
Discrete Mathematics and Theoretical Computer Science1, 1997, 217–228

An algorithm for analysis of the structure of
finitely presented Lie algebras

Vladimir P. Gerdt and Vladimir V. Kornyak

Laboratory of Computing Techniques and Automation, Joint Institute for Nuclear Research,141980 Dubna, Russia
E-Mail: gerdt@jinr.dubna.su

We consider the following problem: what is the most general Lie algebra satisfying a given set of Lie polynomial
equations? The presentation of Lie algebras by a finite set of generators and defining relations is one of the most gen-
eral mathematical and algorithmic schemes of their analysis. That problem is of great practical importance, covering
applications ranging from mathematical physics to combinatorial algebra. Some particular applications are con-
struction of prolongation algebras in the Wahlquist–Estabrook method for integrability analysis ofnonlinear partial
differential equations and investigation of Lie algebras arising in different physical models. The finite presentations
also indicate a way toq-quantize Lie algebras. To solve this problem, one should perform a large volume of algebraic
transformations which is sharply increased with growth of the number of generators and relations. For this reason,
in practice one needs to use a computer algebra tool. We describe here an algorithm for constructing the basis of a
finitely presented Lie algebra and its commutator table, and its implementation in the C language. Some computer
results illustrating our algorithm and its actual implementation are also presented.

Keywords: Lie algebras, structure analysis

1 Introduction
A Lie algebraL is an algebra over a commutative ringK with a unit. The non-commutative and non-
associative multiplication in a Lie algebra is called theLie product, and is usually denoted by the commu-
tator[ ; ]. By definition, the Lie product satisfies the following axioms:

[u; v] = �[v; u]; skew � symmetry (1)

[u; [v; w]] + [v; [w; u]] + [w; [u; v]] = 0; Jacobi identity (2)

for all u; v; w 2 L.
A finitely presented algebra is determined by a finite number of some of its elements calledgenera-

tors subject to a finite number of relations having the form of polynomials in the algebra. Any finite-
dimensional algebra is, obviously, a finitely presented one. Nevertheless, the concept of a finite presenta-
tion also covers a wide class of infinite-dimensional algebras. Some examples of such algebras having a
natural constructive definition in terms of a finite number of generators and relations are:

1. Kac and Kac-Moody algebras [1] with their generalization known as Borcherds algebras [2].

1365–8050c 1997 Chapman & Hall



218 Vladimir P. Gerdt and Vladimir V. Kornyak

2. Lie (super)algebras of string theories: Virasoro, Neveu-Schwarz and Ramond algebras [3].

3. Any simple finite-dimensional Lie algebra can be generated by two elements only with the number
and structure of relations independent on the rank of the algebra. This allows one to define such
objects as Lie algebras of matrices of a complex sizesl(�), o(�) andsp(�), where� may be any
complex number, or even1 [4].

The constructions of the last item are of interest in applications to integrable systems, for example,
to the Leznov–Saveliev equation [5] also known as the two-dimensional Toda lattice or vector-valued
Liouville equation. They also give a prescription forq-quantizing the Lie algebras of matrices.

Below we describe an algorithm for determining the explicit structure of a finitely presented Lie al-
gebra from the defining relations, i.e. for constructing its basis and commutator table, and describe its
implementation in C. In fact, our algorithm, if it terminates, produces the Gr¨obner basis [6] for the case
of such non-commutative and non-associative objects as Lie algebras. The algorithm and its actual imple-
mentation is illustrated by a rather simple example arising in investigation of the Burgers equation. We
also present the table containing computational statistics for Serre relations of all simple Lie algebras up
to rank10.

2 Algorithm
To construct finitely presented Lie algebras, several algorithms were elaborated and implemented in Re-
duce [7, 8, 9]. The refinement of Gragert’s algorithm with extension to superalgebras was carried out by
Roelofs [10].

