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We consider random walks on the set of all words over a finibatdet such that in each step only the last two letters
of the current word may be modified and only one letter may heirsetl or deleted. We assume that the transition
probabilities depend only on the last two letters of theentrevord. Furthermore, we consider also the special case of
random walks on free products by amalgamation of finite gsoaupich arise in a natural way from random walks on
the single factors. The aim of this paper is to compute séeersivalent formulas for the rate of escape with respect
to natural length functions for these random walks usinfpdéht techniques.
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1 Introduction

Let A be a finite alphabet and let* be the set of all finite words over the alphabktwherec is the
empty word. Furthermore, lét A — [0; co) be a function representing a ‘letter length’. The extension

[ to A* defined byi(a; ...a,) = Y i, l(a;) gives then a suitable "word length’. We consider a transient
Markov chain(X,,)»en, 0N A* with Xy = ¢ such that transition probabilities depend only on the last
two letters of the actual word and in each step only the lastlesters may be modified and only one
letter may be adjoined or deleted. We are interested in venétle sequence of random variablex,, ) /n
converges almost surely to a constant, and if so, to compigeonstant. If the limit exists, it is called
therate of escapeor thedrift with respect tdl. In this paper, we study this question for random walks
on regular languages and on free products by amalgamati@mtefgroups, which form special cases of
regular languages and are a generalization of free prodfigt®ups.

It is well-known that the rate of escape w.r.t. the naturatdvength exists for a random walk on a
finitely generated group, which is governed by a probabitigasure on the group. This follows from
Kingman'’s subadditive ergodic theoresee Kingman (13), Derriennic (3) and Guivarc’h (10). There
are many detailed results for random walks on free produgtarbalgamation: Picardello and Woess
(20) showed that a locally compact free product by amalgamatf compact groups acts naturally on
a tree. They also derived the behaviour of thetep transition probabilities. Cartwright and Soardi (2)
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investigated random walks on free products by amalgamatibare the amalgamating subgroup is finite
and normal. They derived a formula for the Green functitia) = 3=, -, p™ (e, )2, wherep(™ (e, ¢)

is then-step return probability from the identity, of the random walk on the amalgamated product in
terms of the Green functions of the single factors that ismgally the same as in Woess (23). For random
walks on free products of finite groups Mairesse and Matli¢Gshave developed a specific technique
for the computation of the rate of escape. For this purpdss, have to solve a more elegant system of
algebraic equations than we have to solve, but our resultb&more general. Three different formulas
for the rate of escape of random walks on free products ofrgrapd groups are derived in Gilch (9). The
techniques used in (9) were the starting point for the coatfart of the rate of escape in this paper. An
important link between drifts and harmonic analysis wasivigid by Varopoulos (22). He proved that for
symmetric finite range random walks on groups the existefoem-trivial bounded harmonic functions
is equivalent to a non-zero rate of escape. The recent wolladéson and Ledrappier (12) generalizes
this result to random walks with finite first moment of the sepgths. This leads to a link between the
rate of escape and the entropy of random walks; compare @lgKaimanovich and Vershik (11) and
Erschler (6).

We also consider random walks on regular languages whictbeaseen as a generalization of free
products by amalgamation. Random Walks on this class oftstress have been investigated by several
authors: Malyshev (17), (18) and Gairat, Malyshev, MenshilPelikh (8) stated criteria for transience,
null-recurrence and positive recurrence. Moreover, Madysproved limit theorems concerning existence
of the stationary distribution and speed in the transies¢ @nd convergence of conditional distributions
in the ergodic case; in particular, he showed that the raeschpe w.r.t. the natural word length (that
is, [(-) = 1) is constant and it is strictly positive if and only if the dom walk is transient. Yambartsev
and Zamyatin (25) proved limit theorems for random walks wo semi-infinite strings over a finite
alphabet. Lalley (14) also investigated random walks omnleganguages. He found out that thestep
return probabilities must obey one of three different typisower laws. His analysis is based on a finite
algebraic system of generating functions related to the@fenction. This algebraic system is also used
in this paper to compute explicit formulas for the rate ofegse The rate of escape has also been studied
on trees, which may be seen as a special case of our contetibéala and Woess (19, Section 5) proved
that the rate of escape of random walks on trees with finitedpiyncone types is non-zero and give a
formula for it. One of the techniques used in this paper fer ¢dbmputation of the rate of escape was
motivated by Nagnibeda and Woess.

