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We study the number of connected spanning subgraphs f4,(n) on the generalized Sierpinski gasket SGg4(n) at
stage n with dimension d equal to two, three and four for b = 2, and layer b equal to three and four for d = 2.
The upper and lower bounds for the asymptotic growth constant, defined as zs, , = limy— oo In fa,5(n)/v where
v is the number of vertices, on SG2 ,(n) with b = 2,3, 4 are derived in terms of the results at a certain stage. The
numerical values of zsg, , are obtained.
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1 Introduction

The enumeration of the number of connected spanning subgraphs Nossa(G) on a graph G is a problem of
interest in mathematics [Liu and Chow(1983)]. It is well known that the number of connected subgraphs
is given by the Tutte polynomial T'(G, x, y) evaluated at x = 1, y = 2 [Welsh(1993)|]. Alternatively, it
corresponds to the partition function of the g-state Potts model in statistical mechanics with ¢ = 0 and
the temperature variable v = %/ — 1 = 1, where .J is the spin-spin coupling and 3 = (kgT)~'. Some
recent studies on the enumeration of connected spanning subgraphs and the calculation of their asymptotic
growth constants on regular lattices were carried out in Refs. [Shrock(2000), [Chang and Shrock(2000),
Chang and Shrock(2001)(a), (Chang and Shrock(2001)(b)l (Chang and Shrock(2001)(c)]. It is of interest
to consider connected spanning subgraphs on self-similar fractal lattices which have scaling invariance
rather than translational invariance. Fractals are geometric structures of (generally noninteger) Hausdorff
dimension realized by repeated construction of an elementary shape on progressively smaller length scales
[Mandelbrot(1982)| [Falconer(2003)]. A well-known example of a fractal is the Sierpinski gasket. We
shall derive the recursion relations for the numbers of connected spanning subgraphs on the Sierpinski
gasket with dimension equal to two, three and four, and determine the asymptotic growth constants. We
shall also consider the number of connected spanning subgraphs on the generalized Sierpinski gasket with
dimension equal to two.
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2 Preliminaries

We first recall some relevant definitions for connected spanning subgraphs and the Sierpinski gasket in
this section. A connected graph (without loops) G = (V, E) is defined by its vertex (site) and edge (bond)
sets V and F [Biggs(1993), Harary(1969)]]. Let v(G) = |V| be the number of vertices and e(G) = | F|
the number of edges in G. A spanning subgraph G’ is a subgraph of G with the same vertex set V' and
an edge set E/ C E. A connected spanning subgraph on G is a spanning subgraph of G that remains
connected. In general, there can be cycles in a connected spanning subgraph. It is called a spanning tree
when there is no cycles. The degree or coordination number k; of a vertex v; € V is the number of edges
attached to it. A k-regular graph is a graph with the property that each of its vertices has the same degree
k. In general, one can associate an edge weight x;; to each edge connecting adjacent vertices v; and v;.
For simplicity, all edge weights are set to one throughout this paper.

Consider an infinite sequence of graphs {G(n)} with v(G(n)) — oo as n — oo. If the number of
connected spanning subgraphs Nossa(G(n)) grows exponentially with v(G(n)) when n — oo as

Nessa(G(n)) = exp |zqu(Gn)) + o(v(G(n)] | (1)
where lim,, . o(v(G(n)))/v(G(n)) = 0, then the constant z¢ can describe this exponential growth:

o = lim In Nossa(G(n))
n—oo  v(G(n)) ’

which is the entropy per site in statistical mechanics. Here G, when used as a subscript in this manner,
implicitly refers to the thermodynamic limit.

The construction of the two-dimensional Sierpinski gasket SGa(n) at stage n is shown in Fig. [I} At
stage n = 0, it is an equilateral triangle; while stage (n + 1) is obtained by the juxtaposition of three
n-stage structures. In general, the Sierpinski gaskets SG can be built in any Euclidean dimension d with
fractal dimension D = In(d + 1)/1n 2 [Gefen and Aharony(1981)]]. For the Sierpinski gasket SG4(n),
the numbers of edges and vertices are given by

o(SGa(n)) = <d; 1) (d+1)" = S+ 1y, )

d+1 n
v(SGa(n)) = T[(d +1)"+1]. “4)
Except the (d + 1) outmost vertices which have degree d, all other vertices of SG4(n) have degree 2d. In

the large n limit, SG is 2d-regular.

2

The Sierpinski gasket can be generalized, denoted by SG (1), by introducing the side length b which
is an integer larger or equal to two [Hilfer and Blumen(1984)||. The generalized Sierpinski gasket at stage
(n + 1) is constructed from b layers of stage n hypertetrahedrons. The two-dimensional SG3 ;(n) with
b =3 atstagen = 1,2 and b = 4 at stage n = 1 are illustrated in Fig.[2| The ordinary Sierpinski gasket
SG4(n) corresponds to the b = 2 case, where the index b is neglected for simplicity. The Hausdorff
dimension for SG 4y is given by D = In (**4™") /In b [Hilfer and Blumen(1984)]. Notice that SG, is
not k-regular even in the thermodynamic limit.
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SG2 SGQ SGQ SGQ

Fig. 1: The first four stages n = 0, 1, 2, 3 of the two-dimensional Sierpinski gasket SG2(n).

N -

SGas(1) SGas(2) SGau(1)

Fig. 2: The generalized two-dimensional Sierpinski gasket SG2 5 (n) with b = 3 at stagen = 1,2 and b = 4 at stage n = 1.
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3 The number of connected spanning subgraphs on SGs(n)

In this section we derive the asymptotic growth constant for the number of connected spanning subgraphs
on the two-dimensional Sierpinski gasket SG2(n) in detail. Let us start with the definitions of the quan-
tities to be used.