These algorithms are based on the sequential construction of a subset of Lie monomials of a given length
(or weight) together with the relevant consequences of the initial relations. Then all the Jacobi identities
are verified to select those Lie monomials which are linearly independent modulo both Jacobi identities
and the extended set of relations. The selected monomials form the spanning set of the corresponding
homogeneous component of the Lie algebra under construction. If the relations are homogeneous, then
all the elements of the set are basis ones. Otherwise, the set could be contracted by further computations
with monomials and relations of larger length.

In the present algorithm the construction of basis elements and the relation consequences is done sep-
arately. Besides, at each step of the new relation generation we perform a Lie multiplication by a single
generator only. This procedure allows one to decrease the number of Jacobi identities to be verified. From
our computational experiments (see Sect. 4) this approach seems to be rather efficient. Before a more
detailed algorithm description we explain some terms used in the text.

The setX = fx1; x2; : : : ; xkg of generatorsis a set of Lie algebra elements such that any other element
may be constructed by their Lie product, addition and multiplication by elements inK (scalars).

A basisB(X) of a Lie algebra is a minimal set of elements such that any other element is their linear
combination over the ringK.

A Lie monomialm(X) is an element ofL constructed by Lie products of the generatorsxi. A Lie
polynomialP (X) is a linear combination of Lie monomials.

A set ofdefining relationsR is a set of Lie polynomial equalities of the formP (X) = 0.
A Lie algebraL is calledfinitely presentedif both setsX andR are finite.
A finitely presented Lie algebraLF with an empty set of defining relations is called afree Lie algebra.



An algorithm for analysis of the structure of finitely presented Lie algebras 219

Any finitely presented Lie algebra can be considered as the quotient algebra ofLF by the two-sided
ideal generated by relationsR. Thus, it makes sense to deal with only those Lie monomials which con-
stitute a basis of the free Lie algebra, i.e. a set of Lie monomials which are not expressible in terms of
others by means of (1–2).

It is known that a suitable basis of a free Lie algebra can be formed byregularLie monomials [11, 12].
Monomials are calledregular if they are either generators or commutators of the form[u; v] or [w; [u; v]],
whereu; v; w are regular andu < v, w � u with respect to some linear ordering of Lie monomials.
Depending on the ordering chosen, one obtains a particular basis of a free Lie algebra. Among the whole
variety of bases the most often used ones were introduced by Hall and Shirshov (see Bahturinet al. [11]).

Without getting into detail, we note that Shirshov and Hall orderings are analogous, in some sense, to
the pure lexicographical and graded lexicographical orderings for associative words.

In the present algorithm we use Hall ordering because it is compatible with the natural grading by
length or by positive weight. The use of Shirshov ordering may be more convenient for analysis of a Lie
monomial structure. However, as in the associative case, this ordering typically decreases the efficiency
because a Lie monomial may contain a greater submonomial that complicates the structure of data and
algorithm.

The algorithm below, if it terminates, produces the complete set of relations. The left hand sides of the
latter form a set of Lie polynomials which is often called a Gr¨obner basis (see Ufnatovsky [6]).

A setR of relations generating an idealI of a free Lie algebra is calledcompleteif

(i). All the monomials inR are rewritten in terms of regular ones.

(ii). For eachv 2 I also expressed in terms of regular monomials there exists a relationr 2 R such that
the leading monomial ofr is a submonomial of the leading monomial ofv.

The complete set of relationsR is calledminimalif there is noR0 � R such thatR0 is also complete.
Hereafter, under reduction of a Lie polynomial modulo set of relationsR we assume its rewriting in

terms of regular monomials with substitutions of their submonomials inaccordance with the relations.
In general terms, to rewrite a given set of Lie polynomials to the minimal Gr¨obner basis one should

compute all possible consequences of these polynomials and remove all dependencies among them. The
problem is to do that in the most efficient way. There were elaborated a number of optimizing criteria to
avoid unnecessary reductions in computation of associative [6] and commutative [13, 14] Gr¨obner bases.
Unfortunately, analogous criteria have not been formulated yet for the non-associative case in such a way
as to be applied in practice.

