will be helpful for computing the compositions, since we know a
constant worst case time complexity algorithm to derive the successor of a partition (see Nijenhuis and
Wilf [8]).

Proposition 2 For givenn, p and\, every partition inr,(n + A, n) is equivalent to a unique composition
in X)\(n,p)-

Proof. The proof is immediate if we see that, given a partitipin «,(n + A, n), the corresponding
compositionz in xx(n, p) is such that;; is nothing but the number of parts (i) equal to: (for all ¢ in
[1, p]). 0

As an example, all the compositions constrained by 3, of 3 into no more than 4 paffs @re, 1),
(1,1,1,0)and(0, 3,0, 0). Proposition 2 says that they are equivalent to the partitions of 6 into 3 parts not
greater than 4, namelyt, 1, 1), (3,2, 1) and(2, 2, 2); which will become evident with the notatidi4,

123 and23. For every partitiony in this last form, which is equivalent to a compositionwe will write
y the sequence of non zero exponents (for exampte=f123 theny = (1,1, 1)); so thatz = .

3.3 The Algorithm

Now we can state

Theorem 3 Letk > 1, A={a1 < ... < ai}anda = (ay, ..., a5) € (N*)’“. SetB = {a;a;’ : 1<
i<k—1,0<j<ai}, ®:=x(ag k) and for eachp in :

Xy =X (1,06 + 1) X .00 X Xgp_, (p_1, 0 + 1).

Then we have

Lya(A) = | | Ly=(B) (18)

PED TEX,

Proof. On the one hand, we will study the case= 2, so we considerl = {a,b}, o = (n,m) and
B = {ab : 0 < j < m}. There ism + 1 elements inB, and to each compiion = € N™!, we
associate the fine homogeneous class of words'in

Fo={w€ B : |l = 25, 0 < j < m}. (19)

SinceF, is never empty, there is at least one Lyndon wordjn(note that, by Proposition Ly(B) C
Ly(A)) and we want to determine thosesuch that?,, contains a Lyndon word iy, (A) — thus every

Finely homogeneous computations in free Lie algebras 109

Lyndon word inF;, will belong to Ly, (A). Of course, Ly, (A) will be the union set of.y,. (B) over all
theser. But it is clear that the only criteria far € ™ *! to be choosen arg| = n and||z|| = n + m.
Soz must be a composition of into no more thann + 1 parts, constrained by:, and the theorem is
proved whenk = 2 (with ® = {(m)} andX(,,) = xm(n, m + 1)).

On the other hand, we will now consider the case- 2. Then we haveB3 = {a;a;/ : 1 < i <
k—1,0<j < ai}and|B| = k(ax + 1). Here, the problemiis to find al = (™), ... z*=D}in
(N“’”’l)k_1 such that

_ ; (20)
{ s 2@ =
Thus we must have, for all the inequalities
a; < [la]] < o + e (21)

and it is clear now that the set of solutions for system (20) is exactly the union set ever(«, k) of
the | B|-tuplez of (non-negative) integers verifying

2] = q
T 22
forall1 <i<k—1. O

From Theorem 3 and Proposition 2, we can deduce the funEtitBLynd, which takes as input an
alphabetA and a multidegree, and outputs the set of elementsig, (A)

function FHGLynd(«, A)

Input : «a=(a1,...,ar) is a k-tuple of positive integers.
A={ay,...,ax} is the (ordered) alphabet.

Output : Lys(A).

begin

if (k=2) and ((a1 =1) or (as=1))
then Return({af'a3?})
else Bi={aa’ 1<i<k—1, 0<j<ax}
XPhi:={}
Lyn = {}
for ¢ in x(ax, k) do
X = ma,41(01 + ¢1,01)
for ¢ increasing from 2to k-1 do
X = X X mopp1(ai + ¢4, 05)
XPhi:= XPhiuX
for z in XPhi do
Lyn := Lyn UFHGLynd(z, B,)
Return(Lyn)
end

110 Philippe Andary

3.4 Tests on the Execution Time

Except for theFHGLynd function, the only algorithm at hand for computing the homogeneity class of
Lyndon words could be one derived from Duval’'s method. As we will see in the next section, this method
allows us to go from one Lyndon word to the (lexicographically) next one with the same length. Thus, a
new function, sayrHGL, is born: given an alphabet with & letters and a homogeneity vector(with
n = |al), construct the seky, (A) by iterative application of Duval’'s method, picking up those words
whose homogeneity is. However, we have to bear in mind that this is an exponential algorithm, since
the number of Lyndon words whose lengthigs O(’jl—n). We wanted to get a feeling on the complexities
of both methods. For this purpose, both algorithms have been implemented in Maple V.3 on an SS10
workstation under Solaris 2.3 operating system.