Our aim is to compute formulas for the rate of escape of randaiks on regular languages and free
products by amalgamation of finite groups. In Section 2 wepamthe rate of escape of random walks on
regular languages, while in Section 3 we compute it for ramd@lks on free products by amalgamation.
In Section 3.2 we compute the rate of escape analogouslyatin8e.2 and in Section 3.3 we compute
it by an application of a theorem of Sawyer and Steger (21pdation 3.4 we use the algebraic group
structure of free products by amalgamation to compute tigeafeescape with respect to the natural word
length. This approach is based on a technique which wasigitesed by Ledrappier (15) and Furstenberg
(7). Finally, in Section 4 we give sample computations.
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2 Rate of Escape of Random Walks on Regular Languages

2.1 Regular Languages and Random Walks

Let A be a finite alphabet andbe the empty word. Aandom walk on a regular languags a Markov
chain on the set* :=J,,..; A" U {€} of all finite words over the alphabet, whose transition probabil-
ities obey the following rules:

(i) Only the last two letters of the current word may be modifie
(ii) Only one letter may be adjoined or deleted at one instatime.
(iif) Adjunction and deletion may only be done at the end & tlurrent word.

(iv) Probabilities of modification, adjunction or deletidapend only on the last two letters of the current
word.

Compare with Lalley (14). The hypothesis that transitioolyabilities depend only on the last two letters
of the current word can be weakened to dependence of th&'las® letters by a “recoding trick”, which
is also described by Lalley. In general, a regular langua@esubset oA* whose words are accepted by
a finite-state automaton. It is necessary that by each matidicof a word of the regular language in one
single step a new word of the regular language is createdréchdts below, however, are so general such
that w.l.o.g. — for ease and better readability — we may aedinat the regular language consists of the
whole setA*.

The random walk ol * is described by the sequence of random variablgg) ., - Initially, we have
Xy = e. For two wordsw,w’ € A* we write ww’ for the concatenated word. We use the following
abbreviations for the transition probabilities: fore A*, a,a’,b € A, b',¢/ € AU {e}, n € Ny, let be

P[Xp+1 = wa't'd | X, = wab] = p(ab,a’d'c’),
PXpi1 = b | Xn = a] = p(a,b'd),
P[XnJrl =0 | Xn = 5] = p(E,b/).

If we want to start the random walk at € A* instead ofs, we write for shorfP,,[-] := P[- | Xo = w].
Suppose we are given a function A — [0;00). We extend to A* by definingl(aias...a,) =
S Ua;) foraras . . . a, € A™. Additionally, we sef(¢) := 0. If I(a) = 1 for eacha € A, thenl is just
thenatural word lengthwhich is denoted by- |. If there is a non-negative constaguch that

lim —l (Xn)

n— o0 n

= /¢ almost surely,

then/ is called therate of escapavith respect td. Malyshev (17) proved that the rate of escape w.r.t. the
natural word length exists. Furthermore, by Malyshev fofidhat the rate of escape w.L.is zero if and
only if (X, )nen, IS recurrent. Our aim is to compute a formula fdn the transient case. Therefore, we
assume from now on transience(df,, ) neny, -

Moreover, we assume that the random walkAhis suffix-irreducible that is, for allw € A* with
P[X,, = w] > 0 for somem € N and for allab € A% there is some: € N such that

P[Ewl € A" : X,, = wwyab,Vk < n: | Xg| > |w|‘X0 :w} > 0.
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If suffix-irreducibility is dropped, then the rate of escapay be non-deterministic; e.g., £ = {a, b}
with I(a) = I(b) = 1 andp(aa, aaa) = p > 1/2,p(aa,a) = p(a,e) =1 —p, p(e,a) = p(e,b) = 1/2,
p(bb,bbb) = q > 1/2, p(bb,b) = p(b,e) = 1 — g with p # ¢, thenl(X,,)/n converges only non-
deterministically.

