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Let P (z) and Q(y) be polynomials of the same degree k ≥ 1 in the complex variables z and y, respectively. In this
extended abstract we study the non-linear functional equation P (z) = Q(y(z)), where y(z) is restricted to be analytic
in a neighborhood of z = 0. We provide sufficient conditions to ensure that all the roots of Q(y) are contained
within the range of y(z) as well as to have y(z) = z as the unique analytic solution of the non-linear equation.
Our results are motivated from uniqueness considerations of polynomial canonical representations of the phase or
amplitude terms of oscillatory integrals encountered in the asymptotic analysis of the coefficients of mixed powers
and multivariable generating functions via saddle-point methods. Uniqueness shall prove important for developing
algorithms to determine the Taylor coefficients of the terms appearing in these representations. The uniqueness of
Levinson’s polynomial canonical representations of analytic functions in several variables follows as a corollary of
our one-complex variables results.

Keywords: analytic functions, Airy phenomena, asymptotics, coalescing saddle-point method, multivariable gener-
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1 Introduction
Unless otherwise stated d ≥ 2 is a fixed integer and i :=

√
−1. We use boldface notation to denote

vectors in Cd. We reserve the script 0 to refer to the zero vector. The script r is reserved for a vector with
strictly positive real coordinates. We refer to r as a polyradius. The coordinates of a vector t are denoted
(t1, . . . , td). We define t′ := (t1, . . . , td−1), in particular, t = (t′, td). The notation |t| < r means that
|ti| < ri for all i. Similarly, |t| ≤ r means that |ti| ≤ ri for all i.

Problem description. A classical example of a polynomial canonical representation is the Weierstrass
preparation theorem [Tay02] which asserts the following. If U(t) is a complex-valued analytic function
in a neighborhood of t = 0 and

k := min
{
n ≥ 0 :

∂nU

∂tnd
(0) 6= 0

}
<∞
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then there exists a polyradius r and analytic functions V, u0, . . . , uk−1 such that

U(t) = V (t) ·

tkd +
k−1∑
j=0

uj(t′) · tjd

 , (1)

for |t| < r. We refer to k as the order of vanishing of U about the origin with respect to the variable td.
The factor within the parenthesis above is called the Weierstrass polynomial of U about the origin and it
will be denoted as P (t). It satisfies the following important property. For all |t′| < r′ the polynomial
equation in the variable td: P (t′, td) = 0, with |td| < rd, has exactly k solutions repeated according to
their multiplicity. Since V (0) 6= 0, and since the roots of a monic polynomial identify it uniquely, the
factorization in (1) is unique.

The problem of whether U(t) itself can be represented as a polynomial with respect to a possibly
auxiliary variable dates back to the investigations of Chester, Friedman and Ursell [CFU57] who studied
this problem for the special case of d = 2. Later work by Levinson [Lev60b] provided a way to represent
certain analytic functions of d = 2 complex variables in a canonical way as a polynomial in two auxiliary
variables. More generally, for d ≥ 2, Levinson proved the following [Lev60a]. If U(t) is like before then
there exists a polyradius r and analytic functions v0, . . . , vk, x such that

U(t) =
k∑
j=0

vj(t′) · {x(t)}j , (2)

for |t| < r, with vj(0′) = 0 for j < k, vk(0′) 6= 0, and x(t′, 0) = 0 and ∂x/∂td(t′, 0) = 1 for |t′| < r′.
Unlike the representation in (1), it is unclear that the representation in (2) is unique. Indeed, the issue

of uniqueness was omitted in [Lev60a] and to the best of our knowledge it has not been addressed further.
The main issue surrounding the uniqueness of this representation as well as other canonical representations
is the introduction of auxiliary variables. Loosely speaking, the problem is how to certify in general the
validity of the following implication k∑

