# Discrete Mathematics & Theoretical Computer Science

## Volume 7 n° 1 (2005), pp. 37-50

author: | David R. Wood |
---|---|

title: | Acyclic, Star and Oriented Colourings of Graph Subdivisions |

keywords: | graph, graph colouring, star colouring, star chromatic number, acyclic colouring, acyclic chromatic number, oriented colouring, oriented chromatic number, subdivision |

abstract: | Let G be a graph with chromatic number χ(G). A vertex colouring of G is
acyclic if each bichromatic subgraph is a forest. A
star colouring of G is an acyclic
colouring in which each bichromatic subgraph is a star forest. Let
χ and
_{a}(G)χ denote the acyclic and star
chromatic numbers of _{s}(G)G. This paper investigates acyclic
and star colourings of subdivisions. Let G' be the graph
obtained from G by subdividing each edge once. We prove
that acyclic (respectively, star) colourings of G'
correspond to vertex partitions of G in which each
subgraph has small arboricity (chromatic index). It follows that
χ, _{a}(G')χ
and _{s}(G')χ(G) are tied, in the sense that each is bounded
by a function of the other. Moreover the binding functions that we
establish are all tight. The oriented chromatic
number χ of an
(undirected) graph ^{→}(G)G is the maximum, taken over all
orientations D of G, of the minimum number
of colours in a vertex colouring of D such that between
any two colour classes, all edges have the same direction. We prove
that χ
whenever ^{→}(G')=χ(G)χ(G)≥9.
If your browser does not display the abstract correctly (because of the different mathematical symbols) you can look it up in the PostScript or PDF files. |

reference: | David R. Wood (2005),
Acyclic, Star and Oriented Colourings of Graph Subdivisions,
Discrete Mathematics and Theoretical Computer Science 7, pp. 37-50 |

bibtex: | For a corresponding BibTeX entry, please consider our BibTeX-file. |

ps.gz-source: | dm070104.ps.gz (59 K) |

ps-source: | dm070104.ps (168 K) |

pdf-source: | dm070104.pdf (123 K) |

The first *source* gives you the `gzipped' PostScript, the second the plain
PostScript and the third the format for the Adobe accrobat
reader. Depending on the installation of your web browser, at least
one of these should (after some amount of time) pop up a window for
you that shows the full article. If this is not the case, you should
contact your system administrator to install your browser correctly.

Due to limitations of your local software, the two formats may show up differently on your screen. If eg you use xpdf to visualize pdf, some of the graphics in the file may not come across. On the other hand, pdf has a capacity of giving links to sections, bibliography and external references that will not appear with PostScript.

Automatically produced on Do Apr 21 13:14:39 CEST 2005 by gustedt