2.2 The Rate of Escape

The technique we use to computevas motivated by Nagnibeda and Woess (19, Section 5)k FoiN,
we define thé-th exit timeas

e, :=sup{m € No | | X;n| = k}.
As the alphabed is finite and the random walk aA* is assumed to be transient, we haye< oo almost
surely for everyk € Ny. Furthermore, we writdV, := X, andiy := e — ex_1 with e_; := 0. We
show at first that Wy, ix.) >3 is @ Markov chain. For this purpose, we introduce some udefdtions:
fora,b,c € A and reak > 0 define

H(ab,clz) := Z]P’ab (X =c,Vm <n:|Xp|>1]2",
n=1
&(abe) = Z p(be,a’b'c’) - (1 — Z HY', d|1)).
a’b’c’€A3 deA

Observe that
Pape [Xn = ab/ ,Vm < n 1 [ Xp| > 2] =Poe[Xn =, Vm < n: [X,,] > 1],

as the transition probabilities depend only on the last gtiets of the current word and in each step only
one letter may be deleted. Thus, the numfi@ibc) is the probability of starting atbc € A* such that
|X,| > 4 foralln > 1, and it does not depend on the letter.“Furthermore, let béa; . ..a,]5 =
Gp—20n_1an, if a1 ...a, € A* with n > 3. With this notation we get:

Proposition 2.1 The stochastic proces3Vy, ix),>3 is a Markov chain with transition probabilities

P[Wit1 = Ths1,ikg1 = g1 | W = @, i = ng]

E([zrls)

for Nk, Nk4+1 € N, Tk, Tip+1 € A* with |:L'k| =k, |:L'k+1| =k+1 and]P’[Wk = Xk, = nk] > 0.

Poy [Xnpps = Tea1, Vi € {1, g } 1 [ X5] > k]

Proof: Let beng, n1,...,nk+1 € Nandzg, z1,...,x541 € A* with |z;| = jforj € {0,1,...,k+ 1}.
Define the event

[ 70n :xgn,ian :ngn] = [Vj S {0,1,...,m}:Wj :l’j,ij :nj],
wherem € {k, k + 1}. With this notation we get
Vje{0,....,k}vA e {0,...,n;}:
| Xny oty 4al 2 0 Xy ooy = 25

P[ Vje{o,...,k}VA‘e{o,...,nj};
| Xnytotny 142l 2 0y Xy, = T

P[W§ = 25,15 =ng] = P[ ]-Pwk[Vn21:|Xn|>k;]

] €((ms)
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Analogously,

BWS™ = 2 =
¥j € {0,... k)A€ {0,...,n;} :
| Xnytotny14al 2 0, Xng oo, = T

-]P)wk [VZ S {1, ce ,nk+1} : |Xl| > I{?,Xnk+1 = ,T]H_d '6([$k+1]3)-

= P

Thus, under the assumption tHtW§ = zf,if = nfj| > 0 we obtain

k+l _ k1l skl _ k41 k_ ok sk _ k
P[Wett =25 igt = ng ‘Wo—xoﬂo—”o]

T .
M Pmk [V’L S {1,...,nk+1} : |XZ| > kank+1 = :I:kJrl].

([z]5)

d

Observe thaP,, Vi € {1,...,np1} ¢ | Xi| > k, Xn,,, = 2x41] depends only omy1, [zx]s and
[zk+1]3- We use this observation to construct a new Markov chain estéte space

Z = {(abc,n) e x N|3de € A : Pge[Xp = abe,Vm € {1,...,n} : | Xpm| > 2]},

whereA® := {abc € A3 | £(abc) > 0} with the following transition probabilities:

£(a't'd)
&(abe)

q((abe,n), (a'b'c',n")) = Pape[Xn = ad'b'c,Vie {1,....0n'} | X;| > 4].