j=0

vj(t′) · xj =
k∑
j=0

wj(t′) · yj
 =⇒ [vj = wj , for all j, and x = y] ,

under the assumption that x = x(t) = td + O(t2d) and y = y(t) = td + O(t2d) uniformly for all t
sufficiently close to the origin. Clearly, to assert the uniqueness of the above factorization, it suffices to
have x = y in some open neighborhood of the origin in Cd. In fact, since x(t′, td) and y(t′, td) are —as
functions of td— locally invertible about the origin, we shall see at the end of Section 2 that the validity
of the above implication is closely related to the uniqueness of y(z) = z as an analytic solution of the
non-linear functional equation

k∏
i=1

(z − zi) =
k∏
i=1

(y(z)− y(zi)), |z| < R;

y(0) = 0 ; y′(0) = 1;
(3)

where R > 0 is a given radius and z1, . . . , zk ∈ C are fixed complex numbers such that |zi| < R.
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There is one case where the uniqueness issue of the above equation can be addressed directly. If y(z)
is an entire function i.e. R = ∞ then, according to (3), |y(z)/z|k → 1 as |z| → ∞. Since y(0) = 0,
y(z)/z is a bounded entire function. Hence, due to Liouville’s theorem [Rud87], y(z)/z must be constant
and therefore y(z) = z because y′(0) = 1. Unfortunately, the case with R = ∞ is not of much use to
address uniqueness issues of polynomial canonical representations because —almost always— they only
apply locally.

Connections with mixed powers generating functions. Polynomial canonical representations are piv-
otal for analyzing the asymptotic behavior of oscillatory integrals [BH86]. Integrals of this type arise
frequently in the context of asymptotic enumeration or the analysis of discrete random structures [PW05].

A mixed power generating function is a generating function of the form
∏d
i=1{fi(z)}ni , where the

factors f1, . . . , fd are complex-valued analytic functions near z = 0 and n1, . . . , nd are nonnegative
integers. The term of mixed power was introduced in [Lla06a] to emphasize the fact that one is usually
interested in the coefficient of zn0 of

∏d
i=1{fi(z)}ni as max{n0, n1, . . . , nd} → ∞. If one defines

n := (n1, . . . , nd), this is equivalent to request that ‖(n0,n)‖ → ∞ where ‖ · ‖ is any norm in R1+d.
Generating functions of the above form occur naturally in the context of the Lagrange inversion for-

mula [GJ04, Wil90] with d = 1. More recent applications include the case of d = 2, 3 to analyze the core
size of various types of random planar maps [BFSS01].

Coefficients of mixed powers generating functions have been considered in the literature for factors
fi with nonnegative coefficients by Drmota [Drm94], for d = 1 and n0, n1 → ∞ at a comparable rate.
Gardy [Gar95] considered the case of nonnegative coefficients for d ≥ 1 with n0 = Θ(n1) or n0 = o(n1)
and ni = o(n1/

√
n0) for i > 1. A geometrically based approach, in the lines used by Pemantle and

Wilson [PW02, PW04], was proposed in [Lla06a] to handle factors fi with possibly negative Taylor
coefficients. Given (t0, t) ∈ R1+d with nonnegative coordinates and such that ‖(t0, t)‖ = 1, say that x is
a strictly minimal critical point associated with (t0, t) provided that

t0 =
d∑
i=1

ti ·
xf ′i(x)
fi(x)

;

d∏
i=1

|fi(z)|ti <

d∏
i=1

|fi(x)|ti ,

for all z such that |z| = |x| and z 6= x. If the above conditions hold and some pathological behavior is
ruled out, it follows from [Lla06a] that

[zn0 ]
d∏
i=1

{fi(z)}ni ∼ x−n0

2π

d∏
i=1

{fi(x)}ni ·
∫ π

−π
exp

{
− ‖(n0,n)‖ · F (θ; (t0, t))

