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Tiling a Rectangle with Polyominoes

Olivier Bodini1

1LIRMM, 161, rue ADA, 34392 Montpellier Cedex 5, France

A polycube in dimension d is a finite union of unit d-cubes whose vertices are on knots of the lattice Zd . We show
that, for each family of polycubes E, there exists a finite set F of bricks (parallelepiped rectangles) such that the bricks
which can be tiled by E are exactly the bricks which can be tiled by F . Consequently, if we know the set F , then we
have an algorithm to decide in polynomial time if a brick is tilable or not by the tiles of E.
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1 Introduction
A polycube in dimension d (or more simply a polycube) is a finite -not necessarily connected- union of
unit cubes whose vertices are on nodes of the lattice Z

d . Given a family (finite or not) of polycubes E, a
polycube P is tilable by E if there exists a finite sub-family E1 of E such that P is a union of translated
copies of disjoint interiors of elements of E1. An important problem about polyominoes tiling (polycubes
in dimension 2) concerns their capacity to tile some rectangles (see works of Klarner [7], Golomb [5,6],
Reid [9], Marshall [8], Dahlke [4],...). Especially, Klarner has defined the notion of polyomino order as
the smallest number of congruent copies of a polyomino which form a rectangle. The question whether
there exists a polyomino of odd order n ≥ 5 is totally open and still remains one of the great discoveries to
be made on the polyominoes theory. To understand the difficulty of that problem, we can remind ourselves
that the order (seen as a function) is not algorithmically calculable [1]. The main subject of this paper is to
show that, for each family of polycubes E, there exists a finite set F of bricks (parallelepiped rectangles)
such that the bricks that can be tiled by E are exactly the bricks that can be tiled by F . In other words, the
set of bricks which can be tiled by a fixed family of polycubes is generated by a finite set of bricks called
the prime bricks. The proof of this theorem cannot be constructive. In fact, given a family E of polycubes,
the problem whether “there exists a rectangle which can be tiled by E” is algorithmically undecidable [1].
Thus, a theorem of finite basis type is a bit surprising, although the determination of the cardinality of this
basis remains undecidable.

2 Algebraic Relaxation
We are going to deal with algebraically simpler objects : for that, we put weights on the cubes of the
polycube (we identify a polycube by the set of cubes which compose it). This brings us to introduce the
following formal definition : Let A be a unitary ring, an A-weighted polycube is a map with finite support
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P from the set of cubes of the lattice Zd into the ring A. For each cube c, the number P(c) is called the
weight of P in c. The space PA of the A-weighted polycubes has a natural structure of free A-module and
cubes of weight 1 clearly form a basis of PA. Thus, we have a canonical injection of the set of polycubes
in the A-module of A-weighted polycubes. We can henceforth introduce the notion of A-tiling in the
following way : An A-weighted polycube P will be said A-tilable by a family of A-weighted polycubes
(called the tiles) if and only if P is an A-linear combination of translated copies of elements of this family.
Consequently, if a polycube P is tilable by a family of tiles E, then P is necessarily A-tilable by the family
E. This provides interesting necessary conditions for the tilability by a family of tiles for a polycube P
(see [3] for a development of this idea).

We naturally identify the unit cube (a1,a2, ...,ad)+[0,1]d of Rd to the vector (a1,a2, ...,ad). Moreover,

for a = (a1, ...,ad) ∈ Zd , we put by convention X a = X
a1+|a1|

2
1 ...X

ad+|ad |
2

d Y
|a1|−a1

2
1 ...Y

|ad |−ad
2

d (this does not
constitute all the monomials in X1, ...,Xd ,Y1, ...,Yd but only monomials which have not simultaneously
some Xi and some Yi).

For each A-weighted polycube P, the polynomial :
QP = ∑

(a1,...,ad)∈Zd
P((a1, ...,ad))X (a1,...,ad) of A[X1, ...,Xd ,Y1, ...,Yd ] is the polynomial of P.

For example, the polycube P in dimension 2 made of the unit squares (0,1), (0,0), (1,0), (2,0) has for
polynomial QP = X2 +1+X1 +X2

1 . Similarly, the polycube b = {(x1, ...,xd) ∈ Rd such as 0 ≤ xi ≤ bi} is

called the brick of size b1, ...,bd and denoted by b1 × ...×bd. Its polynomial is Qb =
d
∏
i=1

(X
bi
i −1)

Xi−1 .

Lemma 2.1 The space PA is isomorphic to A[X1, ...,Xd ,Y1, ...,Yd ]/〈(X1Y1 −1) , ...,(XdYd −1)〉
A

where
〈(X1Y1 −1) , ...,(XdYd −1)〉

A
denotes the ideal of A[X1, ...,Xd ,Y1, ...,Yd ] generated by

(X1Y1 −1) , ...,(XdYd −1) .