Definition 3.1 Consider the generalized two-dimensional Sierpinski gasket SG4 ,(n) at stage n.

(i) Define fo,(n) = Nossa(SGa,p(n)) as the number of connected spanning subgraphs.

(ii) Define go ,(n) as the number of spanning subgraphs with two connected components such that one
certain outmost vertex, say the topmost vertex as illustrated in Fig.|3|for ordinary Sierpinski gasket,
belongs to one component and the other two outmost vertices belong to another component.

(iii) Define hap(n) as the number of spanning subgraphs with three connected components such that
each of the outmost vertices belongs to a different component.

Since we only consider the ordinary Sierpinski gasket in this section, we use the notations fa(n),
g2(n) and ho(n) for simplicity. They are illustrated in Fig.|3| where only the outmost vertices are shown.
Because of rotational symmetry, there are three possible g (n). The initial values at stage zero are f2(0) =
4, g2(0) = 1 and h2(0) = 1. The purpose of this section is to obtain the asymptotic behavior of f2(n) as
follows. The three quantities f2(n), g2(n) and ho(n) satisfy recursion relations.

Fig. 3: Illustration for the connected spanning subgraphs f2(n), g2(n) and h2(n). The two outmost vertices at the ends of a solid
line belong to one component, while the two outmost vertices at the ends of a dot line belong to separated components.

Lemma 3.1 For any non-negative integer n,

fa(n+1) = f3(n) +6£3(n)ga(n), (5)
g2(n+1) = f3(n)g2(n) + f3(n)ha(n) + 7f2(n)gs(n) , (6)

ha(n+1) = 3fa(n)gi(n) +12fo(n)ga(n)ha(n) + 14g5(n) . (7
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Fig. 4: Tllustration for the expression of fo(n + 1). The multiplication of three on the right-hand-side corresponds to the three
possible orientations of SGa(n + 1).

Proof:  The Sierpinski gasket SG2(n + 1) is composed of three SG2(n) with three pairs of vertices
identified. The number f2(n + 1) consists of one configuration where all three SG2(n) belong to the
class that is enumerated by f»(n), and six configurations where one of the SG5(n) belongs to the class
enumerated by g2(n) and the other two belong to the class enumerated by fo(n) as illustrated in Fig.
Eq. () is verified by adding these configurations.

Similarly, g2(n + 1) and ho(n + 1) for SG2(n + 1) can be obtained with appropriate configurations of
its three constituting SG(n) as illustrated in Figs. [5|and|[6]to verify Egs. (6) and (7), respectively.

Fig. 5: Tlustration for the expression of g2(n + 1). The multiplication of two on the right-hand-side corresponds to the reflection
symmetry with respect to the central vertical axis.

Fig. 6: Tllustration for the expression of ha(n + 1). The multiplication of three on the right-hand-side corresponds to the three
possible orientations SGa(n + 1).

a

The values of f2(n), g2(n), ha(n) for small n can be evaluated recursively by Eqs. (5), (). (7) as listed
in Table[T} These numbers grow exponentially, and do not have simple integer factorizations, in contrast
to the corresponding results for the number of spanning trees [[Chang et al.(2007)]. To estimate the value
of the asymptotic growth constant defined in Eq. (Z)), we need the following lemmas. For the generalized
two-dimensional Sierpinski gasket SG2 ;(n), define the ratios

_ f2p(n) n) — g2,5(n)
azp(n) = ()’ Bap(n) = haa(n) (8)
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where n is a non-negative integer. For the ordinary Sierpinski gasket in this section, they are simplified to
be ax(n), B2(n) and their values for small n are listed in Table [2}

Tab. 1: The first few values of f2(n), g2(n), ha(n).

[ n JO] 1] 2 | 3 |
F2(n) || 4 ] 160 | 13,312,000 | 10,293,452,839,321,600,000,000
92(n) || 1] 60 | 7,462,400 | 8,864,355,990,896,640,000,000
ha(n) || 1] 74 | 13,276,800 | 23,868,720,258,482,176,000,000

Tab. 2: The first few values of az2(n), S2(n). The last digits given are rounded off.

[ n O] 1] 2 | 3 | 4]
az(n) 2.66666666666667 | 1.78387650085763 | 1.16121835019855 | 0.736689163182441
B2(n) || 1| 0.810810810810811 | 0.562063147746445 | 0.371379608747416 | 0.238302798822389

Lemma 3.2 For any n > 0,

3B2(n) < az(n) < 462(n) . ©)
The ratios az(n) and (2(n) are both strictly decreasing sequences with the limits
lim ag(n) = lim f3(n) =0 (10)

Proof: It is clear that as(n) and 2(n) cannot be negative. By Egs. () - (7), we have
faln+1)
Bgm 0t az(n) (11)
go(n+1)  as(n)
Famgin) ~ Aoty T ) 2
ha(n+1
2;;3(“) ) _ 122283 + 14 + 3as(n) (13)
Therefore,
an(n +1) = az(n)B2(n)[6 + az(n)] an(n) — az(n)[az(n) + B2(n)] (14)

az(n) + 7f2(n) + az(n)B2(n)

az(n) +7Ba(n) + az(n)Ba(n) ’
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which shows that as(n) is strictly decreasing. Similarly, we have

Ba(n+1) = az(n)laz(n) + 702(n) + as(n)Ba(n)] _ as(n) — as(n)[Baz(n) = 78a2(n)/3]
2 12a2(n) 4 1462(n) + 3az(n)B2(n) 3 12a2(n) 4+ 1462(n) + 3az(n) B2 (211)5)
With the initial values given in Table[2] 3832(n) < az(n) is proved by induction. By Egs. and (13),
462(n+1) — az(n+1)
_ an) a(ea(m)+/hm)]  ea(n)[120s(n) — 2865(n)/3]
3 as(n) + 702(n) + az(n)Ba(n)  12as(n) + 14062(n) + 3as(n)Ba2(n)

