
Discrete Mathematics and Theoretical Computer Science DMTCS vol. 12:3, 2010, 41–62

On the Number of Balanced Words of Given
Length and Height over a Two-Letter
Alphabet
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1Université Aix-Marseille III, Marseille, France.
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We exhibit a recurrence on the number of discrete line segments joining two integer points in the plane using an
encoding of such segments as balanced words of given length and height over the two-letter alphabet {0, 1}. We give
generating functions and study the asymptotic behaviour. As a particular case, we focus on the symmetrical discrete
segments which are encoded by balanced palindromes.
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1 Introduction
The aim of this paper is to study some properties of discrete lines by using combinatorics on words.
The first investigations on discrete lines are dated back to J. Bernoulli[Ber72], E.B. Christoffel [Chr75],
A. Markoff [Mar82] and more recently to G.A. Hedlund and H. Morse [MH40] who introduced the ter-
minology of Sturmian sequences, for the ones defined on a two-letter alphabet and coding lines with irra-
tional slope. These works gave the first theoretical framework for discrete lines. A sequence u ∈ {0, 1}N
is Sturmian if and only if it is balanced and not-eventually periodic. From the 70’s, H. Freeman [Fre74],
A. Rosenfeld [Ros74] and S. Hung [Hun85] extended these investigations to lines with rational slope and
studied discrete segments. In [Rev91], J.-P. Reveillès defined arithmetic discrete lines as sets of integer
points between two parallel Euclidean lines. There are two sort of arithmetic discrete lines, the naive and
the standard one.

There exists a direct relation between naive (resp. standard) discrete arithmetic lines and Sturmian
sequences. Indeed, given a Sturmian sequence u ∈ {0, 1}N, if one associates the letters 0 and 1 with a
shifting along the vector e1 and e2 (resp. the vectors e1 and e1+e2) respectively, then, the vertices of the
obtained broken line are the ones of a naive arithmetic discrete line (resp. a standard arithmetic discrete
line) with the same slope (see Figure 1).

Let s : N 7−→ N be the map defined by:

s : N −→ N
L 7→ #{w ∈ {0, 1}L, w is balanced},
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w = 10010w = 10001 w = 10100

w = 00101w = 01010 w = 01001

Figure 1: There exist six discrete segments of length 5 and height 2.

where #E denotes the cardinal of the set E. In other words, given L ∈ N, s(L) is the number of balanced
words of length L, or equivalently, the number of discrete segments of any slope α ∈ [0, 1] of length L.
In [Lip82], it is proved that

s(L) = 1 +
L∑
i=1

(L− i+ 1)ϕ(i),

where ϕ is Euler’s totient function, that is, ϕ(n) is the number of positive integers smaller that n and
coprime with n. Alternative proofs of this result can be found in [Mig91, BP93, CHT02, BL88].

In [dLL05, dLL06], de Luca and De Luca investigated the number p(L) of balanced palindrome words
of length L ∈ N, that is the balanced words coding a symmetrical discrete segments of length L. They
proved

p(L) = 1 +

dL/2e−1∑
i=0

ϕ(L− 2i).

In the present work, we investigate the following question. Given two integer points of Z2 (also called
pixels in the discrete geometry literature [CM91]), how many naive discrete segments link these points
(see Figure 1)? In other words, given L ∈ N and h ∈ N, how much is s(L, h) = #{w ∈ {0, 1}L, |w|1 =
h and w balanced}? We exhibit a recurrence relation on s(L, h) and generating functions and we study the
asymptotic behaviour of the maps s. After this, we focus on the number p(L, h) of balanced palindromes
of given length and height for which we also exhibit a recurrence relation and a generating function.

We are interested in these formulas to have a better understanding of the space of Sturmian sequences.
Indeed the main combinatorial properties of theses sequences can be seen in similar formulas. For example
the formula of s(L) is deeply related to the number of bispecial words of length L, see [CHT02]. One
main objective is to generalize these formulas to dimension two in way to understand the combinatorics
structure of discrete planes. To a discrete plane is associated a two dimensional word. The study of
these words is an interesting problem. The complexity of such a word is not known, the first step in its
computation is the following article [DJVV10].

2 Basic notions and notation
Let {0, 1}∗ and {0, 1}N be the set of respectively finite and infinite words on the alphabet {0, 1}. We
denote the empty word by ε. For any word w ∈ {0, 1}∗, |w| denotes the length of w, and |w|0 and |w|1
denote respectively the number of 0’s and 1’s in w. |w|1 is also called the height of w. A (finite or infinite)
word w is balanced if and only if for any finite subwords u and v of w such that |u| = |v|, we have



On the Number of Balanced Words of Given Length and Height over a Two-Letter Alphabet 43∣∣|u|0−|v|0∣∣ ≤ 1. A (finite or infinite) word w is of type 0 (resp. type 1) if the word w does not contain 11
(resp. the word 00). We denote by S the set of finite balanced words and by S0 (resp. S1) the set of finite
balanced words of type 0 (resp. 1).

Let L, h ∈ N and α, β ∈ {0, 1}∗. We denote by Sα,β(L, h) the set of elements of S of length L and
height h, of which α is a prefix and β is a suffix. Note that α and β may overlap. For short, we usually
write S(L, h) instead of Sε,ε(L, h). Observe that S(L, h) is the set of finite balanced words which encode
the discrete segments between (0, 0) and (L, h). Remark also that L− h is the width of the word, that is
the number of zero’s. We can count by height or by width, it is the same and this symmetry is used several
times in the paper.

We extend the definition of the function s(L, h) on Z2 by:

s(L, h) =

 #S(L, h mod L) if L > 0,
1 if L = 0 and h = 0,
0 if L < 0 or L = 0 and h 6= 0

Observe that for 0 ≤ h ≤ L, since #S(L,L) = #S(L, 0), one has s(L, h) = #S(L, h).
For 0 ≤ h ≤ L and α, β ∈ {0, 1}∗ we denote by sα,β(L, h) the cardinal of Sα,β(L, h). Notice that

sα,β(L, h) = sα,β(L,L− h), where w is the word obtained by replacing the 0’s with 1’s and the 1’s with
0’s in w.