Nevertheless, we use some optimizing methods to decrease the volume of computation. The most
important of them are the following:

1. To produce new relations, that is, the consequences of a given relation,we multiply it by the gener-
ators only. Consider the Jacobi identity (2) for the relationr:

[[u; v]; r] = [u; [v; r]]� [v; [u; r]] (3)

Here there are three alternatives:

(a) Both the left- and right-hand sides of (3) are reduced to zero. In this case a new relation is not
produced.



220 Vladimir P. Gerdt and Vladimir V. Kornyak

(b) Both sides of (3) are reduced to nonzero expressions. In this case the new relation is obtained
from r by successive multiplications byu andv. By applying the formula (3) recursively, the
process of generating new relations is reduced to successive multiplication by generators.

(c) The right-hand side of (3) is reduced to zero while the left-hand side is not. In this case the
corresponding consequence cannot be derived by successive multiplications by generators.

In our algorithm the latter case is treated separately once the subset of the complete set of relations
has been generated in accordance with alternative (b).

2. There is no need to multiply a relation by a generator which forms a regular monomial with the
leading monomialof the relation since all such consequences are automatically reduced to zero.
Let the relation have the formu + a = 0 with leading monomialu, so thata contains the other
terms. Multiplying the relation by a generatorx we obtain[x; u] + [x; a] = 0. If [x; u] is a regular
monomial we must replaceu by�a. It leads to the identity�[x; a] + [x; a] � 0 and, hence, does
not produce a new relation.

3. All computations, starting with processing the input relations,are executed modulo identities(1–2)
and modulothe relations treated up to that moment.This allows us to minimize resimplification
of the calculated structures, and to keep the system of Lie monomials and relations as compact as
possible at all times in the computation.

The input and output data for the algorithm are:

Input. The ordered set of generatorsX = fx1; x2; : : :g with prescribed positive integer weightswi (= 1
by default);
the set of scalar parametersP = fp1; p2; : : :g if they are present in the relations;
the set of defining relationsR = fr1; r2; : : :g, whereri are Lie polynomials with coefficients from
the commutative ringZ[p1; p2; : : :] of scalar polynomials;
the limiting number of relations to be generated.

Output. The interreduced set of consequences of the input relations~R = f~r1; ~r2; : : :g;
the listE = fe1; e2; : : :g of Lie algebra elements linearly independent modulo~R;
the commutator table[ei; ej] = ck

ij
ek;

the table of scalar polynomials inpi which have been treated as nonzero during computation. Par-
ticular values ofpi providing vanishing of these polynomials may cause branching of computation
and, hence, changes of the algebra structure;
dimensions of homogeneous components.

There are three steps in the algorithm:

1. Generation of the relation set~R = f~r1; ~r2; : : :g of the consequences of the initial setR. This step
executes the subsequent multiplying of relations by generators adding nonzero results to the set of
relations and substituting these new relations into the other ones. The process terminates if either
all newly arising relations are reduced to zero or the number of relations goes up to the limit fixed
at input. The second case means that either the algebra is infinite-dimensional or the input limiting
number of the relations is too small.



An algorithm for analysis of the structure of finitely presented Lie algebras 221

2. Completion of the setE = fe1; e2; : : :g. Some elementsei are obtained at Step 1 as Lie (sub)mono-
mials of ~ri. However, generally, the setE produced must be completed by those regular commu-
tators of already existing elements which do not occur inE. In doing so one must verify if new
elements are indeed independent. It may happen that there exists a Jacobi identity containing the
new element as a term and such that this identity is reduced to a new relation missing in the output
of Step 1. If so one should add the new relation to~R and go back to Step 1. Besides, in the case of
a Lie superalgebra the Lie squares of the odd elements are also to be added.

3. Construction of the commutator table. At this step the commutators of the elements obtained at
Step 2 are computed directly. The commutators produced are reduced modulo the relation set~R.

