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We first give a fast algorithm to compute the maximal Lyndon word (with respect to lexicographic order) ofLy�(A)
for every given multidegree� in Nk. We then give an algorithm to compute all the words living inLy�(A) for any
given� in Nk. The best known method for generating Lyndon words is that of Duval [1], which gives a way to go
from every Lyndon word of lengthn to its successor (with respect to lexicographic order by length), in space and
worst case time complexityO(n). Finally, we give a simple algorithm which uses Duval’s method (the one above) to
compute the next standard bracketing of a Lyndon word for lexicographic order by length. We can find an interesting
application of this algorithm in control theory, where one wants to compute within the command Lie algebra of a
dynamical system (letters are actually vector fields).
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1 Introduction
LetA = fa1; a2; : : : ; akg be a set withk elements, andQhAi the associative (non-commutative) algebra
onA. Defining aLie bracket([x; y] = xy � yx) on thisQ-module turns it into a Lie algebra, and we will
denote byL(A) its Lie subalgebra generated byA (i.e. L(A) is thefree Lie algebraonA andQhAi its
enveloping algebra). A will now be called analphabet, whose elements are theletters, andA� is thefree
monoid(the set of allwords) overA.

We know thatL(A) is a gradedQ-module

L(A) =
M
n�1

Ln(A) (1)

whereLn(A) is the submodule ofL(A) generated by homogeneous components with degreen. Further-
more,Ln(A) is the direct sum of finely homogeneous submodulesL�(A) with multidegree� 2 Nk such
thatj�j = n. Hence we have

L(A) =
M
�2Nk

L�(A) (2)
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All the classical monomial basis ofL(A) are finely homogeneous (see Reutenauer [2], for example, or
Viennot [3]), i.e. their components are finely homogeneous Lie monomials, thus every computation on
Lie polynomials (the elements ofL(A)) is nothing but a computation in some fine homogeneity class.

We want to emphasize the use of a particular basis ofL(A), the Lyndon basis, introduced by Chenet
al. in the late 1950s [4] (the interested reader can find all the details of its construction in Lothaire [5]).
For this purpose, we choose a total ordera1 < a2 < : : : < ak onA, which induces alexicographic order
onA�. A word ` is aLyndon wordif it is primitive and minimal in its conjuguacy class. This means that`

cannot be written asun for givenu in A� andn � 2, and` � vu whenever̀ = uv. We denote byLy(A)
theset of Lyndon wordsoverA.

For every Lyndon word̀ we define its(right) standard factorization(`0; `00) as the unique couple of
Lyndon words such that̀= `0`00 and`00 is of maximal length. Moreover, the recursive Lie bracketing of
the standard factorization will be called the(right) standard bracketingof `, denoted by[`].

It would be convenient to define theleft standard factorization(u; v) of ` as the unique couple of
Lyndon words such that̀= uv andu is of maximal length. Then the recursive Lie bracketing of the left
standard factorization will be called theleft standard bracketingof `, denoted by(`).

Note thatA is included inLy(A) and that[a] = a = (a) for every lettera. As an exemple, let
A = fa; bg and` = aaabab, then` is Lyndon because it is primitive and̀ < s for each of its proper
suffix s. The standard bracketings of` are

[`] = [a; [[a; [a; b]]; [a; b]]]
(`) = [[a; [a; [a; b]]]; [a; b]]

It is well known thatLy(A) is a factorization ofA� and that[Ly(A)] is a basis ofL(A) (called theLyndon
basisof L(A)).

The paper is organized as follows. First, we give a fast algorithm to compute the maximal Lyndon
word (with respect to lexicographic order) ofLy�(A) for every given multidegree� in Nk. We will see
that the letters of a Lyndon word which is maximal in its fine homogeneity class are as much ‘regularly
distributed’ as possible.

In the second part, we give an algorithm to compute all the words living inLy�(A) for any given� in
N
k. The best known method for generating Lyndon words is that of Duval [1], which gives a way to go

from every Lyndon word of lengthn to its successor (with respect to lexicographic order by length), in
space and worst case time complexityO(n). It is easy to see that in the special case whereA = fa; bg and
` = ak+3bak�1b (k > 0), there are2k�1 � 1 Lyndon words of length2k + 4 betweeǹ and its successor
in the same fine homogeneity class (namelyak+2bakb). Hence, this method has an exponential worst case
time complexity for our purpose.