Observe that
P[Wii1 = Tpr1, ikt = i1 | Wi = o, ik = i) = q(([2e]s, ), ([@k41]3, nier))

for k > 3 and that the transition probabilities do not depenchgnThis provides that aIsQ[W;C]3)k>3

is a Markov chain oml with transition probabilities
G(abe,a't'c’) = Z q((abc, Nabe ), (a'b'c n/)),
n’e€N

where then,,.’s on the right hand side of the equation may be chosen arbjtr®bserve tha{W];
may only take a finite number of states, since the alphdhstfinite and|[W];| = 3. At this point we
need the above made assumption of suffix-irreducibilitig; pinovides tha([Wk]g)k>3 is irreducible and
therefore has an invariant probability measure B

Lemma 2.2 Let beabe € A% andn € N and define

m(abe,n) := Z v(def) q((def,naey), (abe,n)),

defEZ3

whereng. ; can be chosen arbitrarily. Thenis the unique invariant probability measure@Wk]g, ik) >3-
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Proof: It is a straightforward computation to prove the lemma:

>

(ghi,s)eZ

= > X

(ghi,s)€Z defGA

= Y a((ghingns), (abe,n))

m(ghi, s) q((ghi, s), (abe, n))
v(def) q def, Naeys), (ght, 5)) q((ghi, s), (abe, n))

v(def) > q((def,nacr), (ghi, s))

ghicA® defeA® seN
= Z q((ghi,ng;”’), (abe, n)) v(ghi) = w(abe,n).
ghiezs

d

Defineg : Z — N : (abc, n) — n. An application of theergodic theorem for positive recurrent Markov
chainsyields

ek—eg

k
1
EZ; ([Wils,ix) 3

if the integral exists. Our next aim is to ensure finitenesthis integal and to compute a formula for it.
For this purpose, we define

k—o0

1)

/g(abc, n)dmr almost surely

G(ab,cd|z) = Z Pap [Xn =cd,Vm <n:|X,| > 2] z
n=0
K(ab,cde|z) := ZIP’ab (X, =cde,Ym € {1,...,n}: |Xm| >3] 2
n=1
= ) plab,cfg) -z G(fg,delz),
fgeA?

wherea, b, ¢, d, e € Aandz > 0. We have the following linear system of equations:

Glab,cd|z) = Jap(cd) + Z plab,dd") -z - G(c'd,cd|z) +
c'd'eA2
+ Z (ab,dd'e") -z - Z H(de, f'|z)-G(cf cd|z). ()
c'd'e’€A3 fleA
Moreover, we also have the following finite system of equegio
H(ab,c|z) = plab,c)-z+ Z (ab,de) - z - H(de, c|z)
de€ A?
+ > plab,def)-z- Y Hef,glz)- H(dg,c|2); 3)
defe A3 geA
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compare with Lalley (14). The system (3) consists of equiatinf quadratic order, and thus the functions
H(-,-|z) are algebraic, if the transition probabilities are algébrid one has solved this system, then the
linear system of equations (2) can be solved easily. In@aat, the functions:(-, -|2) are also algebraic
for algebraic transition probabilities. Observe that we eaaite

faye)
&(abe)

providingr can be computed if (3) can be solved. Turning back to our ratég (1) we can now compute:

g(abe,a'b'd) = K(be,a't'c'|1),

Proposition 2.3 We havdimy_., e;/k = A almost surely, where

A= Z v(def) - f_((;:;)) . % [ Z p(ef,agh) - z - G(gh, bc|z)}

abc.,defez3 gheA?

z=1

Proof: We compute straight-forward:

/ g(abe, n) dr

= Z Z v(def) - q((def,naey), (abe,n))

(abe,n)€Z defEA

= Z v(def) Z n'&:d-Pdef[Xn:dabc,Vme{1,...,n}:|Xm|24}

defezs (abe,n)eZ €(d f)
b
— b g . v(def) - 5((36;)) . %n . Pdef[Xn = dabe,Ym € {1,...,n} : | Xn| > 4}
abe,defe "
= &(abe) 0
- abC,geA?' videf)- f(def) ' Oz [’C(Eﬂ abc|z)] .