3 General case
3.1 Main theorem
In the present section, we prove the following result:

Theorem 1 For all L, h ∈ N satisfying 0 ≤ h ≤ L/2, one has:

s(L, h) = s(L− h− 1, h) + s(L− h, h)− s(L− 2h− 1, h) + s(h− 1, L− 2) + s(h− 1, L− 1).

In order to prove Theorem 1, let us now introduce some technical definitions and lemmas. Let ϕ be the
morphism defined on {0, 1}∗ and {0, 1}N by:

ϕ :
0 7→ 0
1 7→ 01

Let us recall that ϕ is a Sturmian morphism, that is, for any Sturmian sequence u, the sequence ϕ(u) is
Sturmian [Par97, MS93]. Moreover:

Lemma 2 [Lot02] Let w ∈ {0, 1}N.

1. If 0w is Sturmian of type 0, then there exists a unique Sturmian sequence u satisfying ϕ(u) = 0w.

2. w is Sturmian if and only if so is ϕ(w).

Since every balanced word is a factor of a Sturmian word, we directly deduce:
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Corollary 3 If a finite word w ∈ {0, 1}∗ is balanced then so is ϕ(w).

Definition 1 (0-erasing map) Let θ : {0, 1}∗ → {0, 1}∗ be the map defined by the recurrence relations:

θ(ε) = ε,
θ(0α+1) = 0α for α ≥ 0,
θ(1v) = 1θ(v),
θ(0α+11v) = 0α1θ(v) for α ≥ 0,

Roughly speaking, θ erases a 0 in each maximal range of 0 in a given word. In some sense, θ is the inverse
of ϕ. Let us now prove some key properties of θ:

Lemma 4 Consider the set S00,1 = {u ∈ S0, ∃w ∈ {0, 1}∗, u = 0w1} of words in S0 of the form 0w1
with w ∈ {0, 1}∗. Then

• The map θ restricted to S00,1 is a bijection on S0,1. The map ϕ restricted to S0,1 is a bijection on
S00,1.

• Moreover we have θ(ϕ(w1)) = w1 for all w.

Proof: By induction on |w|1.

1. If |w|1 = 0 then w = 0α for some α ≥ 0 and we have ϕ(θ(00α1)) = ϕ(0α1) = 0α+11 = 0w1.

2. Assume |w|1 ≥ 1 and the result holds for all u such that |u|1 < |w|1. We have w = 0α1w′ for
some α ≥ 0. By assumption, the letter 1 is isolated in 0w1, so that w′ 6= ε and w′ starts with the
letter 0. Hence,

ϕ(θ(0w1)) = ϕ(θ(0α+11w′1)) = ϕ(0α1θ(w′1)) = 0α01ϕ(θ(w′1)).

By the induction hypothesis, we obtain

ϕ(θ(0w1)) = 0α+11w′1 = 0w1.

2

Example 1 We have by straightforward computations: ϕ(θ(11)) = 0101. Thus the last equation of
Lemma 4 is not true everywhere.

Lemma 5 Let w ∈ {0, 1}∗. If w is balanced then so is θ(w).

Proof:

1. If w is of type 1 (i.e. the letter 0 is isolated in w), then we verify that θ(w) = 1α for some integer
α. Hence it is balanced.

2. Assume now that w ∈ S0.
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• There exist α ∈ {0, 1}, β ∈ N and a Sturmian sequence u of type 0 such that the sequence
0αw0β1u is Sturmian and starts with the letter 0. Notice that u starts with the letter 0 too.

• By point 1 of Lemma 2, there exists a Sturmian sequence u′ such that u = ϕ(u′).

• We have

ϕ(θ(0αw0β1)u′) = ϕ(θ(0αw0β1))ϕ(u′) since ϕ is a morphism
= 0αw0β1u by Lemma 4.

and by point 2 of Lemma 2, θ(0αw0β1)u′ is Sturmian because 0αw0β1u is Sturmian. Hence
θ(0αw0β1) is balanced as a factor of a balanced word. Finally, we prove by induction on |w|1
that θ(0αw0β1) = 0α

′
θ(w)0β

′
1 for some integers α′ and β′, so that θ(w) is balanced as a

factor of a balanced word.

2

The last technical property of θ we need is:

Lemma 6

1. If L ≥ 2h+ 1 then θ is a bijection from S0,0(L, h) to Sε,ε(L− (h+ 1), h).

2. IfL ≥ 2h then θ is a bijection from S0,1(L, h) to Sε,1(L−h, h) and from S1,0(L, h) to S1,ε(L−h, h).

3. If L ≥ 2h− 1 then θ is a bijection from S1,1(L, h) to S1,1(L− (h− 1), h).

Proof: If h = 0 and L 6= 0, S0,0(L, h) = {0L} and Sε,ε(L − (h + 1), h) = {0L−1} = {θ(0L)}. All
others sets are empty so that the result obviously holds. In the rest of the proof, we assume h ≥ 1. We
prove the result for S0,1(L, h). The proof of other cases is similar and left to the reader.

Notice first that S0,1(L, h) ⊂ S0 iff L ≥ 2h. Indeed, if L = 2h, then S0,1(L, h) = {(01)h} ⊂ S0.
Now, if L > 2h, by the pigeonhole principle, any w ∈ S0,1(L, h) must contain the subword 00. Since w
is balanced, it cannot contain the subword 11 hence the letter 1 is isolated. Conversely, if the letter 1 is
isolated in w, then w must contain at least h 0’s, hence L ≥ 2h.