_ a2 (n) X(n) 06
3faaa(n) + Ta(n) + aa(n) Ba (n)[1202(n) + 1455(n) + Bz () Ba(m)]

where

X(n) = 12a3(n)+485(n)[762(n) —az (n)]+12a2(n) B2 (1) [662 (n) —az(n)]+3a3 (n) 63 (n) > 0 (17)
such that as(n) < 482(n) is proved again by induction. Eq. can be rewritten as

as(n)[482(n) — az(n)][1 + 362(n) /4] + aa(n)Ba(n)[L — as(n)/4] + 1453 (n)

1205 (n) + 1402(n) + 3az(n)Ba2(n) (18’)
which shows that (5 (n) is strictly decreasing since «y(n) is less than four, i.e. its initial value, for all
n > 1. Eq. (T4) can be rewritten as

Ba(n+1) = Ba(n) —

as(n+1) =

6as(n) as(n)[1 = By(n)/]
7 |1~ o+ TG T aa(myC) (1

which is always less than 6ao(n)/7 since 82(n) is less than one, i.e. its initial value, for all n > 1 such
that lim,, .o, aa(n) is zero. Finally, since f2(n) < ag(n)/3, lim,_ B2(n) is zero, and the proof is
completed. a

We notice that the convergences of az(n) and 32(n) to zero as n increases are not rapid. The inequality
302(n) < as(n) can be improved a bit, and we state it as the following lemma.

Lemma 3.3 For any n > ny,
2
n
3(m) + 2 < () o)

where ng = inf{n : az(n) < 3/4,02(n) <1/4} = 4.

Proof: By Eqs. (I4) and (T3)), we have

a3(n+1)

as(n+1) —302(n+1) — 57
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az(n)[9as(n) — 762 (n)] az(n)[az(n) + B2(n)]

12az(n) + 1462(n) + 3az(n)B2(n)  az(n) + 762(n) + az(n)B2(n)
a3(n)53(n)[6 4 aa(n)]?

2
2

27[az(n) + 762(n) + az(n)B2(n)]?
n)Y (n
(o) on

[a2(n) + 72(n) + a2(n) B2(n)?[12a2(n) + 1482(n) + 3az(n)B2(n)] *

Y(n) = [az(n)+782(n) + az(n)fa(n)] {3[a2(n) — 302(n)][452(n) — a2(n)]

a3(n)

+30:(n) [az(n) — 362(n) = 2123+ 200 (m)] }

az(n)B2(n) [
27
—600r2(n) B3 (n) — 603 (n)B2(n) — 5003 (n) B3 (n) — 3ai3(n) B3 (n)]

> %{30@ (n)[az(n) — 362(n)][3 + 2a2(n)] + 25262(n)[462(n) — az(n)]

+aa(n)B2(n)[126 — Thas(n) — 603(n) — 6082(n) — 50a2(n)B2(n) — 303 (n)f: (n)]} :
(22)

+ 9a2(n) + 100833 (n) — 153 (n) B2 (n) + 6a3(n) — 93a2(n)Ba(n)

Because Y (n) is positive whenever aa(n) < 3/4 and B2(n) < 1/4, which is true for all n > ny = 4 by
the previous lemma and Table 2] the inequality is established. O

We notice that although Eq. (20) is by no means optimum, it is enough for the following lemma.

Lemma 3.4 The sequence of the ratio {aa(n)/B2(n)}22, decreases monotonically with the limit

nlLIIOIO ag(n)/B2(n) =3. (23)
Proof:  The initial value of the ratio is a2(0)/32(0) = 4. It is clear from Eq. that in the large n
limit, the ratio aa(n)/B=2(n) is equal to three. By Egs. and (13)), we have

az(n)  az(n+1) _ Z(n)
Ba(n)  Ba(n+1)  Ba(n)az(n) + 7B2(n) + az(n)Bz(n)]?’

24)
where
Z(n) = as(n)laz(n) +7B(n) + az(n)Bz(n)]?
—B3(n)[6 + az(n)][1202(n) + 1402(n) + 3az(n)B2(n)]
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= faa(n) — 36h(n)][203(m)Ba(n) + Zoar(m)FF () + 03(m) B3 ()

3
a3(n)
27

+[az(n) = 382(n) = “277 | (a3 (n) + 17az(n)Ba(n) + 2853 (n)]

+a227(7n)[a§ (n) 4+ 17as(n)Ba(n) + 2833 (n)] — ga% (n)B3 () . )

With aa(n) > 3032(n), Z(n) is positive such that the sequence of the ratio decreases monotonically. O
The general expressions for fo(n) and g2(n) can be written as follows.
Lemma 3.5 For a non-negative integer m and any positive integer n > m,

n—m EUREES Y
3n—m g gn—m_q 2

Rm) = fm) 7 g ] [6+am—i)

i=1
n—m . Otg(’fl—]) 31*2171
<1 7+ as(n—j) + ﬁz(n_j)} : (26)
ga() = o) F o) [+l — )
=2
- as(n — )15+
1;[ {74—042 n—7j) + Bo(n = )} 27)

Here when n — m = 1, the products with lower limit two are defined to be one.