Proof. There exists a unique linear map f from A[X1,...,Xd,Y1,...,Yd] to PA such that f
(

Xa1
1 Y b1

1 ...Xad
d Y bd

d

)

is the unit cube (a1 −b1, ...,ad −bd) of weight 1 (since monomials form a basis of A[X1, ...,Xd ,Y1, ...,Yd ]).
f is surjective because, for each A-weighted polycube P, we have f (QP) = P. We can conclude

by proving that ker( f ) = 〈(X1Y1 −1) , ...,(XdYd −1)〉
A
. As we can write (in proceeding by successive

divisions by (X1Y1 −1) , ...,(XdYd −1)) every polynomial Q in the form Q = R+
d
∑

i=1
Qi (XiYi −1) where R

belongs to the A-module generated by the family {X a;a ∈ Zd}, we see that f (Q) is the empty polycube,
denoted by 0 (it is the polycube P of weight 0 on all the cubes in the space) if and only if f (R) = 0 (because
f (Qi (XiYi −1)) = 0 by linearity and by definition of f ). Moreover, it is clear that f (R) = 0 ⇔ R = 0 and
that R = 0 ⇔ Q ∈ 〈(X1Y1 −1) , ...,(XdYd −1)〉

A
, so ker( f ) = 〈(X1Y1 −1) , ...,(XdYd −1)〉

A
. 2

We denote by L the linear map from PA into A[X1, ...,Xd ,Y1, ...,Yd ]/〈(X1Y1 −1) , ...,(XdYd −1)〉
A

which
associates to P the polynomial QP and by L′ the linear quotient map : f

/

〈(X1Y1 −1) , ...,(XdYd −1)〉
A

from A[X1, ...,Xd ,Y1, ...,Yd ]/〈(X1Y1 −1) , ...,(XdYd −1)〉
A

into PA.
We can notice immediately that L and L′ are reciprocal maps.

Lemma 2.2 Let A be a unitary ring and E a set of A-weighted polycubes. An A-weighted polycube P is
A-tilable by E if and only if QP ∈ 〈QP′ with P′ ∈ E,X1Y1 −1, ...,XdYd −1〉

A
.
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Proof. By definition, an A-weighted polycube P is A-tilable by E if and only if there exists for all 1≤ i≤ t,

λi ∈ A, Pi ∈ E and ai =
(

ai
1, ...,a

i
d

)

∈ Zd such that P =
t
∑

i=1
λiPi

(ai
1,...,ai

d)
where Pi

(ai
1,...,ai

d)
denotes the

translated of Pi by the vector
(

ai
1, ...,a

i
d

)

. By the isomorphism L, this is equivalent to QP =
t
∑

i=1
λiXai

QPi

in A[X1, ...,Xd ,Y1, ...,Yd ]/〈(X1Y1 −1) , ...,(XdYd −1)〉
A

and so P is A-tilable by E if and only if QP ∈
〈QP′ with P′ ∈ E,X1Y1 −1, ...,XdYd −1〉

A
. 2

In the following, the set 〈QP′ with P′ ∈ E,X1Y1 −1, ...,XdYd −1〉
A

is denoted by I(E). This is what we
call the ideal of E.

3 Existence of Finite Generated Families
Firstly (until the theorem 3.4), we are going to present a short proof of a fundamental result due to Barnes
[2].

In order to do that, we are going to define new notations. A color c, is a d-tuple (c1, ...,cd) where ci

belongs to N\{1}. We say that a color (c1, ...,cn) conceals a brick B1 × ...×Bd if there exists an i such
that ci divides Bi.

Let c be a color, we denote by eic the d-tuple (x1, ...,xd) where xi =

{

1 if ci = 0

e
2iπ
ci otherwise

.

Lemma 3.1 For every brick B (embedded in C) and for every color c, QB(α(c)) is null if and only c
conceals B.

Proof. QB =
d
∏
i=1

(X
Bi
i −1)
Xi−1 = 0 if and only if there exists an i such that the factor

X
Bi
i −1
Xi−1 in QB vanishes during

the evaluation. Thus, ci | Bi. 2

Let B be a brick B1 × ...×Bd and let {b1
1 × ...× b1

d,..., bm
1 × ...× bm

d } be a set E of bricks. We denote
by mi the least common multiple of b1

i , ...,b
m
i . A color (c1, ...,cd) is (m1, ...,md)-primal if every positive

ci is a prime power which divides mi. The set CE will be the set of the (m1, ...,md)-primal colors which
conceal all bricks in E.

Lemma 3.2 If a brick B is C-tilable by E, then ∀c ∈CE , c conceals B.