Finally, we give a simple algorithm which uses Duval’s method (the one above) to compute the next
standard bracketing of a Lyndon word for lexicographic order by length. We can find an interesting appli-
cation of this algorithm in control theory, where one wants to compute within the command Lie algebra of
a dynamical system (letters actually are vector fields). Standard bracketing are very expansive to compute
in this context, and that is why we want to generate them as quickly as possible in the lexicographic order
by length.
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2 Maximal Finely Homogeneous Lyndon Words
2.1 Introduction
Given� in (N�)k, the question is to find a description of the maximal finely homogeneous Lyndon word
with respect to lexicographic order

��(A) = maxfLy�(A)g (3)

We will merely denote it by�� when no confusion is possible.
Before answering our question, let us give a short description of the problem’s background. Let` be a

Lyndon word with fine homogeneity� 2 (N�)k; it is well known [5] that

[`] = `+
X
`<w

�w (4)

Of course, if̀ = �� the only Lyndon word appearing in[`] is ` itself, but the reciprocal may, or may not,
be true. Anyhow, this led us to an algorithmic answer to our former question, whenA = fa; bg in a first
time, then for any finite alphabet. Just for fun now, we know that the reciprocal is not true and we were
able to find a lot of counter examples (with the help of computers) for which

supp([`]) \Ly�(A) = f`g (5)

For example, each of the following wordsaabbabaabbabababaabbabab,aabbabababaabbababababab and
aabbabababababababababab are inLy(12;12)(fa; bg) and verify equation (5).

2.2 The Binary Case
Let us consider the casek = 2, thusA = fa; bg. We have the following:

Theorem 1 Given any couple(n;m) of positive integers, theMFHLynd function below returns the max-
imal Lyndon word inLy(n;m)(fa; bg) with respect to lexicographic order:

function MFHLynd( (n;m), fa; bg)
# Input : (n;m) is a couple of positive integers.
# fa; bg is the alphabet.
# Output : maxfLy(n;m)(fa; bg)g.
begin

if ( n = 1) or ( m = 1)
then Return( anbm)
else if n � m

then q := n divm
r := n mod m

if r = 0
then Return( aq+1baq�1b(aqb)m�2)
else Return(MFHLynd( (r;m), fa; aqbg))
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else q := m div n
r := m mod n

if r = 0
then Return( abq�1abq+1(abq)n�2)
else Return(MFHLynd( (n� r; r), fabq; abq+1g))

end

Proof. Let (n;m) be any couple of positive integers. We will denote by� the result of the MFHLynd
function. As this algorithm is recursive, we denote byni, mi andAi the instances of formal parameters
during thei-th function call (n1 = n, m1 = m andA1 = fa; bg). Note that the algorithm will terminate
in a finite number of steps, sayp, since througheach stepi the sumni + mi will strictly decrease.
Furthermore, let us denote by�i the word�(ni;mi) at each stagei.

If p = 1 thenn is a multiple ofm, or m is a multiple ofn, and we obviously have� = �1 =
�(n;m)(fa; bg).

So let us consider the casep > 1, i.e. eithern = q1m + r1 with q1 � 1 and0 < r1 < m, or
m = q1n + r1 with q1 � 1 and0 < r1 < n. Then(n2;m2) is (r1;m) or (n � r1; r1), depending on
the value ofn andm, andA2 is fa; aq1bg or fabq1 ; abq1+1g accordingly. Of course,�2 � �1 because
Ly(A2) � Ly(A1), and if we prove that

�1 2 A�2 (6)

the previous inequality turns to an equality. Now the end of the proof is trivial: we have� = �p, but
relation (6) implies

�1 = �2 = : : : = �p (7)

Finally, for the proof to be complete, we have to justify relation (6). For this purpose, we will first
suppose thatn = q1m+ r1 (thusA2 = fa; aq1bg). We can write

�1 = aq1+"1b : : :aq1+"mb (8)

and one can easily see that"1 = 1, "2 2 f0; 1g and�q1 � "i � 1 for 3 � i � m (since�1 2
Ly(n;m)(fa; bg)). Next, the existence ofh = minfi : "i < 0g would imply the existence of a Lyndon
word` in Ly(n;m)(fa; bg) which would be greater than�1. Indeed, let us write�1 = wv1v2 : : : vt, where
w = aq1+1b : : :aq1+"h�1baq1�xb (x = j"hj) and thevi’s are defined by the left standard bracketing of�1