Proof: Itis clear from Egs. and that fo(m+1) = f2(m)g2(m)[6+az(m)] and ga(m+1) =
f2(m)g3(m)[7+ az(m) + az(m)/B2(m)]. Consider Egs. and hold for a certain positive integer
n = k, then

fa(k+1) 15 (k) g2 (k)[6 + a2 (k)]

:|3i71+1

= R g T 6+ stk — )
1=1

o
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as(k —j)} = [6 + o (k)]

Ba(k —j)

sk—m+14 gk—m+1_;

= folm)” 7 ga(m)T 7 [64 aa(k)][6+ax(k— 1))

X [7+0z2(k J)+

g T as(k —1)
T [ ante— 0] F [ a1+ 2D
pales Pa(k —1)
k—m o391
. as(k —j)1 72
X [7 +az(k —j) + 7]
s 2 =0 )
k—m+1 3t—141
ak—m+1 k—m+41_, 3" 41
= pm) T g [ [6+aat+1-1)
i=1
k—m+1 R A |
N ekl —g) 1
T+as(k+1—j 7} , 28)
]1;[2 [ 2( )+ Ba(k +1— j)
and Eq. (26) is proved by induction. Eq. can be established by the same procedure. O

From the above lemmas, we have the following bounds for the asymptotic growth constant.

Lemma 3.6 The asymptotic growth constant for the number of connected spanning subgraphs on SGa(n)
is bounded:

In[f (m)ga(m)] + & In.60 In[f2(m)g2(m)] + § In[6 + as(m)] |7+ az(m) + 52
3m+1 ZSG2 — 3m+1 )
(29)
where m is a positive integer.
Proof: By Lemma[3.5] we have
In fo(n) = T In fo(m) + — Ingo(m) + A(n,m) , (30)
where
nem g1 GRSy nomgil g as(n - j)
n[6 + as(n —4)] + ——In|7T4+as(n—j5)+ ———=|. (31)
1:1 2=+ 3 T[Tt —9) + B

We have shown that as m increases, ap(m) decreases to zero in Lemma([3.2]and ap(m) /82 (m) decreases
to three in Lemma [3.4] such that
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= 5(TJrn—m)111[6+ozg(m)]
1,3 -3 az(m)
Y A 1)1 {7
+2( 5 n+m+ n +a2(m)+ﬁ2(m)
(32)
and
n—m i—1 1 n—m j*l_l
A(n,m) > 3%11164— STIHIO
i=1 Jj=2
1,3n—m _1 1,3"™ -3
_ 5(TJrn_m)mﬁJrg(#_n+m+1)1n1o. (33)

With the definition for zg¢, given in Eq. (2) and the number of vertices of SG5(n) is 3(3™ 4+ 1)/2 by
Eq. (@), the proof is completed. a

As m increases, the difference between the upper and lower bounds in Eq. is less than 37™ and
converges to zero. We calculate the number of connected spanning subgraphs fo(m) up to m = 15, and
we have the following proposition.

Proposition 3.1 The asymptotic growth constant for the number of connected spanning subgraphs on the
two-dimensional Sierpinski gasket SGo(n) in the large n limit exists with value zsc, = 1.276495930....

Without going into details, we state here without proof that the bounds can be improved. For a non-
negative integer m and any positive integer n > m, the tighter bounds for as(n) are

d" " (m) < ag(n) < ""™(m), (34)
where 6+ as(m) 632(m)
QoM 2(
)= 0w ™= ST Them) (33)
It can be shown that
1 1 as(m) as(m) 1l Ba(m)
2563 < gy { Wlfa(m)ga(m)] + 5 In 2+65 |+ 5 s 6 T +a2(m)}} (36)

and

60  dan(m) 17a3(m) } , 37)

1
256G, > W{ In[f2(m)g2(m)] + B) 15[3 —d(m)]  900[3 — d2(m)]

so that the asymptotic growth constant is zgg, = 1.27649593067.... We notice that the numerical value
can also be estimated by the standard technique given in [Aho and Sloane(1973)] with similar rate of
convergence.
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The asymptotic behaviors of f2(n), g2(n) and he(n) can be derived as follows [Aho and Sloane(1973),
Teufl and Wagner(2007)]. Rewriting Eqs. (T4), into

az(n+1) _ 6 + az(n)
as(n) P 4 T+ as(n)

Gan+1) _ St +7+0e() G38)
Ba(n) 1241420 4 36,(n)

and using Lemmas [3.2] and it is not hard to see that both (5/3)"az(n) and (5/3)"B2(n) tend to
(positive, finite) limits. By employing Eq. (6) repeatedly, we have

Inga(n) =3"""Ings(m) + Z 3" In {ag(j) [Oéz(j) + gzgi + 7] } (39
j=m-+1

for a certain m less than n. When both n and m are large, In g2 (n) is given approximately by

n

Ingo(n) ~ 3" ™ Inga(m) + > 3" [a(j) +jIn(3/5)], (40)
j=m+1

where a(j) is close to a constant for all the j values. Carrying out the summation

Jj=m+1
it follows that
o) ~ Cla) (D)3 “2)
where C'(g2) and Ag are constants with zgg, = (2/3) In Ag. Similarly, we have
folm) ~ ) (2) A3 hatm) ~ ) (2) a7 @)

where C'(f2), C(hs) are constants.