Proof. It is clear that QB = ∑
b∈E

PbQb where Pb is a polynomial. Now, let c be an (m1, ...,md)-primal color

which conceals all bricks in E, then α(c) is a zero of every Qb. So, α(c) is a zero of QB and by lemma
3.1, d conceals B. 2

In the sequel, we denote by vp(n) the p-valuation of n, that is to say the greatest integer k such that
pk | n.

Lemma 3.3 Let {b1
1 × ...× b1

d,..., bm
1 × ...× bm

d } be a set E of bricks and B1 × ...×Bd a brick B. If the
brick B verifies the following conditions :

1. ∀c ∈CE , c conceals B.

2. ∀i, there exists a prime number pi such that for every prime number p 6= pi, we get vp(Bi) ≥
max

k

(

vp
(

bk
i

))
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Then B1 × ...×Bd is a multiple of one of the bricks of E.

Proof. Let c = (c1, ...cd) be the color where ci = p
vpi (Bi)+1
i . By lemma 3.1, it follows that QB(α(c)) 6= 0.

So, there exists a brick b in E such that the evaluation of Qb in α(c) is not null too (this follows from the
first condition of the lemma). So, for every i, ci does not divide bi, which implies vpi(Bi)+ 1 > vpi(bi).
Now, by hypothesis, for every p 6= pi, vp(Bi) ≥ vp(bi). We conclude that for every i, bi divides Bi. 2

We note B>k the set of bricks B such that all the edges of B are greater than k. In other words, B>k =
{b1× ...×bd with bi > k}. Now, we can prove the following theorem due to Barnes [2]:

Theorem 3.4 Let E be a finite set of bricks, then there exists an integer k, which depends uniquely on this
set, such that for each brick B ∈ B>k, B is tilable by E if and only if B is C-tilable by E.

Proof. Let {b1
1× ...×b1

d,..., bm
1 × ...×bm

d } be the bricks in E. We recall that mi is the least common multiple
of b1

i , ...,b
m
i . mi can be factorized in mi = qi,1...qi,ti where each qi, j is a prime power and qi, j ∧ qi, j′ = 1

for j 6= j′. Suppose that B is C-tilable by E. By lemma 3.2, ∀c ∈CE , c conceals B. Let δi be the greatest
common divisor of mi and Bi. Now, we can find ui, j such that for every i :

mi

qi,1
ui,1δi + ...+

mi

qi,ti
ui,ti δi = Bi

If Bi is sufficiently large, all the ui, j can be chosen non-negative and then the non-empty bricks m1
q1, j1

u1, j1δ1×

...× md
qd, jd

ud, jd δd with ( j1, ..., jd) belonging to {1, ..., t1}× ...×{1, ..., td} constitutes a tiling of B1 × ...×

Bd . Then ∀c ∈CE , c conceals all this bricks. Indeed, ci | mi by definition of the (m1, ...,md)-primal colors
and as c conceals B, there exists an i such that ci | Bi. So, for a j ∈ {1, ..., ti}, we get ci | δi

m1
q1, j1

u1, j1

and thus, c conceals the non-empty bricks m1
q1, j1

u1, j1δ1 × ...× md
qd, jd

ud, jd δd . Now, this bricks verify the

conditions of the lemma 3.3. In order to prove that, we can observe that if p doesn’t divide qi, ji , then
vp(

mi
qi, ji

ui, jiδi)≥ vp(mi) = max
k

(

vp
(

bk
i

))

. So, each of this bricks are multiple of one of the bricks of E and

we have find a tiling of B. 2

Using a trivial bound of the Frobenius’ problem, we can remark that k ≤ max(m2
i ).

We write [E]
A

the set of all bricks which are A-tilable by E and [E] the set of all bricks which are tilable
(in classical sense) by E.

Lemma 3.5 Let A be a nœtherian ring and E a set of A-weighted polycubes, then there exists a finite
subset F of E such that [E]

A
= [F]

A
.

Proof. P∈ [E]
A

if and only if QP ∈ 〈QP′ with P′ ∈ E,X1Y1 −1, ...,XdYd −1〉
A
, but as A[X1, ...,Xd ,Y1, ...,Yd ]

is a nœtherian ring, there exists a finite subset F of E such that {QP′ with P′ ∈ F,X1Y1 −1, ...,XdYd −1}
is a generating family of 〈QP′ with P′ ∈ E,X1Y1 −1, ...,XdYd −1〉

A
. Otherwise, for each integer n and

P1, ...,Pn polycubes of E, there exists a polycube Pn+1 in E such that

QPn+1 /∈ 〈QP1 , ...,QPn ,X1Y1 −1, ...,XdYd −1〉
A

and so, we can obtain a non stationary increasing sequence of ideals. 2

Let E,E ′ and C be some families of polycubes, E and E ′ are two paddles (resp. A-paddles where A is
a unitary ring) equivalent on C if and only if ∀P ∈C, the following statements are logically equivalent :
- P is tilable (resp. A-tilable) by E,
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- P is tilable (resp. A-tilable) by E ′.
We can now prove the main theorem for the A-tiling. More explicitly :

Corollary 3.6 Let A be a nœtherian ring and E a set of A-weighted polycubes, then there exists a finite
set F of bricks such that E et F are equivalent A-paddles for the bricks.