• θ(S0,1(L, h)) ⊂ Sε,1(L− h, h)
Let w ∈ S0,1(L, h). By an easy induction on h, we show that |θ(w)| = L − h and |θ(w)|1 =
|w|1 = h. Furthermore, from Lemma 5, θ(w) is balanced so that θ(w) ∈ S(L − h, h). Now from
the definition of θ, if 1 is a suffix of w, then it is also a suffix of θ(w) so that θ(w) ∈ Sε,1(L−h, h).

• θ : S0,1(L, h)→ Sε,1(L− h, h) is injective.

Let u, v ∈ S0,1(L, h). We have u = 0α+11u′, v = 0β+11v′ and

θ(u) = θ(v)⇔ 0α1θ(u′) = 0β1θ(v′)⇔ α = β ∧ θ(u′) = θ(v′).

Now, either h = 1 and u′ = v′ = ε so that u = v or h > 1 and u′, v′ ∈ S0,1(L−α− 1, h− 1). We
get the result by induction on h.
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• θ : S0,1(L, h)→ Sε,1(L− h, h) is surjective.

Let w ∈ Sε,1(L − h, h). We have w′ = ϕ(w) ∈ S0,1(L, h). Indeed, w′ is balanced because w is,
|w′| = |w|0 + 2|w|1 = L− 2h+ 2h = L and |w′|1 = |w|1 = h so that w′ ∈ S(L, h). Since 1 is a
suffix of w, it is also a suffix of w′ and from Lemma 4, θ(w′) = w.

As already said, the proof of other cases is similar. To prove that θ : S0,0(L, h)→ Sε,ε(L− (h+1), h)
is surjective, we consider for each w ∈ Sε,ε(L− (h+1), h), w′ = ϕ(w)0. Then we have w′ ∈ S0,0(L, h)
and θ(w′) = w. For θ : S1,0(L, h) → S1,ε(L − h, h), we consider for each w ∈ S1,ε(L − h, h),
w′ = w′′0 where ϕ(w) = 0w′′. Finally, for θ : S1,1(L, h)→ S1,1(L− (h− 1), h), we consider for each
w ∈ S1,1(L− (h− 1), h), w′ = w′′ where ϕ(w) = 0w′′.

2

Corollary 7 For all L, h such that 2 ≤ h ≤ L, s1,1(L, h) = s1,1(h+ (L− h) mod (h− 1), h).

Proof: Follows from case 3 by induction on q =
⌊
L−h
h−1

⌋
.

2

Lemma 8 For allL, h such that 0 ≤ h ≤ L, s0,0(L, h) = s(L−h−1, h) and s1,1(L, h) = s(h−1, L−1).

Proof: We distinguish several cases.

• If 2h < L, the result is an immediate consequence of case 1 of Lemma 6.

• If h+ 1 < L ≤ 2h (which implies h ≥ 2), we have

s0,0(L, h) = s1,1(L,L− h) by exchanging 0’s and 1’s,
= s1,1(L− h+ h mod (L− h− 1), L− h) by Corollary 7,
= s0,0(L− h+ h mod (L− h− 1), h mod (L− h− 1)) by exchanging 0’s and 1’s,
= s(L− h− 1, h mod (L− h− 1)) by case 1 of Lemma 6,
= s(L− h− 1, h) by definition of s(L, h)

• If L = h + 1 we have L − h − 1 = 0. Either h = 0 and L = 1 in which case we have
s0,0(1, 0) = #{0} = 1 = #{ε} = s(0, 0), or h > 0 and we have s0,0(L, h) = 0 = s(0, h).

• If L = h we have s0,0(h, h) = 0 = s(−1, h).

Since s1,1(L, h) = s0,0(L,L − h), we immediately obtain s1,1(L, h) = s(h − 1, L − h). Moreover
s(L, h) = s(L, h mod L), so that s1,1(L, h) = s(h− 1, L− 1).

2

We are now ready to prove the main theorem.

Proof of Theorem 1: The property holds for L = 0. If L > 0, then the following disjoint union holds:

S(L, h) = S0,0(L, h) ] S0,1(L, h) ] S1,0(L, h) ] S1,1(L, h),
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and, consequently:

s(L, h) = s0,0(L, h) + s0,1(L, h) + s1,0(L, h) + s1,1(L, h).

From Lemmas 6 and 8, it follows that

s(L, h) = s(L− h− 1, h) + sε,1(L− h, h) + s1,ε(L− h, h) + s(h− 1, L− 1)

= s(L− h− 1, h) + s(L− h, h) + s1,1(L− h, h)− s0,0(L− h, h) + s(h− 1, L− 1)

= s(L− h− 1, h) + s(L− h, h) + s(h− 1, L− 2)− s(L− 2h− 1, h) + s(h− 1, L− 1).

2

3.2 Remark
To summarize, we can compute the formula for s(L, h) for all integers L, h ∈ Z. Indeed if L is negative,
then it is null. If h = 0, then S(L, 0) = 1. If L = 0 then S(0, h) = 1. The other values can be computed
with the statement of Theorem 1 and the relation s(L, h) = s(L,L− h) which is obtained by exchanging
0’s and 1’s. Sample values of s(L, h) are given in Table 1. The sum of elements in a row give the value
of s(L).

L\h 0 1 2 3 4 5 6 7 8 9 10
0 1
1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 4 4 1
5 1 5 6 6 5 1
6 1 6 8 6 8 6 1
7 1 7 11 8 8 11 7 1
8 1 8 13 12 8 12 13 8 1
9 1 9 17 13 12 12 13 17 9 1

10 1 10 20 16 16 10 16 16 20 10 1

Table 1: Sample values of s(L, h) for 0 ≤ h ≤ L ≤ 10

3.3 An explicit formula for s(L, 2)
Using the recurrence formula of Theorem 1, we can deduce an explicit formula for some particular cases.
Actually we are not able to give an explicit formula in all cases. For instance, one has:

Proposition 9 Let L ≥ 0 be an integer. Then, one has:

s(L, 2) =

⌊
(L+ 1)2 + 2

6

⌋
.
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Proof: By induction on L. One checks that the result holds for L ∈ {0, 1, 2, 3, 4}. Assume L ≥ 5 and the
result holds for all nonnegative integers smaller than L. From Theorem 1, one deduces s(L, 2) − s(L −
3, 2) = s(L− 2, 2)− s(L− 5, 2) + 2.