If the above algorithm terminates due to the input limiting number of relations, then the truncated output
makes sense only if all~ri 2 ~R are homogeneous. In this case we obtain a part of the whole Gr¨obner basis,
and the setE forms a subbasis of the Lie algebra under construction.

Otherwise, the algorithm termination means we have a reduced and, hence, minimal finite Gr¨obner
basis. Generally, it does not mean that the algebra is necessarily finite-dimensional. However, if at the last
iteration of Step 2 no new elementsei were obtained, then we are done with a finitely-dimensionalalgebra.
In the case of a finite Gr¨obner basis generating an infinite-dimensional algebra only those additional
elements are to be included in setE which are regular Lie pairs of elementsei obtained at Step 2.

3 Implementation and Sample Session
The algorithm has been implemented in the C language. The source code has a total length of almost
7500 lines and contains about 150 C functions realizing: top level algorithms, Lie algebra operations,
manipulation with scalar polynomials, multiprecision integer arithmetic, substitutions, list processing,
input and output handling, etc.

The following session file has been produced on a 66 Mhz MS-DOS based AT/486 computer. We use
here 32bitGCCcompiler andGO32DOS extender, though for the considered example the 16bitBorland
C++ 3.1 environment is quite sufficient (and takes twice smaller space for the internal data structures).
That illustrative example, arising in investigation of symmetries of well-known in mathematical physics
Burgers equation leads to relatively compact output.

The relations contain three generatorsX, Y andT and five parametersc1; : : :c5 which allow us to
illustrate the classification aspects of the problem.

Note that the program asks for the output form of Lie monomials. In this example we choose the
right-normedarrangement for non-associative monomials. It means, for instance, that Lie monomials
[x; [x; [y; x]] and [[x; y]; [x; [x; y]]] are presented in the output asx2yx and(xy)x2y, respectively. Such
notations are more compact and expressive especially for high degree Lie monomials, and widely used
by algebraists. Otherwise, one can choose the standard output with explicit square brackets printed out.
Input data can be entered from either a keyboard or from a separate file.

Enter name of existing or new input file -> burggen.in
Input data:
Generators: X Y T;
Parameters: c_1 c_2 c_3 c_4 c_5;
Relations:
2 [[Y,X],Y] + c_2 [Y, X] + 2 c_5 Y;



222 Vladimir P. Gerdt and Vladimir V. Kornyak

[[Y,X],X] + c_1 [Y, X] + [T,Y] + c_4 Y;
[T,X] + c_3 Y;

Right-normed output for Lie monomials? (y/n) -> y
Standard grading assumes unit weight for every generator.
Do you want to use a different grading? (y/n) -> y
Enter non-zero positive integer weights for generators:

Weight for X -> 1
Weight for Y -> 1
Weight for T -> 2

Enter limiting number for relations -> 100

Initial relations:

(1) XT - c Y = 0
3

2
(2) YT - X Y + c XY - c Y = 0

1 4

(3) 2 YXY - c XY + 2 c Y = 0
2 5

*** Possible parameter branching in relation:

2 2 2
4 c c X Y - (8 c + c c ) XY + 2 c c c Y

5 2 5 4 2 5 4 2

*** Parametric coefficient at leading term of relation:

c c
5 2

*** Possible parameter branching in relation:

2 2
4 c c YT - (8 c - 4 c c c + c c ) XY - 2 c c c Y

5 2 5 5 2 1 4 2 5 4 2

*** Parametric coefficient at leading term of relation:

c c
5 2

*** Possible parameter branching in relation:

c XY - 2 c Y
2 5

*** Parametric factor of relation:



An algorithm for analysis of the structure of finitely presented Lie algebras 223

c c
5 2

*** Parametric coefficient at leading term of relation:

c
2

*** Possible parameter branching in relation:

2 2 2
c YT - (4 c - 2 c c c + c c ) Y

2 5 5 2 1 4 2

*** Parametric factor of relation:

c
5

*** Parametric coefficient at leading term of relation:

c
2

Non-zero parametric coefficients:

(1) c
2

(2) c
5

Reduced relations:

(1) c XY - 2 c Y = 0
2 5

(2) XT - c Y = 0
3

2 2 2
(3) c YT - (4 c - 2 c c c + c c ) Y = 0

2 5 5 2 1 4 2

Basis elements:

(1) E = X
1

(2) E = Y
2

(3) E = T
3



224 Vladimir P. Gerdt and Vladimir V. Kornyak

Non-zero commutators of basis elements:

(1) [E , E ] = 2 c /c E
1 2 5 2 2

(2) [E , E ] = c E
1 3 3 2

2 2 2
(3) [E , E ] = (4 c - 2 c c c + c c )/c E

2 3 5 5 2 1 4 2 2 2

Dimensions of homogeneous components:

dim G = 2
1

dim G = 1
2

Time: 0.01 sec
Number of relations: 12 Relation space: 96 bytes
Number of ordinals: 19 Ordinal space: 228 bytes
Number of nodes: 153 Node space: 1836 bytes
Total space: 2160 bytes

HereEi are basis elements. In the case of an infinite-dimensional algebra the program prints out only
those commutators which can be expressed in terms of the basis elements computed.

It can easily be seen that for the generic values of parameters we have a three-dimensional nilpotent
Lie algebra. The branching of the algebra structure is possible at the values of parametersc2 = 0 and
c5 = 0. The computations with these particular values show that the choice(c2 6= 0; c5 = 0) gives
also a three-dimensional algebra, the choice(c2 = 0; c5 6= 0) gives zero-dimensional algebra, the choice
(c2 = 0; c5 = 0) leads to the most interesting case of the infinite-dimensional algebra indicating the
complete integrability of the Burgers equation.

4 Serre Relations for Simple Lie Algebras
In Table 1 we present the results of application of the program toSerre relations(see, for example,
Mikhalev and Zolotykh [12]) for all simple Lie algebras up to rank10. The timings are presented for the
above mentioned 66 Mhz MS-DOS based AT/486 computer.

Any (semi)simple complex Lie algebraL possesses aGauss decompositionL = E �H � F , where
H is a commutativeCartan subalgebra, andE andF arepositiveandnegativenilpotent subalgebras,
respectively. This decomposition is compatible with the following relations containingCartan elements
hi andChevalley generatorsei, fi corresponding to positive and negative simple roots of the algebra:

[hi; hj] = 0; (4)

[ei; fj] = �ijhj; (5)

[hi; ej] = ajiej ; (6)



An algorithm for analysis of the structure of finitely presented Lie algebras 225

[hi; fj] = �ajifj ; (7)

(ad ei)
1�ajiej = 0; (8)

(ad fi)
1�ajifj = 0; (9)

whereaij is theCartan matrix, i; j = 1; : : : ; r = rank L: Note that for Kac–Moody algebras just the
same relations hold with slightly different Cartan matrices.

Relations (8–9) include only Chevalley generators corresponding to positive and negative subalgebras
E andF containing the principal part of the information about the algebra. These relations taken sepa-
rately define subalgebrasE andF .

One can see that calculation of the exceptional algebraE8 is the most difficult task among those in-
cluded in Table 1. The number of initial relations here is290. The program generates the Gr¨obner basis
which contains23074 relations involving Lie monomials up to degree 58 while the Lie algebra basis el-
ements go up to 29th degree. The task requires3 min 14 sec of computing time and815516 bytes of
memory.

Unlike the whole set of Serre relations forE8 the separate processing of relations (8) (or (9)) gives an
example with twelve new relations arising at Step 2 of the algorithm in addition to 5508 relations derived
at Step 1. Note that forE8 one needs only15 sec and186096 bytes. Our computational experience shows
that similar situations with extra relations generated at Step 2 are rather rare. On the other hand Step 2
takes usually much less computing time than Step 1. That is why in pursuit of efficiency we postpone the
analysis of those special situations to Step 2.