4 The number of connected spanning subgraphs on SG5 ,(n) with
b=3,4

The method given in the previous section can be applied to the number of connected spanning subgraphs
on SGg(n) with larger values of d and b. The number of configurations to be considered increases as d
and b increase, and the recursion relations must be derived individually for each d and b. In this section,
we consider the generalized two-dimensional Sierpinski gasket SG2(n) with the number of layers b
equal to three and four. For SG3 3(n), the numbers of edges and vertices are given by

e(SGQ’g(TL)) =3x6" s (44)
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7Tx6"+8
U(SGQﬁg(n)) = 75 y (45)
where the three outmost vertices have degree two. There are (6" — 1) /5 vertices of SG2 3(n) with degree
six and 6(6™ — 1)/5 vertices with degree four. The initial values for the number of connected spanning
subgraphs are the same as for SG2: f23(0) = 4, g2,3(0) = 1 and hy 3(0) = 1. By the method illustrated

in the previous section, we obtain the following recursion relations for any non-negative integer n.

foz(n+1) = f33(n)+15f33(n)ga3(n) + 3f33(n)has(n) + 78f5 5(n)gs 5(n)
+18f5 3(n)g2,3(n)ha,3(n) + 1423 5(n)g3 5(n) , (46)
g23(n+1) = [f53(n)g23(n) + f55(n)haz(n) + 16f5 5(n)gs 3(n) + 18 f5 5(1n)ga 3(n)ha,3(n)

+89f55(n)g5 5(n) + 2f5 5(n)h3 5(n) + 7713 5(n)g3 5(n)ha,z(n)

+171f35(n) g3 5(n) (47)
hag(n+1) = 3f33(n)g35(n) + 6f33(n)g2,s(n)ha3(n) + 515 5(n)gs 5(n) + 3fa3(n)hs 5(n)

+129f3 5(n) g3 5(n)ha,3(n) + 2793 3(n)ga 5(n) + 603 5(n)ga,3(n)h3 5(n)

+564f3 3(n)g3 3(n)ha,3(n) + 4682 3(n)g3 5(n) . (48)

The figures for these configurations are too many to be shown here. Some values of f33(n), g2.3(n),
ha,3(n) are listed in Table 3] These numbers grow exponentially, and do not have simple integer factor-
izations.

Tab. 3: The first few values of f2,3(n), g2,3(n), he,3(n).

[ n Jo] ! 2
fa3(n) || 4 | 56,192 | 1,292,237,078,102,059,106,775,347,494,912
g2.3(n) || 1] 24,624 | 1,015,755,670,321,368,497,188,308,516,864
has(n) || 1] 33,792 | 2,465,934,182,960,517,405,173,530,755,072

The sequences of the ratios {ae 3(n)}52; and {32 3(n)}52; defined in Eq. (8) again decrease mono-
tonically with lim,, .o g 3(n) = B2 3(n) = 0. The ratio ap 3(n)/B2,3(n) decreases from four to three,
the same as the results for SG2(n). The values of oz 3(n), B2,3(n) for small n are listed in Table 4}

By the same method as in Lemma we have the general expression for the number of connected
spanning subgraphs.

n—m
3 n—m—1 3 an—m _ 3 i—2
faz(n) = faa(m)s@x® gaa(m)s @D T Pra(n — s+
1=1
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Tab. 4: The first few values of a2 3(n), B2,3(n). The last digits given are rounded off.

[ » [O] 1| 2 | 3 4
aszs(n) || 4 2.28200129954516 1.27219282732945 | 0.660858801678112 | 0.326587785819904
Bo.3(n) || 1| 0.728693181818182 | 0.411915158701392 | 0.215917449918629 | 0.107573237878269

<[] Qustn—5)3@ -1, (49)
=2

where

a 3(m) a3 5(m) 2 3
Pg’g(m) = 142 + 1877 + 780{2’3(771) + 3’7 + 15@2 3(m) + a2 3(m) , (50)
2,3(m) 2,3(m) ’ ’
ag 3(m) 0‘% 3(m) 0‘% 3(m) 2 O‘% 3(m) 3

Q2,3(m) =171+77—= +2—3 +89a3 3(m)+18—= +160;3 5(m)+ == +a 5(m) .

23( ) ﬁ2,3(m) 5%3(771) 23( ) 62,3(m) 2,3( ) 62,3(m) 2,3( )
(1)

By the same argument given in Lemma[3.6] we have the upper and lower bounds of the asymptotic growth
constant for the number of connected spanning subgraphs on SG3 3(n):

21n fo3(m) + 31In gz 3(m)] + [2In 196 + 31n 420] < z5q, ,

1
7 x 6™ 35 x 6™

<

[2 In fgﬁg(m) + 31ngQ}3(m)] + [2 In P2,3(m) + 31ln Qg’g(m)] s (52)

7 x 6™ 35 x 6™

with m a positive integer. We have the following proposition.

Proposition 4.1 The asymptotic growth constant for the number of connected spanning subgraphs on the
two-dimensional Sierpinski gasket SGy 3(n) in the large n limit exists with value zsq, , = 1.3972789680....

Similar to the argument given at the end of Section[3] we find that both (15/7)"a2,3(n) and (15/7)" 32,3 (n)
tend to (positive, finite) limits, such that

7N\B/B)n 15\ @/5)n .
B> ATy, g2,3(n) ~ 0(92,3)<7) Ss
15\ (7/5)n

h2,3(n) ~ C(h273) <7> Ag73 s (53)

where C(f2,3), C(g2,3), C(h2,3) are constants with zsg, , = (5/7) In Ay 3.

faaln) ~ Clfas)(

For SG2 4(n), the numbers of edges and vertices are given by

e(SGo4(n)) =3 x 10", (54)
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4% 10" +5
v(SGaa(n)) = % : (55)

where again the three outmost vertices have degree two. There are (10™ — 1)/3 vertices of SG3 4(n)
with degree six, and (10" — 1) vertices with degree four. The initial values for the number of connected
spanning subgraphs are the same as for SGa: f2 4(0) = 4, g2,.4(0) = 1 and hs 4(0) = 1. We wrote a com-
puter program to obtain the recursion relations for SG 4(n). They are lengthy and given in the appendix.
Some values of f2 4(n), g2,4(n), he 4(n) are listed in Table These numbers grow exponentially, and do
not have simple integer factorizations.