For all L ≥ 3, let uL = s(L, 2) − s(L − 3, 2). Then, uL+2 = uL + 2 and one obtains uL =
L− 1 + (L mod 2). By induction, it follows:

s(L, 2) =

⌊
(L− 2)2 + 2

6

⌋
+ L− 1 + (L mod 2) =

⌊
L2 + 2L

6

⌋
+ (L mod 2).

Finally, it suffices to check that:⌊
L2 + 2L

6
+

1

2

⌋
=

⌊
L2 + 2L

6

⌋
+ (L mod 2).

By considering the remainder of L modulo 6, we obtain that the fractional part of L2+2L
6 is strictly less

than 1
2 if and only if L is even. The result follows. 2

3.4 Generating functions of s(L, h)

A classical way to obtain an explicit formula of a given function consists in computing its generating
function. In this section, we exhibit for each h ≥ 0 the generating function Sh(X) of s(L, h), namely

Sh(X) =
∑
L≥0

s(L, h)XL. Let us recall that, in that case, s(L, h) =
S(L)h (0)
L!

, where S(L)h is the derivative

of order L of S(L).

Theorem 10 One has: S0(X) =
1

1−X
, S1(X) =

X

1−X2
and for all h ≥ 2,

Sh(X) =
Fh(X)

(1−Xh−1)(1−Xh)(1−Xh+1)
,

where

Fh(X) = (1−Xh−1)(V2h,hX
h − Vh−1,hXh+1 −X2h−1) + (1 +X)Bh,

Vn,h =

n−1∑
L=0

s(L, h)XL,

Bh =

h−2∑
r=0

s(h− 1, r)Xr+2h−1.
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Proof: We have immediately the two first formulas. From the previous recurrence, for h ≥ 2, we get:

Sh(X) =

2h−1∑
L=0

s(L, h)XL +
∑
L≥2h

(
s(L− h− 1, h) + s(L− h, h)− s(L− 2h− 1, h)

+s(h− 1, L− 1) + s(h− 1, L− 2)
)
XL

by using the recurrence of Th. 1.

=

2h−1∑
L=0

s(L, h)XL +Xh+1
∑

L≥h−1

s(L, h)XL +Xh
∑
L≥h

s(L, h)XL

−X2h+1
∑
L≥−1

s(L, h)XL +
∑
L≥2h

(
s(h− 1, L− 1) + s(h− 1, L− 2)

)
XL

=

2h−1∑
L=0

s(L, h)XL +Xh+1

(
Sh(X)−

h−2∑
L=0

s(L, h)XL

)
+Xh

(
Sh(X)−

h−1∑
L=0

s(L, h)XL

)
−X2h+1Sh(X) + (X +X2)

∑
L≥2h−2

s(h− 1, L)XL − s(h− 1, 0)X2h−1

= (Xh +Xh+1 −X2h+1)Sh(X) +

2h−1∑
L=0

s(L, h)XL −Xh+1
h−2∑
L=0

s(L, h)XL −Xh
h−1∑
L=0

s(L, h)XL

+(X +X2)
∑
q≥2

h−2∑
r=0

s(h− 1, r)Xq (h−1)+r −X2h−1

by setting L = q × (h− 1) + r.

= (Xh +Xh+1 −X2h+1)Sh(X) +

2h−1∑
L=0

s(L, h)XL −Xh+1
h−2∑
L=0

s(L, h)XL −Xh
h−1∑
L=0

s(L, h)XL

+(1 +X)
X2h−1

1−Xh−1

h−2∑
r=0

s(h− 1, r)Xr −X2h−1.

Finally, we get the formula

Sh(X) =
Fh(X)

(1−Xh−1)(1−Xh)(1−Xh+1)

where Fh ∈ Z[X] and deg(Fh) ≤ 3h− 2. 2

Notice that the previous equality does provide a closed formula for Sh(X) although it still depends on
s(L, h) because each sum is finite. Sample values of Sh(X) are given in Table 2.

3.5 Asymptotic behaviour of s(L, h)
Using the generating functions we just computed, we may deduce an expression of s(L, h) which high-
lights its asymptotic behaviour when L grows.

We prove the following theorem:
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S2(X) =
X +X3

(1−X)(1−X2)(1−X3)

S3(X) =
X + 2X2 +X4 + 2X5

(1−X2)(1−X3)(1−X4)

S4(X) =
X +X2 + 3X3 + 3X5 + 3X6 + 3X7

(1−X3)(1−X4)(1−X5)

S5(X) =
X + 2X2 + 3X3 + 4X4 + 3X6 + 5X7 + 3X8 + 4X9 +X12

(1−X4)(1−X5)(1−X6)

S6(X) =
X +X2 +X3 + 4X4 + 5X5 + 5X7 + 10X8 + 7X9 + 6X10 + 5X11 +X14

(1−X5)(1−X6)(1−X7)

Table 2: Sample values of Sh(X)

Theorem 11 For all h ≥ 2, there exist u0, . . . , uh−2, v0, . . . , vh−1, w0, . . . , wh ∈ Q such that

∀L ≥ 0, s(L, h) = αL2 + β L+ uL mod (h−1) + vL mod h + wL mod (h+1)

with α =
1

h (h2 − 1)

h−1∑
i=1

(h− i)ϕ(i) and β =
1

h (h+ 1)

h∑
i=1

ϕ(i) where ϕ is Euler’s totient function.