The content of the columns in Table 1 is as follows:

Dim is the dimension of the algebra,
Nin is the number of input relations,
NGB is the number of relations in the Gr¨obner basis,
Ncomm is the number of nonzero commutators,
DGB is the maximum degree of the Lie monomials in Gr¨obner basis,
Space is the maximum memory occupied by the computed structures,
Time is the running time without expenses for input-output operations.

5 Conclusion
Unlike commutative algebra, where such a universal tool for analysis of polynomial ideals as Buch-
berger’s algorithm for computing the Gr¨obner basis has been developed [13, 14], its generalizations to
non-commutative [6, 15, 16], and especially to non-associative algebras are still far from being practically
useful. Moreover, because of very serious mathematical and algorithmic problems still to be solved, there
are only a few packages implementing the non-commutative Gr¨obner basis technique, and none of them
so far is able to deal with non-associative algebras.

This justifies the elaboration of other algorithmic techniques. Those described in earlier work [7–10]
have been already applied to a number of problems in mathematical physics.



226 Vladimir P. Gerdt and Vladimir V. Kornyak

Table 1

Algebra Dim Nin NGB Ncomm DGB Space, Time,
bytes seconds

A2 8 17 24 21 4 1188 < 1
A3 15 40 84 60 6 3612 < 1
A4 24 72 218 126 8 8716 < 1
A5 35 113 473 225 10 18088 < 1
A6 48 163 908 363 12 33700 1
A7 63 222 1594 546 14 57908 3
A8 80 290 2614 780 16 93452 6
A9 99 367 4063 1071 18 143456 10
A10 120 453 6048 1425 20 211428 19
B2 10 17 35 28 6 1672 < 1
B3 21 40 149 106 10 6160 < 1
B4 36 72 441 263 14 17148 < 1
B5 55 113 1047 522 18 39180 2
B6 78 163 2153 906 22 78544 5
B7 105 222 3981 1441 26 142620 12
B8 136 290 6792 2150 30 240024 26
B9 171 367 10904 3057 34 381256 50
B10 210 453 16683 4185 38 578364 98
C3 21 40 138 106 10 5772 < 1
C4 36 72 411 263 14 16032 < 1
C5 55 113 968 522 18 36304 2
C6 78 163 2007 906 22 73320 6
C7 105 222 3756 1441 26 134652 14
C8 136 290 6439 2150 30 227672 28
C9 171 367 10398 3057 34 363720 54
C10 210 453 15999 4185 38 554832 94
D4 28 72 283 179 10 11336 < 1
D5 45 113 726 389 14 27768 1
D6 66 163 1573 713 18 58292 3
D7 91 222 3034 1174 22 109964 8
D8 120 290 5355 1798 26 190932 19
D9 153 367 8817 2608 30 310452 37
D10 190 453 13762 3628 34 479792 69
G2 14 17 73 56 10 3200 < 1
F4 52 72 858 544 22 32832 2
E6 78 163 2186 1003 22 80740 5
E7 133 222 6389 2527 34 230140 29
E8 248 290 23074 7710 58 815516 194

The algorithm presented above reveals some common features with involutive techniques in commuta-



An algorithm for analysis of the structure of finitely presented Lie algebras 227

tive algebra [17]. Similar to the above consideration, in the involutiveapproach to Gr¨obner bases construc-
tion only multiplications by independent variables (prolongations) rather thanS-polynomials are used. In
the noncommutative case an analog of a BuchbergerS-polynomial is acomposition[6]. Thus, to construct
a Gröbner basis one can perform all possible compositions and reduce them modulo the current relation
set. However, in the nonassociative Lie algebra case such a computational scheme meets very serious
combinatorial obstacles. To recognize reducibility of the particular composition one has to do recursive
transformations based on Jacobi identities. Our present algorithm, like that in Gerdt and Blinkov [17],
successively combines prolongations and reductions preventing massive recursive resimplifications.