The first time we found out that, for the generation of a given homogeneity class of Lyndon words, the
FHGLynd function is more efficient thaRHGL

The second time, we decided, given a finite alphabef sizek and an integen, to generate all the
words inLy, (A), first in lexicographic order by Duval’'s method (algoritt) and then by homogeneity
classes with our function (algorith®). Although the average running time Afper homogeneity class
becomes gradually smaller than the running tim®afhile £ and/orn grow, algorithmA does not seem
to be linear im, since algorithnD does, and their execution time ratio increases.

Hence, itis obvious that these two algorithms are devoted to different prodii®Lis well suited for
lexicographic enumeration of Lyndon words of given length, wRHES Lyndis just right for homogeneity
generation of Lyndon words.

4 Generating the Lyndon Basis

4.1 Introduction

We want here to generate the standard bracketing of Lyndon words for lexicographic order by length. We
know an efficient algorithm, due to Duval [1], which gives the next Lyndon word for lexicographic order
by length with a constant average time complexity [9]. The idea is quite simple: adapt Duval’'s method
to obtain the index of the standard factorization in addition to the Lyndon word, of course, preserving
time complexity; then a convenient tree data structure could be used to recursively store all the standard
factorizations.

4.2 Duval’s Theorem

We will write ‘<’ and ‘<’ for lexicographic order and lexicographic order by length, respectively. These
total orders omd* are defined as follows:

vEuA",
u<v Iiff or

(Fr,s,t € A*)(Fa, b € A)(u = ras,v = rbt,a < b)

ul < [vl,
u=<uv iff or

- Ju| = [v],u < v

For all Lyndon word¢, we will denote byS(¢), when it makes sense, gsiccessarfor lexicographic
order, which is not ir#A*. It is computed as follows: remove all terminal maximal letterg,athen

Finely homogeneous computations in free Lie algebras 111

replace the last non-maximal letter by itseassor ind. Notice thatS(¢) has always a smaller size than
{. For example, ot = {a, b, c}, S(aaacc) is aab (notaabab!), and S(aaabb) is aaabe. Duval proves
that

Theorem 4 If ¢ is a Lyndon word with length, which is not maximal in its fine homogeneous class ; if
w is the following Lyndon word affor ‘ <’, then we have:

S if |S(0)] =n
W= { w .. w !t otherwise (23)

where theu; are Lyndon words derived from prefixestof
More precisely, the; are defined as follows (wheté1..5] is the prefix ofu, whose length ig):

U1:S(£), d1:|u1|, qlz(n—l)divdl, r1:1+(n—1)m0dd1,
Ug = S(ul[l..m]), dy = |U2|, qs =711 dinz, ro =11 mOdd2 > 0,
Uy = S(ul[l..rt_l]), dy = |Ut|, Gt = Tre—1 dint, Ty = T mOddt =0.

Let us have a feeling on the behaviour of the underlying algorithm on the Lyndonénverd3bab'°
(over A = {a,b}). The first prefix we compute i&®6?)?, sinceS(¢) = a3b?, and because; must
be positive. Then we gét®6%)?a?b sinceS(a®b?) = a?b, and finally, we comput€(a?) = ab giving
w = (a®b?)%a?bab.

This algorithm isO(]¢]) in worst case time complexity, and Berstel and Pocchiola [9] have proved it to
be optimal in average time complexity (actually, they give the asymptotic bourdl)/k, wherek is
the cardinal of4).

4.3 Adapted Duval’s Algorithm

We have seen that Duval constructs the next Lyndon word by computicgssive prefixes, thus we had

the natural idea to use the left standard factorization instead of the right one, as usual. So, if we denote by
i(u) the index of the left standard factorization of a Lyndon werénd with the notations of Theorem 4,

we have

Theorem 5 If w = S(¢), theni(w) = i(¢) ; otherwise ifw = w1 us, theni(w) = di, elsew =

w? . ow® andi(w) = n — d;.

Proof. First, we have to notice that, for all < i < ¢, the relationu; = S(u;[l..r;—1]) implies the
existence of the integek; in [[1, ;1] and the lettel\; = succ(u;_1[d;]) such that (set, = ¢)

w; = wi—1[L..d; — 1] A (24)
So we have
: d|£|_1 difl - dzl |
Uj
Ui —1
U

112 Philippe Andary

where grayed zones means the suppression of maximal letters.

Now we can carry through the proof. # = S(¢) this is becausgS(¢)| = n, that isS(¢) =
by .. 4y _qsuce(f,) with £, < z. Inthis case(w) is obviouslyi(¢).