Before proving this theorem, we need some preliminary results.

Lemma 12 For all h ≥ 2, there exist R,A,B,C ∈ Q[X] such that deg(R) < 3, deg(A) < h − 1,
deg(B) < h, deg(C) < h+ 1 and

Sh(X) =
R(X)

(1−X)3
+

A(X)

1−Xh−1 +
B(X)

1−Xh
+

C(X)

1−Xh+1
. (1)

Proof: We have

Sh(X) =
Fh(X)

(1−Xh−1)(1−Xh)(1−Xh+1)
=

Fh(X)

(1−X)3
1−Xh−1

1−X
1−Xh

1−X
1−Xh+1

1−X

where Fh ∈ Z[X] and deg(Fh) ≤ 3h− 2.
If h is even, (1−X)3, 1−Xh−1

1−X , 1−Xh

1−X and 1−Xh+1

1−X are pairwise coprime so that

Sh =
R(X)

(1−X)3
+

A0(X)

1−Xh−1

1−X

+
B0(X)

1−Xh

1−X

+
C0(X)

1−Xh+1

1−X
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for someR,A0, B0, C0 ∈ Q[X] with deg(R) < 3, deg(A0) < h−2, deg(B0) < h−1 and deg(C0) < h.
The result follows with A(X) = (1−X)A0(X), B(X) = (1−X)B0(X) and C(X) = (1−X)C0(X).

If h is odd, 1−Xh−1

1−X and 1−Xh+1

1−X are divisible by 1 +X . But in this case, we notice that Fh(−1) = 0
so that Fh(X) is also divisible by 1 +X and we may write

Sh(X) =

Fh(X)

1 +X

(1−X)3
1−Xh−1

1−X
1−Xh

1−X
1−Xh+1

1−X2

where (1−X)3, 1−Xh−1

1−X , 1−Xh

1−X and 1−Xh+1

1−X2 are pairwise coprime. Thus we get

Sh =
R(X)

(1−X)3
+

A0(X)

1−Xh−1

1−X

+
B0(X)

1−Xh

1−X

+
C0(X)

1−Xh+1

1−X2

for some R,A0, B0, C0 ∈ Q[X] with deg(R) < 3, deg(A0) < h− 2, deg(B0) < h− 1 and deg(C0) <
h − 1. The result follows with A(X) = (1 − X)A0(X), B(X) = (1 − X)B0(X) and C(X) =
(1−X2)C0(X).

2

Lemma 13 We recall that s(L) is the number of balanced words of length L, and that it is equal to∑
h

s(L, h). For all L ≥ 0 we have,

L−1∑
h=0

s(L, h)h =
L

2
(s(L)− 2).

Proof: Let ZL =

L∑
h=0

s(L, h)h. Then

ZL =

L∑
u=0

s(L,L− u)(L− u) by setting h = L− u

=

L∑
u=0

s(L, u)(L− u) because s(L,L− u) = s(L, u) for all L, u ∈ Z

= Ls(L)− ZL

Hence ZL =
L

2
s(L) and

L−1∑
h=0

s(L, h)h = ZL − L =
L

2
(s(L)− 2).

2



52 Nicolas Bédaride Éric Domenjoud Damien Jamet Jean-Luc Rémy

Lemma 14 For all h ≥ 1,

2h−1∑
L=h

s(L, h)−
h−1∑
L=0

s(L, h) = s(h) + s(h− 1)− (h+ 1)

Proof:

2h−1∑
L=h

s(L, h)−
h−1∑
L=0

s(L, h)

=

h−1∑
L=0

s(L+ h, h)−
h−1∑
L=0

s(L, h)

=

h−1∑
L=0

(s(h, L) + s(h− 1, L)− s(h− L− 1, L) + s(L− 1, L+ h− 1) + s(L− 1, L+ h− 2))−
h−1∑
L=0

s(L, h)

by using the recurrence relation from Th. 1

=

h−1∑
L=0

(s(h, L) + s(h− 1, L)− s(h− 1− L, h− 1) + s(L− 1, h) + s(L− 1, h− 1))−
h−1∑
L=0

s(L, h)

by using the relation s(L, h) = s(L, h mod L) on 3rd, 4th and 5th terms

= s(h)− 1 + s(h− 1)−

(
h−1∑
u=0

s(u, h− 1)−
h−1∑
L=0

s(L− 1, h− 1)

)
−

(
h−1∑
L=0

s(L, h)−
h−1∑
L=0

s(L− 1, h)

)
by setting u = h− 1− L

= s(h) + s(h− 1)− (h+ 1).

2

We are now ready to prove the main theorem of this section.

Proof of Theorem 11: We first prove existence. In Equation 1, we write

R(X) = r0 + r1 (1−X) + r2 (1−X)2.

A(X) =

h−2∑
k=0

akX
k, B(X) =

h−1∑
k=0

bkX
k, C(X) =

h∑
k=0

ckX
k.

Thus

Sh(X) =
r0

(1−X)3
+

r1

(1−X)2
+

r2
1−X

+
A(X)

1−Xh−1 +
B(X)

1−Xh
+

C(X)

1−Xh+1
.
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The Taylor expansions of 1
(1−X)3

, 1
(1−X)2

, 1
1−X give the series expansion of Sh(X) :

Sh(X) =
∑
L≥0

r0
(L+ 1)(L+ 2)

2
XL +

∑
L≥0

r1 (L+ 1)XL +
∑
L≥0

r2X
L

+
∑
n≥0

A(X)Xn (h−1) +
∑
n≥0

B(X)Xnh +
∑
n≥0

C(X)Xn (h+1)

=
∑
L≥0

(
r0

(L+ 1)(L+ 2)

2
+ r1 (L+ 1) + r2

)
XL

+
∑
n≥0

h−2∑
k=0

akX
n (h−1)+k +

∑
n≥0

h−1∑
k=0

bkX
nh+k +

∑
n≥0

h∑
k=0

ckX
n (h+1)+k

=
∑
L≥0

(
r0
2
L2 +

(
3

2
r0 + r1

)
L+ r0 + r1 + r2 + aL mod (h−1) + bL mod h + cL mod (h+1)

)
XL.