(�1) = [[: : : [[(w); (v1)]; (v2)]; : : : ]; (vt)] (9)

Furthermore, we will consider

w0 = aq1+1b : : :aq1+"h�1�1b (10)

w00 = aq1�x+1b (11)

Somevi’s are greater thanw0, some are not, but they are all greater thanw. So we can split thosevi
betweenw andw0 in two words, and apply the same transformation as inw ! (w0; w00). Now construct
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a sequence of Lyndon words, with thosevi that are greater thanw0 on the one hand, and the splitted ones
(v0i; v

00

i ) on the other. Then concatenating this reordered sequence will give us a new Lyndon word which
is greater than�1 (because the former begins withw0, and the latter withw). But this fact contradicts the
maximality of�1, soh doesn’t exist.

Now, the second casem > n, m not a multiple ofn, is not substantially different from the previous
one. Let us denote byA0 the alphabetA equipped with the reverse orderb < a. Then' : A ! A0

such that'(a) = b and'(b) = a extends to an isomorphism fromA� onto(A0)�. Moreover,' is order
preserving, and we have clearly

�(n;m)(fa; bg) =
�
'(�(m;n)(fa; bg))

�e (12)

where(u1 : : :uk)e= uk : : :u1 is the mirror image of the wordu. 2

The analysis of this algorithm is trivial, since its recurrence tree is structurally equivalent to that of
Euclide’s algorithm for computing the greatest common divisor ofn andm. So we have

Theorem 2 For given positive integers(n;m), the worst case time complexity forMFHLynd function is
O(log(max(n;m))).

Proof. See Knuth [6] for instance,Theorem 4.5.3-FandCorollary 4.5.3-L, p. 343. 2

2.3 The General Case
In a second time, we were able to generalize the functionMFHLynd to any finite alphabetA in the
following manner:

function MFHLynd( �, A)
# Input : � = (�1; : : : ; �k) is a k-tuple of positive integers.
# A = fa1; : : : ; akg is the (ordered) alphabet.
# Output : maxfLy�(A)g.
begin

n := �1

m :=
Pk

i=2 �i
if ( n = 1) or ( m = 1)
then Return( an1a

�k
k : : : a�22 )

else if n � m

then q := n divm
r := n mod m

if r = 0
then if k = 2

then Return( a
q+1
1 a2a

q�1
1 a2(a

q
1a2)

m�2)
else Return(MFHLynd( (�2; : : : ; �k), fa

q
1a2; : : : ; a

q
1akg))

else Return(MFHLynd( (r; �2; : : : ; �k), fa1; a
q
1a2; : : : ; a

q
1akg))

else h := n

for i decreasing from k downto 2 do
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qi := �i divh
ri := �i mod h

h := h� ri
if ( 8i; ri = 0)
then Return( a1a

qk
k : : :a

q2�1
2 a1a

qk
k : : : a

q2+1
2 (a1a

qk
k : : :a

q2
2 )n�2)

else t := 0
for i increasing from 2 to k do

if ri > 0
then t := t+ 1

it := i

Return(MFHLynd( (n�
Pt

j=1 rij ; ri1; : : : ; rit),

fa1a
qk
k : : :a

q2
2 ; a1a

qk
k : : :a

qi1�1
i1�1

a
qi1+1

i1
; : : : ; a1a

qk
k : : :a

qit�1
it�1

a
qit+1

it
g))

end

We can reasonably expect the complexity of such an algorithm to be a function in the size of the alphabet
and in the maximum of the components�i, but unfortunately, we were not able to analyse the behaviour
of MFHLynd function in this case deeply enough.

3 Fine Homogeneous Generation of Lyndon Words
3.1 Introduction
Now the problem is to find all words inLy�(A), for every� in (N�)

k. We will need the following well
known reducing property (see, for example, Duchamp and Krob [7] for a partially commutative version
of this proposition):

Proposition 1 Letk > 1,A = fa1 < : : : < akg andA0 = (A � ak)a
�

k. ThenLy(A) = Ly(A0)[fakg.