Tab. 5: The first few values of f2.4(n), g2,4(n), ha,a(n).

n H 1

2

foa n) 164,119,040 | 27,140,375.625,882,898,681,725,275,604,427,985,839,201,951,967,246,962,831,668,354,270,630,763,784,348,63 1,040,000

(n) 77,622,016 | 25.675,411,803,142,714,297,950,351,525,972,498,833,548,895,007,181,465,816,231,861,389,426,797,930,493,247,488,000
ho4(n) || 112,848,672 | 74,273,341,808,825,211,957,637,724,253,224,196,638,029,720.486,058,269,503,940,976,372,670,504,798,196,334,592,000

The sequences of the ratios {2 4(n)}52; and {82 4(n)}52; defined in Eq. (8) again decrease mono-
tonically with lim,, o a2 4(n) = B2.4(n) = 0. The ratio s 4(n)/F2,4(n) decreases from four to three.
The values of vz 4(n), 32,4(n) for small n are listed in Table |6}

Tab. 6: The first few values of a2 4(n), B2,4(n). The last digits given are rounded off.

[ n O]

| 2 | 3 | 4]

aga(n) || 4| 2.11433622131123 | 1.05705707211134 | 0.475214294459902 | 0.199993476915309

B2.4(n) || 1| 0.687841643364664 | 0.345688118749653 | 0.156412715166630 | 0.662275943767262

By the same method as in Lemma [3.3] we have the general expression for the number of connected

spanning subgraphs.

n—m n—m

foa(n) = foam)s00 " g 4 (m)5CO D TT Poa(n=3) 500+ T Qaa(n—s) 30070,

where

Pyu(m) = 11354 + 5856

i=1 =2

(56)

ag4(m) Q%A(m) 04374(7”) 04%74(7”)
Ba 1 (m) + 516 53,4(771) + 253’4(771) + 1362602 4(m) +414Oﬂ274(m)
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+174g;4§:§ + 693602 4(m) + 1140 &;ZZ; + 152;31122)) +192803 ,(m)
+144;::4§:3 + 3090, (m) + 722;‘5 ; + 2703 ,(m) + oS 4(m) , (57)
Qa.4(m) 13732 + 14480 7 4((23 + 2786 4((23 482 ([gﬁ; + 16250a,4(m)
+10609;§:§:§ + 1095ﬁ24§ ; + 12ﬁ24((m§ + 801502 4 (m )+3130624EZ;
+142a§§$; + 214803, (m) + 462 6248:)) +6 6242 3 + 33204 ,(m)
3 4E:§ +28a 4(m) + ggjgm; + a8 ,(m) . (58)

By the same argument given in Lemma[3.6] we have the upper and lower bounds of the asymptotic growth
constant for the number of connected spanning subgraphs on SG2 4(n):

1

W [ln f2,4(m) +2 In 92,4 (m)] + [ln 33620 + 2 In 84460] S ZSG,‘,’4

1
36 x 10™

(In fo.a(m) 4+ 21Ings 4(m)] + InPoa(m)+2InQ24(m)], (59)

<1 _
T 4x1om 36 x 10m

with m a positive integer. We have the following proposition.

Proposition 4.2 The asymptotic growth constant for the number of connected spanning subgraphs on the
two-dimensional Sierpinski gasket SGo 4(n) in the large n limit exists with value zsq, , = 1.484911260....

Similar to the argument given at the end of Section[3} we find that both (103 /41)" vz 4(n) and (103/41)"™ B2 4(n)
tend to (positive, finite) limits, such that

(2/3)n 103\7/3 |on
Foatn) ~ Clhn)(gs) AN gealn) ~ Clonn) () AR
103\ (4/3)n
hoa(n) ~ C(hy, 4)( 41) A3y, (60)

where C(f2,.4), C(g2,4), C(h2,4) are constants with zgg, , = (3/4)In Ay 4.

5 The number of connected spanning subgraphs on SGy(n) with
d=3,4

In this section, we derive the asymptotic growth constant of connected spanning subgraphs on SG4(n)
with d = 3, 4. For the three-dimensional Sierpinski gasket SG3(n), we use the following definitions.
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Definition 5.1 Consider the three-dimensional Sierpinski gasket SG3(n) at stage n.

(i) Define f3(n) = Neossa(SGs(n)) as the number of connected spanning subgraphs.

(ii) Define gs3(n) as the number of spanning subgraphs with two components such that one certain
outmost vertices belongs to one component and the other three outmost vertices belong to another
component.

(iii) Define hz(n) as the number of spanning subgraphs with two components such that two certain
outmost vertices belong to one component and the other two outmost vertices belong to another
component.

(iv) Define r3(n) as the number of spanning subgraphs with three components such that two certain
outmost vertices belong to one component and the other two outmost vertices separately belong to
other components.

(v) Define s3(n) as the number of spanning subgraphs with four components such that each of the
outmost vertices belongs to a different component.

The quantities f3(n), gs(n), hs(n), r3(n) and s3(n) are illustrated in Fig. [7 where only the outmost
vertices are shown. There are four different classes of connected subgraphs enumerated by gs(n), three
classes enumerated by hs(n), and six classes enumerated by r5(n). The initial values at stage zero are
fg(O) = 38, 93(0) = 4, h3(0) = 1, 7"3(0) = 1land 33(0) =1.

A S M S

f3(n) gs(n) hs(n) r3(n) s3(n)

Fig. 7: Tllustration for the spanning subgraphs f3(n), g3(n), h3(n), r3(n) and s3(n). The two outmost vertices at the ends of a
solid line belong to one component, while the two outmost vertices at the ends of a dot line belong to separated components.

The recursion relations are lengthy and given in the appendix. Some values of f3(n), gs(n), hs(n),
r3(n), s3(n) are listed in Table [/} These numbers grow exponentially, and do not have simple integer
factorizations.