}
dθ, (4)

for (n0,n) such that (n0,n)/‖(n0,n)‖ = (t0, t), as ‖(n0,n)‖ → ∞. The function F is a computable
function that is continuous in its (d + 2) arguments however it is also analytic in the variable θ. For a
fixed (t0, t), it satisfies that F = ∂F/∂θ = 0 at θ = 0, and the real-part of F is minimized at θ = 0.
Furthermore, the above expansion applies uniformly for all (n0,n)/‖(n0,n)‖ ∈ T, provided that T
is a compact set such that for all (t0, t) ∈ T, x = x(t0, t) is a strictly critical point associated with
(t0, t) that depends continuously on (t0, t). In particular, the asymptotic analysis of the above integral is
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amenable for the saddle-point method to obtain uniform asymptotic expansions for the coefficients in (4)
for (n0,n) ∈ ‖(n0,n)‖ · T, as ‖(n0,n)‖ → ∞.

It is precisely for the asymptotic analysis of integrals such as the one occurring in (4) that polynomial
canonical representations of the type in (2) play a crucial role. In particular, uniqueness of these repre-
sentations shall prove important to determine the Taylor coefficients of the various terms and auxiliary
variables occurring in these representations. This should aid in automatizing the extraction of asymp-
totic formulae for coefficients of mixed powers generating functions as well as multivariable generating
functions.

The lack of analyticity of F in (4) with respect to the variable (t0, t) can be over passed by thinking of
F as a function of (θ; (t0, t);x). The original function F can then be recovered by evaluating this new
function at (θ; t;x(t0, t)). In order to apply the saddle-point method let k be the order of vanishing of F
about (0; (t0, t);x(t0, t)) with respect to the variable θ. Since F = ∂F/∂θ = 0 at points of this type, it
follows from [Lla06b] that Levinson’s polynomial cannonical representation takes the form

F (θ; (s0, s);x) =
k∑
j=2

vj((s0, s);x) · {y(θ; (s0, s);x)}j ,

with y = 0 and ∂y/∂θ = 1 at points of the form (0; (s0, s);x) that are near (0; (t0, t);x(t0, t)). If
k = 2 the above translates into having the integral appearing in (4) to be described asymptotically by
the Gamma function. In particular, the integral is of order ‖(n0,n)‖−1/2 as ‖(n0,n)‖ → ∞. On the
other hand, if k = 3 the integral is described asymptotically by the Airy function. In this case the
integral in (4) has typically an asymptotic series expansion which is a linear combination of terms of
order (‖(n0,n)‖−l−1/3)l≥0 and also of order (‖(n0,n)‖−l−2/3)l≥0. See [BH86, Lla03] to follow up on
uniform asymptotics for integrals that involve the Gamma and Airy function.

The interested reader is referred to [Lla06a] for concrete applications of the above methodology with
k = 2, 3. The reader is also referred to [BFSS01] for a related yet more specialized discussion with k = 3.
Although our motivation to study the uniqueness of polynomial canonical representations has been argued
in the context of mixed powers generating functions, they also play a fundamental role in the extraction
of asymptotics of multivariable generating functions. The reader is referred to [PW02, PW04, Lla06b] to
follow up on this last remark.

2 Main results
We first introduce two one-complex variable results. Theorem 2.1 provides sufficient conditions to ensure
that all the roots of a polynomial Q(y) are contained in the range of an analytic function y(z) when there
exists another polynomial P (z), of the same degree asQ(y), such that P (z) = Q(y(z)) in a neighborhood
of z = 0. Under an appropriate rescaling, this translates into having

∏k
i=1(z−zi) =

∏k
i=1(y(z)−y(zi)),

where k is the degree of P (z) and z1, . . . , zk are the roots of P (z) repeated according to their multiplic-
ity. Theorem 2.2 provides sufficient conditions in order to conclude from this that y(z) = z. Our main
two theorems are refined versions of some of the results obtained by the author in his doctoral disserta-
tion [Lla03]. These are used to show the uniqueness of Levinson’s representation in (2).