Let us see, with an example, how we will dissect Lyndon words to solve our problem. Suppose� =
(3; 3) andA = fa; bg (k = 2). By proposition 1, ifA0 = ab� thenLy(A) = Ly(A0)[ b. Denoting byB
the minimal subset ofA0 such thatLy�(A) � B�, we mean the code

B = fa; ab; abb; abbbg (13)

We want to find out all Lyndon words onB that are inLy�(A) ; we know their fine homogeneity, but we
don’t know how they look like: there can be either twoa and oneabbb, or onea, oneab and oneabb.
(Note that we cannot take three timesab, since Lyndon words are primitive.)

Hence, our initial problem breaks down into two ‘smaller’ subproblems – find all of the words in
Ly(2;1)(fa; abbbg) andLy(1;1;1)(fa; ab; abbg). These subproblems are smaller insofar as the length of
the involved Lyndon words are smaller over the new alphabets than over the previous one (here, we have
to comparefa; abbbg andfa; ab; abbg with fa; bg). It is still necessary to detail the way we compute
Ly(1;1;1)(fa; ab; abbg). Here we have� = (1; 1; 1),A = fa; ab; abbg (k = 3) andB is the code

B = fa; aabb; ab; ababbg (14)
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Every word inLy�(A) is a Lyndon word overB, with either oneaabb and oneab, or onea and oneababb.
Thus

Ly(1;1;1)(fa; ab; abbg) = Ly(1;1)(faabb; abg)[Ly(1;1)(fa; ababbg) (15)

Clearly, iterating this process will give, in a finite number of steps, every Lyndon word onfa; bg with
fine homogeneity(3; 3). In fact, our algorithm will ultimately construct all alphabets with only one letter
which is a word inLy(3;3)(fa; bg). For example, the subproblems’ decomposition tree in this case is

Ly(1)(faaabbbg) Ly(1)(faababbg) Ly(1)(faabbabg)
? ? ?

Ly(1;1)(fa; aabbbg) Ly(1;1)(fa; ababbg) Ly(1;1)(faabb; abg)
?

�

�

�
��

H

H

H
Hj

Ly(2;1)(fa; abbbg) Ly(1;1;1)(fa; ab; abbg)

�
�

�
�

�)

P
P
P
P
Pq

Ly(3;3)(fa; bg)

and finally,Ly(3;3)(fa; bg) = faaabbb; aababb; aabbabg.

3.2 Translation in Terms of Partition
Looking closely at our process gives the feeling that breaking down our problem into smaller ones is
exactly the same as finding a set of partitions under some constraints. For example, in the first stage of our
previous computation we have searched for the set of elementsx inN4 such thatx1 + x2 + x3 + x4 = 3,
verifying the constraintx1+ 2x2+ 3x3+ 4x4 = 6. We have accepted(2; 0; 0; 1) and(1; 1; 1; 0), refused
(0; 3; 0; 0) (since Lyndon words are primitive), and thereby found all the solutions inx. Next, during

the decomposition ofLy(1;1;1)(fa; ab; abbg), we have searched for the set of elements(x; x0) in
�
N
2
�2

verifying

x1 + x2 = 1

x01 + x02 = 1

x1 + 2x2 + x01 + 2x02 = 3

Here, again, we have found all the solutions in(x; x0), namely((1; 0); (0; 1)) and((0; 1); (1; 0)).
For a good formulation of the problem in terms of composition and partition, we will need some nota-

tions and definitions. For everyx in Np, we define

jxj = x1 + x2 + : : :+ xp (16)

and

jjxjj= x1 + 2x2 + : : :+ pxp (17)
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A compositionof the positive integern intop parts is ap-tuplex inNp such thatjxj = n. Furthermore,
whenjjxjj = n+ � we say thatx is constrained by�. We will denote by�(n; p) (resp.��(n; p)) the set
of all compositions ofn into p parts (resp. the set of all compositions constrained by�).

A partition of the positive integern into p parts is ap-tupley in (N�)p such thatjyj = n andy1 �
: : : � yp � 1. We will denote by�(n; p) the set of all partitions ofn into p parts, and by��(n; p) the set
of all partitions ofn into p parts whose value does not exceed� (thus� � y1).