We find it is difficult to derive the bounds of the asymptotic growth constant for the number of connected
spanning subgraphs on SG3(n). We calculate f3(m) up to m = 10, and fit the numerical value of the
asymptotic growth constant to have the following proposition.

Proposition 5.1 The asymptotic growth constant for the number of connected spanning subgraphs on the
three-dimensional Sierpinski gasket SGs(n) in the large n limit exists with value zgq, = 2.0637052....
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Tab. 7: The first few values of f3(n), gs(n), ha(n), rs(n), ss(n).

[ »n [ O] ! 2|
(n) || 38 | 8,554,560 | 25,988,410,915,610,195,960,527,441,020
(n) || 4 | 1,271,416 | 4,544,490,996,892,396,578,747,598 336

ha(n) || 1| 39,502 |  73,629,059,909,730,939,289.401,606
(n) || 1
(n) || 1

254,462 917,115,147,969,863,922,701,973,216
153,824 637,427,406,318,067,141,227,862,784

For the four-dimensional Sierpinski gasket SG4(n), we use the following definitions.

Definition 5.2 Consider the four-dimensional Sierpinski gasket SG4(n) at stage n.

(i) Define fy(n) = Neossa(SGa(n)) as the number of connected spanning subgraphs.

(ii) Define g4(n) as the number of spanning subgraphs with two components such that two certain
outmost vertices belong to one component and the other three outmost vertices belong to another
component.

iii) Define g, (n) as the number of spanning subgraphs with two components such that one certain
94 /4 8 grap D
outmost vertices belong to one component and the other four outmost vertices belong to another
component.

(iv) Define hy(n) as the number of spanning subgraphs with three components such that one certain
outmost vertices belong to one component, two certain other outmost vertices belong to another
component and the remaining two outmost vertices belong to a third component.

(v) Define hly(n) as the number of spanning subgraphs with three components such that three certain
outmost vertices belong to one component and the other two outmost vertices separately belong to
other components.

(vi) Define r4(n) as the number of spanning subgraphs with four components such that two certain
outmost vertices belong to one component and the other three outmost vertices separately belong to
other components.

(vii) Define s4(n) as the number of spanning subgraphs with five components such that each of the out-
most vertices belongs to a different component.

The quantities f1(n), ga(n), gj(n), ha(n), hy(n), ra(n) and s4(n) are illustrated in Fig.[8] where only
the outmost vertices are shown. There are ten different classes of connected subgraphs enumerated by
g4(n), five classes enumerated by ¢/, (n), fifteen classes enumerated by h4(n), ten classes enumerated by
h}(n) and ten classes enumerated by r4(n). The initial values at stage zero are f4(0) = 728, g4(0) = 4,
94(0) = 38, hy(0) = 1, R (0) =4, r4(0) = 1 and s4(0) = 1.
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() ra(n) sa(n)

Fig. 8: llustration for the spanning subgraphs f4(n), ga(n), g4 (n), ha(n), h(n), r4(n) and s4(n). The two outmost vertices
at the ends of a solid line belong to one component, while the two outmost vertices at the ends of a dot line belong to separated
components.

We wrote a computer program to obtain the recursion relations for SG4(n). They are too lengthy to be
included here, and are available from the authors on request. Some values of f4(n), g4(n), g5(n), ha(n),
hy(n), r4(n), s4(n) are listed in Table |8} These numbers grow exponentially, and do not have simple
integer factorizations.

Tab. 8: The first few values of f1(n), ga(n), ga(n), ha(n), h4(n), ra(n), sa(n).

n H 1 2
fa(n) || 778,626,762,895,872 | 1,024,406,418,765,003,907,906,096,145,114,250,200,136,082,865,744,856,739,402,552,777,712,697,606,144
ga(n) 88,489,486,528 3,197,766,124,028,071,576,597,031,293,816,293,624,011,891,902,039,451,422,566,691,192,700,928

" (n 52,683,007,497,792 69,863,645,008,967,428,965,504,302,095,638,435,727,081,373,061,446,549,243,263,724,682,869,735,424
4
ha(n) 15,626,116,736 482,200,982,250,980,661,780,613,757,386,400,225,524,299,614,671,798,975,981,818,835,107,840
hj(n) 3,629,303,504,832 4,765,691,494,696,738,414,627,738,223,389,422,884,987,040,021,355,690,863,179,839,765,575,892,992
ra(n) 258,767,297,696 325,229,810,040,355,155,302,761,176,752,191,820,409,762,202,792,611,492,002,077,131,210,227,712
s4(n) 94,459,269,024 110,974,534,976,153,854,286,043,758,382,592,092,762,465,813,295,695,669,459,295,951,908,765,696

It is even more difficult to derive the bounds of the asymptotic growth constant for the number of
connected spanning subgraphs on SG4(n). We calculate f4(m) up to m = 6, and we are satisfied with
numerical fitting of the asymptotic growth constant to have the following proposition.

Proposition 5.2 The asymptotic growth constant for the number of connected spanning subgraphs on the
Sfour-dimensional Sierpinski gasket SG4(n) in the large n limit exists with value zgq, = 2.7686025....
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Tab. 9: Numerical values of 25, ,, 256G, 25G,,,» and their ratios. The last digits given are rounded off.