Auxiliary results. In what follows, R > 0 is a given radius and we use the notation

D := {z ∈ C : |z| < R},
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H := {y : D → C such that y is analytic}.

For 0 ≤ r < R, we define
‖f‖r := sup

|z|≤r
|f(z)| = sup

|z|=r
|f(z)|,

where the last identity is justified by the maximum modulus principle [Rud87].

Theorem 2.1 Let P and Q be polynomials of the same degree k ≥ 1 and assume that D contains all the
roots z1, . . . , zk of P repeated according to their multiplicity. If y ∈ H is such that P (z) = Q(y(z)), for
all z ∈ D, then[

Q−1{0} ⊂ y(D)
]
⇐⇒ [∀i : y′(zi) 6= 0, and ∀i, j : y(zi) = y(zj)⇔ zi = zj ] . (5)

Furthermore, if either of the conditions in (5) apply then there exists a constant q ∈ C such that

Q(y) = q ·
k∏
i=1

(y − y(zi)). (6)

Theorem 2.2 For all ρ and r such that 0 ≤ 2ρ < r < R there exists a δ > 0 such that if maxi |zi| ≤ ρ
then y(z) = z is the only solution of the non-linear functional equation

k∏
i=1

(z − zi) =
k∏
i=1

(y(z)− y(zi)), y ∈ H;

y(0) = 0,
(7)

that satisfies the condition ‖y(z)− z‖r ≤ δ.

Proof of uniqueness of Levinson’s representation. We use the stated theorems to show the uniqueness
of Levinson’s polynomial canonical representation in (2). Thus consider U(t) analytic in a neighborhood
t = 0 and assume that

U(t) =
k∑
j=0

vj(t′) · sj =
k∑
j=0

wj(t′) · tj (8)

where vj(0′) = wj(0′) = 0 for j < k, vk(0′) 6= 0,wk(0′) 6= 0, and s = t = 0 and ∂s/∂td = ∂t/∂td = 1
at all points in the domain of s and t of the form (t′, 0). We show that vj = wj , for all j, and that s = t.
For this consider the transformation Φ(t) = (t′, s(t)). Since Φ(0) = 0 and the Jacobian matrix of Φ
at 0 is lower-triangular with non-zero entries along the diagonal, the inverse mapping theorem [Tay02]
implies that Φ−1 is a well-defined analytic function in some open neighborhood of the origin in Cd.
Define V (t′, z) := U(Φ−1(t′, z)) and x = x(t′, z) := t(Φ−1(t′, z)). It follows from (8) that

V (t′, z) =
k∑
j=0

vj(t′) · zj =
k∑
j=0

wj(t′) · xj . (9)

Observe that x = 0 and ∂x/∂z = 1 at all points in the domain of x of the form (t′, 0). Furthermore,
according to the first identity above, V vanishes to degree k about the origin in the variable z. In par-
ticular, the Weierstrass preparation theorem [Tay02] implies that, for all t′ sufficiently close to 0′, the
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roots of V (t′, z) can be listed as z1(t′), . . . , zk(t′), repeated according to their multiplicity. Since for t′

sufficiently close to the origin the transformation z → x(t′, z) is a one-to-one transformation, we may
use Theorem 2.1 in (9) to conclude that

vk(t′) ·
k∏
j=1

{z − zj(t′)} = wk(t′) ·
k∏
j=1

{x(t′, z)− x(t′, zj(t′))}.

Observe that, according to (9), x(0′, z) = z · (vk(0′)/wk(0′))1/k provided that the appropriate branch for
the k-th root is selected. With this choice of branch, introduce the auxiliary variable

y = y(t′, z) := x(t′, z) ·
{
vk(t′)
wk(t′)

}−1/k

.