For consistency with our previous notations, we will call�x = (xi1 ; : : : ; xit) the compositionx without
any0’s (thus, for all1 � j � t, xij > 0 and every otherxi are zero), and we will denote byBx the subset
of elements ofB at theij-th place for lexicographic order (1 � j � t).

Here is a trivial property which will be helpful for computing the compositions, since we know a
constant worst case time complexity algorithm to derive the successor of a partition (see Nijenhuis and
Wilf [8]).

Proposition 2 For givenn, p and�, every partition in�p(n+�; n) is equivalent to a unique composition
in ��(n; p).

Proof. The proof is immediate if we see that, given a partitiony in �p(n + �; n), the corresponding
compositionx in ��(n; p) is such thatxi is nothing but the number of parts (iny) equal toi (for all i in
[1; p]). 2

As an example, all the compositions constrained by 3, of 3 into no more than 4 parts are(2; 0; 0; 1),
(1; 1; 1; 0) and(0; 3; 0; 0). Proposition 2 says that they are equivalent to the partitions of 6 into 3 parts not
greater than 4, namely(4; 1; 1), (3; 2; 1) and(2; 2; 2); which will become evident with the notation124,
123 and23. For every partitiony in this last form, which is equivalent to a compositionx, we will write
�y the sequence of non zero exponents (for example, ify = 123 then�y = (1; 1; 1)); so that�x = �y.

3.3 The Algorithm
Now we can state

Theorem 3 Let k > 1, A = fa1 < : : : < akg and� = (�1; : : : ; �k) 2 (N�)
k. SetB := faiak

j : 1 �
i � k � 1; 0 � j � �kg, � := �(�k; k) and for each� in �:

X� := ��1(�1; �k + 1)� : : :� ��k�1(�k�1; �k + 1):

Then we have

Ly�(A) =
[
�2�

[
x2X�

Lyx(B) (18)

Proof. On the one hand, we will study the casek = 2, so we considerA = fa; bg, � = (n;m) and
B = fabj : 0 � j � mg. There ism + 1 elements inB, and to each composition x 2 Nm+1, we
associate the fine homogeneous class of words inB�

Fx = fw 2 B� : jwjabj = xj ; 0 � j � mg: (19)

SinceFx is never empty, there is at least one Lyndon word inFx (note that, by Proposition 1,Ly(B) �
Ly(A)) and we want to determine thosex such thatFx contains a Lyndon word inLy�(A) – thus every
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Lyndon word inFx will belong toLy�(A). Of course,Ly�(A) will be the union set ofLyx(B) over all
thesex. But it is clear that the only criteria forx 2 Nm+1 to be choosen arejxj = n andjjxjj = n+m.
Sox must be a composition ofn into no more thanm + 1 parts, constrained bym, and the theorem is
proved whenk = 2 (with � = f(m)g andX(m) = �m(n;m+ 1)).

On the other hand, we will now consider the casek > 2. Then we haveB = faiak
j : 1 � i �

k � 1; 0 � j � �kg andjBj = k(�k + 1). Here, the problem is to find allx = (x(1); : : : ; x(k�1)) in�
N�k+1

�k�1
such that �

jx(i)j = �i (1 � i � k � 1)Pk�1
i=1 jjx

(i)jj = j�j
(20)

Thus we must have, for alli, the inequalities

�i � jjx(i)jj � �i + �k (21)

and it is clear now that the set of solutions for system (20) is exactly the union set over� 2 �(�k; k) of
thejBj-tuplex of (non-negative) integers verifying�

jx(i)j = �i
jjx(i)jj = �i + �i

(22)

for all 1 � i � k � 1. 2

From Theorem 3 and Proposition 2, we can deduce the functionFHGLynd, which takes as input an
alphabetA and a multidegree�, and outputs the set of elements inLy�(A)

function FHGLynd( �, A)
# Input : � = (�1; : : : ; �k) is a k-tuple of positive integers.
# A = fa1; : : : ; akg is the (ordered) alphabet.
# Output : Ly�(A).
begin

if ( k = 2) and (( �1 = 1) or ( �2 = 1))
then Return( fa�11 a�22 g)
else B := faiak

j : 1 � i � k � 1; 0 � j � �kg
XPhi := fg
Lyn := fg
for � in �(�k; k) do

X := ��k+1(�1 + �1; �1)
for i increasing from 2 to k � 1 do

X := X � ��k+1(�i + �i; �i)
XPhi := XPhi [X

for x in XPhi do
Lyn := Lyn [ FHGLynd( �x;Bx)