Proof. We have clearly [[E]
A
]
A

= [E]
A

and with the lemma 3.5 applied to [E]
A

, there exists F such that
[F ]

A
= [[E]

A
]
A

= [E]
A

. 2

Lemma 3.7 Let E be a set of bricks, then there exists a finite subset F of E such that [E] = [F].

Proof. By the lemma 3.5 there exists a finite subset E1 of E such that [E]
C

= [E1]C.
Moreover, by the theorem 3.4, there exists k such that [E1]C ∩B>k = [E1]∩B>k. So, we have :

[E1]C ∩B>k = [E1]∩B>k ⊂ [E]∩B>k ⊂ [E]
C
∩B>k = [E1]C ∩B>k

This involves that [E1]∩B>k = [E]∩B>k

The elements of [E] which are not in [E1] are bricks such that the length of at least one of their edges
is less than k.

For 1 ≤ q ≤ k and 1 ≤ r ≤ d, we put Bq,r the set of bricks of [E] such that the length of the r-th edge is
q.

We conclude by showing that there exists a finite family of polycubes E2 such that [E] = [E1 ∪E2]. We
are going to proceed by recurrence on d(the dimension of the space).

If d = 1, for each q, the set Bq,1 is constituted by at most one brick and so

[

E1 ∪
S

1≤q≤k
Bq,1

]

= [E].

Suppose the lemma verified for rank d−1. We put :

Cq,r = {a1× ...×ar−1×ar+1× ...×ad such that

a1× ...×ar−1×q×ar+1× ...×ad ∈ Bq,r}

So Cq,r is a set of bricks of dimension d − 1 obtained by canonical projection of Bq,r. By recurrence
hypothesis, there exists Dq,r a finite set of bricks such that [Dq,r] = [Cq,r].

Let

Eq,r = {a1× ...×ar−1×q×ar+1× ...×ad such that

a1 × ...×ar−1×ar+1× ...×ad ∈ Dq,r},

then Eq,r is finite and we clearly have [Eq,r] = [Bq,r]. So E1∪
S

1≤q≤k
1≤r≤d

Eq,r is finite and [E1∪
S

1≤q≤k
1≤r≤d

Eq,r] = [E].

2

Remark 3.8 The lemma 3.4 works on the same principle as the lemma of Dickson which allows us to
obtain the nœtheriality of

C[X1, ...,Xn].

Theorem 3.9 Let E be a set of polycubes, then there exists a finite set F of bricks, such that E and F are
equivalent paddles on the bricks.
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Proof. We have clearly [[E]] = [E] and [E] is a set of bricks, so by the lemma 3.4, there exists a finite
subset F of [E] such that [F ] = [[E]] = [E]. 2

We can observe, in corollary, that for every set E of polycubes, if we make the hypothesis that we know
a finite family F of bricks which is an equivalent paddle, we can determine rapidly if a given brick B is
tilable by E. Indeed, there are two possibilities :

• Brick B has all its edges of length greater than k (k is supposed determined) and then it suffices
to verify that B is C-tilable by E (we can do this in polynomial time using generalized division
algorithm [3])

• B is an element of the finite set F .

4 Rectangles which can be Tiled by Small Polyominoes
We propose in this section a survey of the results known on the tilable rectangles by congruent copies of a
given edge-connected polyomino. (We cover only the cases where the number of squares of the polyomino
is less than 7. The unmentioned polyominoes with less than 7 squares cannot tile any rectangles). Some
of this results deserve a citation, the other one are unpublished results and they can be easily verified. We
can observe that for some polyominoes the number of rectangles is huge, they are no explanation for this
fact. For each polyomino, we present only an ”half-base” of rectangles. To obtain a generating base, we
have to symmetrize this half-base by adding b×a if a×b is in the half-base.
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Fig. 1: Rectangles which can be Tiled by Small Polyominoes
Rectangles which can be Tiled by Small Polyominoes.



88 Olivier Bodini

Note n ˚ 1 :
5×10
9×{20,30,45,55}
10×{14,16,23,27}
11×{20,30,35,45}
12×{50,55,60,65,70,75,80,85,90,95}
13×{20,30,35,45}
14×15
15×{15,16,17,19,21,22,23}
17×{20,25}
18×{25,35},22×25

Note n ˚ 2 :
23×24
24×{29,35,41,47,53,59,63,65,71,77,83,89,95,101,102,103,107,108,113,114,119,120 . . .}
This polyomino is the hexomino Y. It is the smallest case which is still open.
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