’ d ‘ b ‘ D ‘ £5Gaw Z5Ga “SGap ‘ 25Gy4 b/ZSGd,b ‘ gSGd,b/ZSGd,b ‘
2 | 2| 1.585 | 1.048594857 | 1.247337199 | 1.276495931 | 0.8214635326 | 0.9771572077
2| 3| 1.631 | 1.133231895 | 1.312357559 | 1.397278968 | 0.8110276625 | 0.9392237265
2 | 4| 1.661 | 1.194401490 | 1.360516466 | 1.484911260 | 0.8043588344 | 0.9162274555
312 2 1.569396409 | 1.666806281 2.063705 0.7604751 0.8076765
4 12| 2322 | 1.914853265 | 1.981017076 2.768603 0.6916317 0.7155296

6 Discussion

Compared with the asymptotic growth constant for the number of spanning forests Ngr on the Sierpinski

gasket, defined as

In N, SF (G )
v(G)

in Ref. [Chang and Chen(2008)]], we find that N g is larger than Ng g for all the considered cases. We
conjecture that this inequality holds for all the generalized Sierpinski gasket. We list the first few values
of ZsG, 4> 25G4.,» and their ratios in Table

As the spanning tree is a special case of connected spanning subgraphs where there is no cycles allowed,
the number of spanning trees Ng(G) is always less than Nogsi(G). Define

Za = lim 61)

v(G)—o0

In NST(G)

oG (62)

£6 = ’z)((l}l)rgoo
then z; < zg. We have obtained such asymptotic growth constants exactly for the number of spanning
trees on the Sierpinski gasket SG for general d and SG», with b = 3,4 in Ref. [Chang et al.(2007)].
They serve as the lower bounds for our current consideration for the connected spanning subgraphs. We
list the first few values of zg¢, ,, 2sa, ,, and their ratios in Table 9 Notice that lower bound zg¢,, is
closer to the exact value z5¢,, when d or b is small, in contrast to the results for the spanning forests
given in [[Chang and Chen(2008)| that z g~ s is relatively closer to Zsg, , when d or b is large.
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A Recursion relations for SG5 4(n)

We give the recursion relations for the generalized two-dimensional Sierpinski gasket SGg 4(n) here.
Since the subscriptis (d, b) = (2, 4) for all the quantities throughout this section, we will use the simplified
notation f,, 11 to denote fa 4(n+1) and similar notations for other quantities. For any non-negative integer
n, we have

fovr = [RO4271%, + Tf0h, 4+ 309f3¢2 4+ 1443 g, hyy +1928f7 g2 + 15302 +1140f7 g% h,,
+6936 0% + 174f7 g, h2 + 4140 g3 h,, + 13626292 + 2f7h3 + 516f5¢%h2

+5856 f3 g h,, + 11354 f245 (63)

Gntr = S29n 4 [2hn +28F392 + 34139, h, + 332f7 g2 + 613h2 4+ 46217 g2 h,, + 214852
+142f7 g, h2 + 31305 g3 h,, +8015f5¢> + 127h3 + 10958 g2 h2 + 106092 g2 h,,

+16250f2g% +82f8g, h3 + 2786 f2g3 h2 + 14480 f1g5h,, + 13732347 | (64)

Bt = 3f3¢% +6f3g,h, +8TfTg3 +3f5h2 +189f g2 h, + 1068 gk + 117 f7 g, h?
+2558 fS g2 hy, + T113 362 + 15£Th + 1869 f8g2h2 + 17763 f2gnh, + 26934 f1 g5

+444f5g,h3 + 12756 f2g3 h2 + 61422162 h,, + 53826 f3g7 + 20fSht + 2388f2¢2 3

n

+30948 2 g2 h2 + 8323435 h,, 4 42210f245 . (65)

B Recursion relations for SG3(n)

We give the recursion relations for the three-dimensional Sierpinski gasket SG3(n) here. Since the sub-
script is d = 3 for all the quantities throughout this section, we will use the simplified notation f, 1 to
denote f3(n + 1) and similar notations for other quantities. For any non-negative integer n, we have

fros1 = fr412f3g, +12f3h, + 12F3r, + 48292 + 96 f2 g, hy, + 48F2R2 + T2f2 9,0
+72f2 01 4 56 fr g3 + 168 frg2hn + 168 f,.9,h2 + 56 £, b2 (66)
gn+1 = fggn + Sfr?;rn +9 r%gr% + 12f72Lgnhn + f'r?:sn + 36f72pgnrn + 30f72Lhnrn + 28fng§1

466 g2, 4 54 fngnh? 4 6f2gnsn + 6 f2hnsy + 24f2r2 +108f,g27n

+192fgnhnrn + 84f,h2 7, + 209t + 72¢3 b, + 9692 h2 + 56g,h3 (67)

hpi1 = 2202 +4f2h,rn + 12f0g2 b 4 12fngnh? + 16 f,h3 + 2202 +12f,927,
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+48 frgnhnTn + 36 frh2r, + 2gs + 1692 by, + 369202 + 32g,h3 + 22h7 ,  (68)

= 202 42202 4 6f2grn + 62 hntn 4+ 6£0g> +22f,92 My 4+ 14fngnh? + 16 f,h3
42120050 + 2f2hnsn + 121212 + 60 f0927, + 132fgnhnrn + 66 fh2 7, +12g%
+52g3 hyy + T892 h2 + 48g,h3 + 22kt 4+ 6 f21, 5, + 14f,92 5, + 28 frngnhnsn,
14 ,h2 8, 4 120 fr,gn72 + 120 f,hy 2 + 88921, + 26497 hpyry, + 264g,h2 7,

+88h3 7, (69)

= 4fng;31 + 36fngirn 4+ 24 fngnhpry + 12g§ + 24g2hn + 12fngflsn + 24 fngnhnsn
+12fnh2 s, 4 144 f, 9072 + 120 f b2 + 144637, + 36092 by 1y + 2169, h2 7,
+144 frgnrnsn + 144 fhprn sy + 5695 5, + 16892 hyy s, + 168g,h2 s, + 56h2 s,

+208 £, 73 4+ 7209272 + 14409, hpr? + 7200272 . (70)
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