Otherwise, there are two cases left. On the one hand, whea «;% u, we must have(w) =
d; because of the preliminary remark. On the other hand, in the generalicase,(or¢t = 2 and
g2 > 1), the longest prefix ofv which is Lyndon, is at least as long as? ... u;_ %49}, since
u; < us < ... < ug. Butaccording to the preliminary remark, itrs#t be longer than this word. Hence
i(w) = Zf;i qidi + (g0 — 1)dy = n — d;. O

As an example, let us considédr= {a, b} andn = 5. Then we have the following table:

(£,i(0)) w=w? . w? (w)
(aaaab, 1) (aaab)(b) 4
(aaabb, 4) (aab)(ab) 3
(aabab, 3) (aabb)(b) 4
(aabbb, 4) (ab)?(b) 2
(ababb, 2) (abb)(b)? 4

for the four first lines(w) is dy, sincet = 2 andg, = 1, but for the fifth itisn — d2 = 4 sincegs > 1.
Now, for the sake of completeness, let us give the slight improvement of Duval’s algorithm

function NextLynd(£, 4(¢))

Input : £ is a Lyndon word which is not maximal in its fine
homogeneous class.
i(¢) is the index of the standard factorization of L.
Output : w, the successor of £ with same length, for lexicogra-
phic order by length ; or the empty word if £ is maximal
in its fine homogeneous class.
i(w), the index of the standard factorization of w;
or 0 if ¢ is maximal in its fine homogeneous class.
begin

let 2 be the maximal letter of A for lexicographic order

n = |{|

w:=/{

k:=n

while w[k] =z do

k=k—-1
wlk] := succ(w[k])
if w[l]==z2
then Return(¢,0)
else t:=1

Finely homogeneous computations in free Lie algebras 113

1:=0
d1 =k
while %k <n-—d; do
for j increasing from 1 to d; do
wlk + j] = wlj]
k=k+d;
while &k #n do
ti=t+1
1=k
for j increasing from 1to n—%k do
wlk + 4] = wlj]
k:=n
while w[k] =z do
k=k—-1
wlk] := succ(w[k])
dt =k —1
if t=2
then ¢, :=1
while %k <n-—d; do
for j increasing from 1 to ds do
wlk + j] .= wli+ 7]
k=k+ds
g2 =q2+1
else while k<n-—d; do
for j increasing from 1 to d; do
wlk + j] .= wli+ 7]
k=k+d;
if t=1

then Return(w, i(¢))
else if t=2and ¢ =1
then Return(w, dy)
else Return(w, n— d;)
end

whereu[j] means thg®® letter ofu, andsucc () is the following letter of\ in A.
It is clear that the complexity is the same as for the original algorithm, since we have added only two
tests in the function’s body (and also the use of four new integer variables).

References

[1] Duval, J.-P. (1988). &ération d'une section des classes de conjuguaison et arbre des mots de Lyndon
de longueur boreé. Theor. Comput. Sc60, 255-283.

114 Philippe Andary

[2] Reutenauer, C. (1993ree Lie AlgebrasLondon Mathematical Society Monographs, new series,
Vol. 7. Academic Press.

[3] Viennot, X. G. (1978)Algebres de Lie libres et mondes libres Lecture Notes in Mathemati&91
Springer-Verlag.

[4] Chen, K. T., Fox, R. H. and Lyndon, R. C. (1958). Free differential calculus, IV. The quotient groups
of the lower central seriednn. Mathematic68, 81-95.

[5] Lothaire, M. (1983). Combinatorics on wordancyclopedia of Mathematids. Addison-Wesley.

[6] Knuth, D. E. (1981)The Art of Computer Programminggl. 2: Semi-numerical algorithms (2nd ed.)
Addison-Wesley.

[7] Duchamp, G. and Krob, D. (1994). Combinatorics in trace monoids Il. In: Diekert and Rozenberg,
editors,The Book of Traces.

[8] Nijenhuis, A. and Wilf, H. S. (1975 ombinatorial AlgorithmsAcademic Press.

[9] Berstel, J. and Pocchiola, M. (1992). Average cost of Duval’s algorithm for generating Lyndon words.
Preprint no. 92-8 Laboratoire d’'Informatique de I'Ecole Normale Sanjgure, Paris.

	1. Introduction
	2. Maximal Finely Homogeneous Lyndon Words
	2.1 Introduction
	2.2 The Binary Case
	2.3 The General Case
	3. Fine Homogeneous Generation of Lyndon Words
	3.1 Introduction
	3.2 Translation in Terms of Partition
	3.3 The Algorithm
	3.4 Tests on the Execution Time
	4. Generation of Lyndon Basis
	4.1 Introduction
	4.2 Duval's Theorem
	4.3 Adapted Duval's Algorithm
	References