Notice that
k∏
j=1

{z − zj(t′)} =
k∏
j=1

{y(t′, z)− y(t′, zj(t′))},

for all t′ sufficiently close to the origin in Cd−1 and z such that |z| < R, where R > 0 is certain real
parameter independent of t′. But observe that, according to the Weierstrass preparation theorem, if t′ is
sufficiently close to the origin then |zj(t′)| < R/4, for all j. On the other hand, since y(0′, z) = z and y
is uniformly continuos over compact subsets of its domain, it follows for r = 3R/4 that

lim
t′→0′

‖y(t′, z)− z‖r = 0.

Theorem 2.2 implies that y(t′, z) = z, for all t′ sufficiently close to the origin and all z such that |z| < R.
In particular, x(t′, z) = z · (vk(t′)/wk(t′))1/k. Since ∂x/∂z = 1 at all points in the domain of x of the
form (t′, 0), we conclude that x(t′, z) = z. This in (9) implies that vj = wj , for all j. Furthermore, since
x(t′, z) := t(Φ−1(t′, z)), with Φ(t) = (t′, s(t)), we find s = t. This shows that Levinson’s polynomial
canonical representations are unique. 2

References
[BFSS01] C. Banderier, P. Flajolet, G. Schaeffer, and M. Soria. Random maps, coalescing saddles,

singularity analysis, and airy phenomena. Random Structures and Algorithms 19(3-4), 194–
246, 2001.

[BH86] N. Bleistein and R. Handelsman. Asymptotic expansion of integrals. Dover Publications, 1986.

[CFU57] C. Chester, B. Friedman, and F. Ursell. An extension of the method of steepest descents. Proc.
Camb. Phil. Soc. 53, 599–611, 1957.

[Drm94] M. Drmota. A bivariate asymptotic expansion of coefficients of powers of generating func-
tions. Europ. J. Combinatorics 15, 139-152, 1994.

[Gar95] D. Gardy. Some results on the asymptotic behavior of coefficients of large powers of functions.
Discrete Mathematics, vol 139, 189–217, 1995.



Uniqueness of polynomial canonical representations 469

[GJ04] I. P. Goulden and D. M. Jackson. Combinatorial enumeration. Dover Publications, 2004.

[Lev60a] N. Levinson. A canonical form for an analytic function of several variables at a critical point.
Bulletin of the American Mathematical Society, vol 66, 68–69, 1960.

[Lev60b] N. Levinson. A polynomial canonical form for certain analytic functions of two variables at a
critical point. Bulletin of the American Mathematical Society, vol 66, 366–368, 1960.

[Lla03] M. Lladser. Asymptotic enumeration via singularity analysis. Doctoral dissertation, Ohio
State University, 2003.

[Lla06a] M. Lladser. Mixed powers of generating functions. In Proceedings of the fourth colloquium
on mathematics and computer science, pages 171–182, Nancy, France, 2006. DMTCS.

[Lla06b] M. Lladser. Uniform formulae for coefficients of meromorphic functions in two variables. Part
I. SIAM J. Discrete Math. 20, 811-828, 2006.

[PW02] R. Pemantle and M. Wilson. Asymptotics of multivariate sequences, part I: smooth points of
the singular variety. J. Comb. Theory, Series A, vol. 97, 129–161, 2002.

[PW04] R. Pemantle and M Wilson. Asymptotics of multivariate sequences, part II: multiple points of
the singular variety. Combinatorics, Probability and Computing 13, 735-761, 2004.

[PW05] R. Pemantle and M. Wilson. Twenty combinatorial examples of asymptotics derived from
multivariate generating functions. Preprint, 2005.

[Rud87] W. Rudin. Real and complex analysis. McGraw-Hill series in Higher Mathematics, third
edition, 1987.

[Tay02] J. Taylor. Several Complex Variables with Connections to Algebraic Geometry and Lie Groups.
Graduate Studies in Mathematics 46, 2002.

[Wil90] Herbert S. Wilf. Generatingfunctionology. Academic Press, 1990.



470 Manuel Lladser


	Introduction
	Main results