Return( Lyn)
end
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3.4 Tests on the Execution Time
Except for theFHGLynd function, the only algorithm at hand for computing the homogeneity class of
Lyndon words could be one derived from Duval’s method. As we will see in the next section, this method
allows us to go from one Lyndon word to the (lexicographically) next one with the same length. Thus, a
new function, sayFHGL, is born: given an alphabetA with k letters and a homogeneity vector� (with
n = j�j), construct the setLy�(A) by iterative application of Duval’s method, picking up those words
whose homogeneity is�. However, we have to bear in mind that this is an exponential algorithm, since
the number of Lyndon words whose length isn isO(k

n

n
). We wanted to get a feeling on the complexities

of both methods. For this purpose, both algorithms have been implemented in Maple V.3 on an SS10
workstation under Solaris 2.3 operating system.

The first time we found out that, for the generation of a given homogeneity class of Lyndon words, the
FHGLynd function is more efficient thanFHGL.

The second time, we decided, given a finite alphabetA of sizek and an integern, to generate all the
words inLyn(A), first in lexicographic order by Duval’s method (algorithmD), and then by homogeneity
classes with our function (algorithmA). Although the average running time ofA per homogeneity class
becomes gradually smaller than the running time ofD while k and/orn grow, algorithmA does not seem
to be linear inn, since algorithmD does, and their execution time ratio increases.

Hence, it is obvious that these two algorithms are devoted to different problems:FHGLis well suited for
lexicographic enumeration of Lyndon words of given length, whileFHGLynd is just right for homogeneity
generation of Lyndon words.

4 Generating the Lyndon Basis
4.1 Introduction
We want here to generate the standard bracketing of Lyndon words for lexicographic order by length. We
know an efficient algorithm, due to Duval [1], which gives the next Lyndon word for lexicographic order
by length with a constant average time complexity [9]. The idea is quite simple: adapt Duval’s method
to obtain the index of the standard factorization in addition to the Lyndon word, of course, preserving
time complexity; then a convenient tree data structure could be used to recursively store all the standard
factorizations.

4.2 Duval’s Theorem
We will write ‘�’ and ‘�’ for lexicographic order and lexicographic order by length, respectively. These
total orders onA� are defined as follows:

u � v iff

8<
:

v 2 uA�;

or
(9r; s; t 2 A�)(9a; b 2 A)(u = ras; v = rbt; a < b)

u � v iff

8<
:

juj < jvj;
or

juj = jvj; u � v

For all Lyndon word̀ , we will denote byS(`), when it makes sense, itssuccessor, for lexicographic
order, which is not iǹ A�. It is computed as follows: remove all terminal maximal letters of`, then
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replace the last non-maximal letter by its successor inA. Notice thatS(`) has always a smaller size than
`. For example, onA = fa; b; cg, S(aaacc) is aab (not aabab !), andS(aaabb) is aaabc. Duval proves
that

Theorem 4 If ` is a Lyndon word with lengthn, which is not maximal in its fine homogeneous class ; if
w is the following Lyndon word of̀ for ‘�’, then we have:

w =

�
S(`) if jS(`)j = n

u1
q1 : : :ut

qt otherwise
(23)

where theui are Lyndon words derived from prefixes of`.

More precisely, theui are defined as follows (whereu[1::j] is the prefix ofu, whose length isj):
u1 = S(`); d1 = ju1j; q1 = (n � 1) divd1; r1 = 1 + (n � 1)modd1;
u2 = S(u1[1::r1]); d2 = ju2j; q2 = r1 divd2; r2 = r1 modd2 > 0;

: : :

ut = S(u1[1::rt�1]); dt = jutj; qt = rt�1 divdt; rt = rt�1 moddt = 0:

Let us have a feeling on the behaviour of the underlying algorithm on the Lyndon word` = a3bab10

(overA = fa; bg). The first prefix we compute is(a3b2)2, sinceS(`) = a3b2, and becauser1 must
be positive. Then we get(a3b2)2a2b sinceS(a3b2) = a2b, and finally, we computeS(a2) = ab giving
w = (a3b2)2a2bab.