OurC code can be easily generalized to handle Lie superalgebras.

Acknowledgments
We are grateful to A. Cohen, P. Gragert, V. Robuk, M.Roelofs and especially to V. Ufnarovsky for fruitful
discussions and useful remarks. This work was supported in part by the INTAS project No. 93-893.

References
[1] Kac, V. G. (1990).Infinite Dimensional Lie Algebras (3rd ed.).Cambridge University Press.

[2] Gebert, R. W. (1994). Beyond Affine Kac-Moody Algebras in String Theory.DESY 94-209, Ham-
burg.

[3] Leites, D. (1984).Lie superalgebras.VINITI. Itogi Nauki i Tekhniki. Modern Problems in Mathe-
matics. Recent Progress,25, Moscow, pp. 3–50 (in Russian).

[4] Grozman, P. and Leites, D. (1995). Defining Relations Associated with the Principalsl(2)-
subalgebras.

[5] Leznov, A. and Saveliev, M. (1991)Group-Theoretical Methods for Integration of Dynamical Sys-
tems. Birkhäuser.

[6] Ufnarovsky, V. A. (1990).Combinatorial and asymptotic methods in algebra.VINITI. Itogi Nauki
i Tekhniki. Modern Problems in Mathematics. Fundamental Branches,57, Moscow, pp. 5–177 (in
Russian). (To appear in EMS-57 (1995) (in English).)

[7] Gragert, P. K. H. (1989). Lie Algebra Computations.Acta Applicandae Mathematicae16, 231–242.

[8] Akselrod, I. R., Gerdt, V. P., Kovtun, V. E. and Robuk, V. N. (1991). Construction of a Lie Algebra
by a Subset of Generators and Commutation Relations. In D. V.Shirkov, V. A.Rostovtsev and V.
P.Gerdt, editors,Computer Algebra in Physical Research. World Scientific, pp. 306–312.

[9] Gerdt, V. P., Robuk, V. N. and Severyanov V. M. (1994). On Construction of Finitely Presented Lie
Algebras. Preprint JINR E5-94-302, Dubna. (Submitted toComput. Maths. & Math. Phys..)

[10] Roelofs, G. H. M. (1991).The LIESUPER Package for REDUCE,Memorandum 943, University of
Twente, Netherlands.



228 Vladimir P. Gerdt and Vladimir V. Kornyak

[11] Bahturin, Yu. A., Mikhalev, A. A., Petrogradsky, V. M. and Zaicev, M. V. (1992).Infinite dimensional
Lie superalgebras.Walter de Gruyter.

[12] Mikhalev, A. A. and Zolotykh A. A. (1995).Combinatorial Aspects of Lie Superalgebras. CRC
Press.

[13] Buchberger, B. (1985). Gr¨obner bases: an algorithmic method in polynomial ideal theory. In N.
K.Bose, ediotor,Recent Trends in Multidimensional System Theory. Reidel, pp. 184–232.

[14] Becker, T., Weispfenning, V. and Kredel, H. (1993).Gröbner Bases. A Computational Approach to
Commutative Algebra. Graduate Texts in Mathematics141. Springer-Verlag.

[15] Mora, T. (1988). Seven Variations on Standard Bases. Preprint No.45, Dip. di Mathematica, Univer-
sita di Genova, Italy.

[16] Kandri-Rody, A. and Weispfenning, V. (1990). Non-commutative Gr¨obner bases in Algebras of
Solvable Type.J. Symb. Comp.9, 1–26.

[17] Gerdt, V. P. and Blinkov, Yu. A. (1995). Involutive Polynomial Bases,Publication IT-95-271, LIFL
USTL, Lille. (Submitted toJ. Symb. Comp.)


	1. Introduction
	2. Algorithm
	3. Implementation and Sample Session
	4. Serre Relations for Simple Lie Algebras
	5. Conclusion
	Acknowledgements
	References