We get the result with α = 1
2 r0, β = 3

2 r0 + r1, ui = ai + r0 + r1 + r2, vi = bi and wi = ci.

From the Taylor series of (1−X)3 Sh(X) atX = 1, we get r0 = Fh(1)
h (h2−1) and r1 =

3
2 (h−1)Fh(1)−F ′h(1)

h (h2−1) .

We have Fh(1) = 2
∑h−2
r=0 s(h− 1, r) = 2(s(h− 1)− 1), and by Lemmas 13 and 14,

F ′h(1) = −(h− 1)

(
2h−1∑
L=h

s(L, h)−
h−1∑
L=0

s(L, h) + (h− 2)

)
+ 2

h−2∑
r=0

s(h− 1, r)r + (4h− 1)

h−2∑
r=0

s(h− 1, r)

= −(h− 1)(s(h) + s(h− 1)− (h+ 1) + (h− 2)) + 2
h− 1

2
(s(h− 1)− 2) + (4h− 1)(s(h− 1)− 1)

= −(h− 1)(s(h)− 1) + (4h− 1)(s(h− 1)− 1).

Thus we get finally

α =
Fh(1)

2h (h2 − 1)
=
s(h− 1)− 1

h (h2 − 1)
=

1

h (h2 − 1)

h−1∑
i=1

(h− i)ϕ(i)

β =

3

2
hFh(1)−F ′h(1)

h (h2 − 1)
=
s(h)− s(h− 1)

h (h+ 1)
=

1

h (h+ 1)

h∑
i=1

ϕ(i).

2

4 Balanced palindromes and symmetrical discrete segments
In the present section, we focus on the case of segments which are symmetrical with respect to the point
(L/2, h/2). These segments are encoded by balanced palindromes.
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w = 10001 w = 01010

Figure 2: The two symmetrical segments of length 5 and height 2, and their respective encodings as balanced palin-
dromes

4.1 Recurrence formula
This investigation is close to the general case by noticing that if w is a palindrome, then so is θ(w). We
first need an additional property of the mapping θ.

Lemma 15 For all w ∈ {0, 1}∗ and all α ≥ 0,

θ(w1) = θ(w)1

θ(w10α+1) = θ(w)10α

Proof: Easy induction on |w|1. 2

Corollary 16 For all w ∈ {0, 1}∗, θ(w˜) = (θ(w))˜

Proof: By induction on |w|1. If |w|1 = 0 then w = 0α for some α ≥ 0 and the result obviously holds.
Now assume that |w|1 ≥ 1 and the result holds for all v such that |v|1 < |w|1. Then either w = 1v and

θ(w˜) = θ((1v)˜)
= θ(v˜1)
= θ(v˜)1 by Lemma 15
= θ(v)˜1 by the induction hypothesis
= (1θ(v))˜
= θ(1v)˜ by definition of θ
= θ(w)˜

or w = 0α+11v and

θ(w˜) = θ((0α+11v)˜)
= θ(v˜10α+1)
= θ(v˜)10α by Lemma 15
= θ(v)˜10α by the induction hypothesis
= (0α1θ(v))˜
= θ(0α+11v)˜ by definition of θ
= θ(w)˜.

2
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Corollary 17 If w ∈ {0, 1}∗ is a palindrome, then θ(w) is also a palindrome.

Proof: Immediate consequence of Corollary 16 2

We denote by P(L, h) the set of balanced palindromes of length L and height h, and, for x ∈ {0, 1},
by Px(L, h) the set of balanced palindromes of length L and height h the first (and last) letter of which is
x. We define the function p(L, h) on Z2 by:

p(L, h) =

 #P(L, h mod L) if L > 0
1 if L = 0 and h = 0
0 if L < 0 or L = 0 and h 6= 0

and for 0 ≤ h ≤ L and x ∈ {0, 1}, we define px(L, h) = #Px(L, h). We have the following properties.

Lemma 18 Let L, h ∈ N such that 0 ≤ h ≤ L.

1. If L ≥ 2h+ 1, then θ is a bijection from P0(L, h) to P(L− (h+ 1), h).

2. If L ≥ 2h− 1, then θ is a bijection from P1(L, h) to P1(L− (h− 1), h).

Proof:

1. Since P0(L, h) ⊂ S0,0(L, h), from Lemma 6, we already know that θ(P0(L, h)) ⊂ S(L−(h+1), h)
and from Corollary 17, θ(P0(L, h)) ⊂ P(L − (h + 1), h). Since θ is injective on S0,0(L, h), it is
also injective on P0(L, h). We are left to prove that it is surjective. Let w ∈ P(L− (h+ 1), h) and
w′ = ϕ(w)0. From Lemma 6, we have w′ ∈ S0,0(L, h) and θ(w′) = w. We prove by induction on
|w|1 that w′ is a palindrome. If |w|1 = 0 then w = 0α for some α ≥ 0 and w′ = 0α+1 which is
trivially a palindrome. If |w|1 = 1 then w = 0α10α for some α ≥ 0 and w′ = 0α+110α+1 which
is again trivially a palindrome. If |w|1 ≥ 2, assume that ϕ(u)0 is a palindrome for all u such that
|u|1 < |w|1. We have w = 0α1v10α for some α ≥ 0 and some palindrome v with |v|1 < |w|1.
Then w′ = 0α+11ϕ(v)010α+1 is a palindrome because ϕ(v)0 is a palindrome by the induction
hypothesis..