This algorithm isO(j`j) in worst case time complexity, and Berstel and Pocchiola [9] have proved it to
be optimal in average time complexity (actually, they give the asymptotic bound(k + 1)=k, wherek is
the cardinal ofA).

4.3 Adapted Duval’s Algorithm
We have seen that Duval constructs the next Lyndon word by computing successive prefixes, thus we had
the natural idea to use the left standard factorization instead of the right one, as usual. So, if we denote by
i(u) the index of the left standard factorization of a Lyndon wordu, and with the notations of Theorem 4,
we have

Theorem 5 If w = S(`), then i(w) = i(`) ; otherwise ifw = u1
q1u2, theni(w) = d1, elsew =

u1
q1 : : : ut

qt andi(w) = n� dt.

Proof. First, we have to notice that, for all1 < i � t, the relationui = S(u1[1::ri�1]) implies the
existence of the integerdi in [[1 ; ri�1]] and the letter�i = succ(ui�1[di]) such that (setu0 = `)

ui = ui�1[1::di� 1]�i (24)

So we have

`

| {z }u1

| {z }ui�1

| {z }ui

| {z } : : : :
di ri�1 di�1 ri�2 d1
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where grayed zones means the suppression of maximal letters.
Now we can carry through the proof. Ifw = S(`) this is becausejS(`)j = n, that isS(`) =

`1 : : : `n�1succ(`n) with `n < z. In this casei(w) is obviouslyi(`).
Otherwise, there are two cases left. On the one hand, whenw = u1

q1u2 we must havei(w) =
d1 because of the preliminary remark. On the other hand, in the general case (t > 2, or t = 2 and
q2 > 1), the longest prefix ofw which is Lyndon, is at least as long asu1q1 : : :ut�1qt�1utqt�1, since
u1 < u2 < : : : < ut. But according to the preliminary remark, it cannot be longer than this word. Hence
i(w) =

Pt�1
i=1 qidi + (qt � 1)dt = n� dt. 2

As an example, let us considerA = fa; bg andn = 5. Then we have the following table:

(`; i(`)) w = u1
q1 : : : ut

qt i(w)

(aaaab; 1) (aaab)(b) 4
(aaabb; 4) (aab)(ab) 3
(aabab; 3) (aabb)(b) 4
(aabbb; 4) (ab)2(b) 2
(ababb; 2) (abb)(b)2 4

for the four first linesi(w) is d1, sincet = 2 andq2 = 1, but for the fifth it isn� d2 = 4 sinceq2 > 1.
Now, for the sake of completeness, let us give the slight improvement of Duval’s algorithm

function NextLynd( `, i(`))
# Input : ` is a Lyndon word which is not maximal in its fine
# homogeneous class.
# i(`) is the index of the standard factorization of `.
# Output : w, the successor of ` with same length, for lexicogra-
# phic order by length ; or the empty word if ` is maximal
# in its fine homogeneous class.
# i(w), the index of the standard factorization of w ;
# or 0 if ` is maximal in its fine homogeneous class.
begin

let z be the maximal letter of A for lexicographic order
n := j`j
w := `

k := n

while w[k] = z do
k := k � 1

w[k] := succ( w[k])
if w[1] = z

then Return( ",0)
else t := 1
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i := 0
d1 := k

while k < n� d1 do
for j increasing from 1 to d1 do

w[k+ j] := w[j]
k := k + d1

while k 6= n do
t := t+ 1
i := k

for j increasing from 1 to n� k do
w[k+ j] := w[j]

k := n

while w[k] = z do
k := k � 1

w[k] := succ( w[k])
dt := k � i

if t = 2
then q2 := 1

while k � n� d2 do
for j increasing from 1 to d2 do

w[k+ j] := w[i+ j]
k := k + d2
q2 := q2 + 1

else while k � n� dt do
for j increasing from 1 to dt do

w[k+ j] := w[i+ j]
k := k + dt

if t = 1
then Return( w, i(`))
else if t = 2 and q2 = 1

then Return( w, d1)
else Return( w, n� dt)

end

whereu[j] means thejth letter ofu, andsucc(�) is the following letter of� in A.
It is clear that the complexity is the same as for the original algorithm, since we have added only two

tests in the function’s body (and also the use of four new integer variables).
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