2. The proof is similar. We get in the same way that θ(P1(L, h)) ⊂ P1(L − (h − 1), h) and θ is
injective on P1(L, h). To prove that it is surjective, for each w ∈ P1(L − (h − 1), h) we consider
w′ such that ϕ(w) = 0w′. From Lemma 6 we have θ(w′) = w and w′ ∈ S1,1(L, h). We prove like
above that w′ is a palindrome so that w′ ∈ P1(L, h).

2

Lemma 19 For all L, h ∈ N such that 0 ≤ h ≤ L, p0(L, h) = p(L − h − 1, h) and p1(L, h) =
p(h− 1, L− 1)

Proof: Similar to the proof of Lemma 8. 2

From Lemma 19 and the definition of p(L, h), we deduce the following recurrence for p(L, h).
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Theorem 20 Let L, h ∈ Z,

p(L, h) =


0 if L < 0 or (L = 0 and h 6= 0)
1 if L ≥ 0 and (h = 0 or h = L)
p(L, h mod L) if L > 0 and (h < 0 or h > L)
p(L− h− 1, h) + p(h− 1, L− 1) otherwise

Sample values of p(L, h) are given in Table 3.

L\h 0 1 2 3 4 5 6 7 8 9 10
0 1
1 1 1
2 1 0 1
3 1 1 1 1
4 1 0 2 0 1
5 1 1 2 2 1 1
6 1 0 2 0 2 0 1
7 1 1 3 2 2 3 1 1
8 1 0 3 0 2 0 3 0 1
9 1 1 3 3 2 2 3 3 1 1

10 1 0 4 0 2 0 2 0 4 0 1

Table 3: Sample values of p(L, h) for 0 ≤ h ≤ L ≤ 10

4.2 Generating functions of p(L, h)

In the same way we obtained generating functions for s(L, h), we deduce generating functions for p(L, h)
from the recurrence above. We consider the generating functions Ph(X) =

∑
L≥0

p(L, h)XL.

Theorem 21 One has: P0(X) =
1

1−X
, P1(X) =

X

1−X2
and for all h ≥ 2,

Ph(X) =
1

1−Xh+1

(
h−1∑
L=0

p(L, h)XL +
Xh

1−Xh−1

h−2∑
r=0

p(h− 1, r)Xr

)
.



On the Number of Balanced Words of Given Length and Height over a Two-Letter Alphabet 57

Proof: One has:

P0(X) =
∑
L≥0

p(L, 0)XL =
∑
L≥0

XL =
1

1−X

P1(X) =
∑
L≥0

p(L, 1)XL

= p(0, 1) + p(1, 1)X +
∑
L≥2

p(L, 1)XL

= X +
∑
L≥2

(p(L− 2, 1) + p(0, L− 1))XL

= X +X2
∑
L≥0

p(L, 1)XL

= X +X2 P1(X).

Hence, P1(X) =
X

1−X2
.

For all h ≥ 2, we have

Ph(X) =
∑
L≥0

p(L, h)XL

=

h−1∑
L=0

p(L, h)XL +
∑
L≥h

p(L, h)XL

=

h−1∑
L=0

p(L, h)XL +Xh
∑
L≥0

p(L+ h, h)XL

=

h−1∑
L=0

p(L, h)XL +Xh
∑
L≥0

(p(L− 1, h) + p(h− 1, L+ h− 1))XL

=

h−1∑
L=0

p(L, h)XL +Xh
∑
L≥0

p(L− 1, h)XL +Xh
∑
L≥0

p(h− 1, L)XL

=

h−1∑
L=0

p(L, h)XL +Xh+1 Ph(X) +Xh
∑
q≥0

h−2∑
r=0

p(h− 1, q(h− 1) + r)Xq(h−1)+r

=

h−1∑
L=0

p(L, h)XL +Xh+1 Ph(X) +Xh
∑
q≥0

Xq(h−1)
h−2∑
r=0

p(h− 1, r)Xr

= Xh+1 Ph(X) +

h−1∑
L=0

p(L, h)XL +
Xh

1−Xh−1

h−2∑
r=0

p(h− 1, r)Xr.
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Finally, we get

Ph(X) =
1

1−Xh+1

(
h−1∑
L=0

p(L, h)XL +
Xh

1−Xh−1

h−2∑
r=0

p(h− 1, r)Xr

)

=

(1−Xh−1)

h−1∑
L=0

p(L, h)XL +Xh
h−2∑
r=0

p(h− 1, r)Xr

(1−Xh−1) (1−Xh+1)

=
Gh(X)

(1−Xh−1) (1−Xh+1)

where Gh(X) ∈ Z[X] and deg(Gh) ≤ 2h− 2. 2

Sample values of Ph(X) are given in Table 4

P2(X) =
X

(1−X)(1−X3)
P3(X) =

X

(1−X2)(1−X4)

P4(X) =
X +X2 +X3

(1−X3)(1−X5)
P5(X) =

X +X3 +X7

(1−X4)(1−X6)

P6(X) =
X +X2 +X3 + 2X4 +X5 +X8

(1−X5)(1−X7)

Table 4: Sample values of Ph(X)

4.3 Asymptotic behaviour of p(L, h)
As before, from the generating function, we deduce an expression of p(L, h) which highlights its asymp-
totic behaviour. We prove the following theorem.

Theorem 22 For all h ≥ 2 there exist u0, . . . , uh−2, v0, . . . , vh ∈ Q such that:

• if h is even then

∀L ≥ 0, p(L, h) = αL+ uL mod (h−1) + vL mod (h+1)

• if h is odd then

∀L ≥ 0, p(L, h) = α (1− (−1)L)L+ uL mod (h−1) + vL mod (h+1)

where α =
1

h2 − 1

dh−1
2 e∑
i=1

ϕ(h+ 1− 2i).

Before proving this theorem, we need some lemmas.
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Lemma 23 For all h ≥ 2:

• if h is even then there existR,A,B ∈ Q[X] such that deg(R) < 2, deg(A) < h−1, deg(B) < h+1
and

Ph(X) =
R(X)

(1−X)2
+

A(X)

1−Xh−1 +
B(X)

1−Xh+1
. (2)

• if h is odd then there existQ,R,A,B ∈ Q[X] such that deg(Q) < 2, deg(R) < 2, deg(A) < h−1,
deg(B) < h+ 1 and

Ph(X) =
Q(X)

(1 +X)2
+

R(X)

(1−X)2
+

A(X)

1−Xh−1 +
B(X)

1−Xh+1
(3)

Proof: If h is even then Ph(X) may be written as

Ph(X) =
Gh(X)

(1−X)2
1−Xh−1

1−X
1−Xh+1

1−X

.

Since (1−X)2, 1−X
h−1

1−X and 1−Xh+1

1−X are pairwise coprime, there exist R,A0, B0 ∈ Q[X] such that
deg(R) < 2, deg(A0) < h− 2, deg(B0) < h and

Ph(X) =
R(X)

(1−X)2
+

A0(X)

1−Xh−1

1−X

+
B0(X)

1−Xh+1

1−X

.

We get the result with A(X) = (1−X)A0(X) and B(X) = (1−X)B0(X).
If h is odd then 1−Xh−1 and 1−Xh+1 are also divisible by 1 +X so that we may write

Ph(X) =
Gh(X)

(1 +X)2 (1−X)2
1−Xh−1

1−X2

1−Xh+1

1−X2

.

Since (1 +X)2, (1 −X)2, 1−X
h−1

1−X2 and 1−Xh+1

1−X2 are pairwise coprime, there exist Q,R,A0, B0 ∈
Q[X] such that deg(Q) < 2, deg(R) < 2, deg(A0) < h− 3, deg(B0) < h− 1 and

Ph(X) =
Q(X)

(1 +X)2
+

R(X)

(1−X)2
+

A0(X)

1−Xh−1

1−X2

+
B0(X)

1−Xh+1

1−X2

.

We get the result with A(X) = (1−X2)A0(X) and B(X) = (1−X2)B0(X).
2

Lemma 24 For all L, h ∈ N such that L is even and h is odd, p(L, h) = 0.
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Proof: By definition of p(L, h), the result is obvious if L = 0. Also, it is sufficient to prove the result
for 0 ≤ h ≤ L because h and h mod L have the same parity if L is even. In this case, p(L, h) is exactly
the number of balanced palindromes of length L and height h. Let w be a palindrome of length L. If L
is even then w = uu˜ for some u ∈ {0, 1}∗ and |w|1 = 2|u|1. Hence, there exist no palindrome of even
length and odd height. 2

We are now ready to prove the main theorem of this section.

Proof of Theorem 22:
The proof is similar to the proof of Theorem 11. In Equations 2 and 3, we write

R(X) = α+ β (1−X), Q(X) = α′ + β′ (1 +X)

A(X) =

h−2∑
k=0

akX
k, B(X) =

h∑
k=0

bkX
k

and we get for all h ≥ 2:

• If h is even then

Ph(X) =
α

(1−X)2
+

β

1−X
+

A(X)

1−Xh−1 +
B(X)

1−Xh+1

and the series expansion of Ph(X) is

Ph(X) =
∑
L≥0

(α (L+ 1) + β)XL +
∑
n≥0

A(X)Xn(h−1) +
∑
n≥0

B(X)Xn(h+1)

=
∑
L≥0

(α (L+ 1) + β)XL +
∑
n≥0

h−2∑
k=0

akX
n(h−1)+k +

∑
n≥0

h∑
k=0

bkX
n(h+1)+k

=
∑
L≥0

(αL+ α+ β + aL mod (h−1) + bL mod (h+1))X
L

Hence
∀L ≥ 0, p(L, h) = αL+ α+ β + aL mod (h−1) + bL mod (h+1)

• If h is odd then

Ph(X) =
α′

(1 +X)2
+

β′

1 +X
+

α

(1−X)2
+

β

1−X
+

A(X)

1−Xh−1 +
B(X)

1−Xh+1

and its series expansion is

Ph(X) =
∑
L≥0

(α′ (−1)L (L+1)+ β′ (−1)L+α (L+1)+ β+ aL mod (h−1) + bL mod (h+1))X
L.

Hence

∀L ≥ 0, p(L, h) = α′ (−1)L (L+1)+ β′ (−1)L+α (L+1)+ β+ aL mod (h−1) + bL mod (h+1).
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Considering the Taylor expansion of (1 −X)2Ph(X) at X = 1 and, in case h is even, (1 +X)2Ph(X)
at X = −1, we get

α =
Gh(1)
h2 − 1

=
1

h2 − 1

h−2∑
r=0

p(h− 1, r) =
1

h2 − 1

dh−1
2 e∑
i=1

ϕ(h+ 1− 2i)

and, if h is odd,

α′ =
Gh(−1)
h2 − 1

=
(−1)h

h2 − 1

h−2∑
r=0

(−1)rp(h− 1, r) =
−1

h2 − 1

h−2∑
r=0

p(h− 1, r)

where the last equality is deduced from Lemma 24. Hence α′ = −α.
Finally, we get the result with ui = α+ β+ ai if h is even and ui = (1− (−1)i)α+ β+(−1)iβ′+ ai

if h is odd and vi = bi.
2
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1991.

[DJVV10] E. Domenjoud, D. Jamet, D. Vergnaud, and L. Vuillon. On the number of local configuration
of size 2xn on discrete planes. Preprint, 2010.

[dLL05] A. de Luca and A. De Luca. Palindromes in sturmian words. In Clelia de Felice and An-
tonio Restivo, editors, Developments in Language Theory, volume 3572 of Lecture Notes in
Computer Science, pages 199–208. Springer, 2005.
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