Finiteness of the integal is ensured if all functidi#é, -|2) andG(-, -|z) have radii of convergence bigger
than1. But this follows from Lalley (14): he proved that the Greendtions of random walks on regular
languages have radii of convergence bigger than O

Now we can state an explicit formula for the rate of escape:
Theorem 2.4 There is some non-negative constéstich that

¢ = lim HXn) = A >0 almost surely,
where
A= Z v(def)l(a) g((;;:;))IC(ef, abc|1).

abc,defEZS

In particular, lim,, . | X,|/n = 1/A almost surely.
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Proof: With h : Z — N defined byh(abe, n) := I(a) we obtain

%Zh([wk]&ik) iiﬁ/hdw: fim {(Ken)
k=3

m—oo m

Simple computations lead to the following formula for thigit:

&(abc)
A = hdr = Z l/(def)l(a) .]C(ef,abcu)'
/ abe,defeA® §(d€f)

Definingk(n) := max{k € Ny | e, < n} we obtain analogously to Nagnibeda and Woess (19, Proof of
l(Xekm)) k(n)

Theorem D)
/= lim Z(Xn): lim ————= =—>0.
n—00 n n—oo k(n) ek(n) A

d

Observe that for algebraic transition probabilities thte &f escape is obtained by solving the algebraic
system of equations (3). This yields that the rate of escapbso algebraic, if the transition probabilities
are algebraic ant{-) takes only algebraic values.

3 Rate of Escape of Random Walks on Free Products by Amal-
gamation

In this section we compute three formulas for the rate of @sad random walks on free products by
amalgamation of finite groups. This class of structures fepecial cases of regular languages.

3.1 Free Products by Amalgamation

Let be2 < r € N. Consider finite groupk,, ..., I', with identitiesey, . . ., e, and subgroup#/; C I'y,
..., H. cT'..We assume thdi, .. ., H, are isomorphic, that is, there is a finite gralipsuch that there
are isomorphismg, : H — Hy,...,p,. : H — H,. Thus, we identify in the following eacH; with
H. To explain the concept of free products by amalgamatiorgiwe at first a simple example: consider
I'h =Ty =Z/dZ,d € N even, and the subgroug = Z/2Z. LetT'; be generated by an element
andI'; by an element. The free product by amalgamati@y dZ «z .7 7./dZ consists then of all finite
words over the alphabét, b}, where we have the relationg/? = b%/2? anda? = b? = ¢. That is, any
two words which can be deduced from each other with thes@iartarepresent the same element. The
relationa?/? = b%/? means that the subgrody 27 in both copies of/dZ are identified. E.g., fod = 4
itis a®bab? = ab3a® = aba. To help visualize the concept of free products by amalgamate may also
think of the Cayley graphX’; of I';. We connect the graphs; by identifying the subgroupd = H;; at
each non-trivial coset off in all graphsX; we attach copies ok ;, j # ¢, where the coset is identified
with H of the copy ofX ;. This construction is then iterated.

We explain below free products by amalgamation in more téthé quotient’; / H consists of all sets
of setsyH = {yh | h € H}, wherey € T';,. We fix representatives; 1 = ¢;,2;2,...,%;n, fOr the
elements of;/H, thatis, for eacly € I'; there is a unique; , withy € z; , H. We writel') :=T; \ H
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andR; := {x;2,...,%in, } With n; = [I'; : H]. For any element € Ulel“i we setr(z) := 4, if
z el andr(z) :=0,if z € H.
The free product of'y, . .., I, by amalgamation with respect 1 is given by

F::F1*HF2*H-~-*HFT,
which consists of all finite words of the form
Xr1T2 ... ZCnh, (4)

whereh € H,n € Ny andz1,...,z, € U,_, R; such thatr(z;) # 7(xi11). In the following we
will always use this representation of words. Suppose wegamen a functioni : | J;_; R; — [0;00).
Then we extend to a length function o by settingl(z1 ...xz,h) := >_._, l(z;). Thenatural word
lengthis defined to bé|x; ...z, k|| := n. In particular,/(h) = ||h|| = 0 for all h € H. For two words
w1 = T1T2 ... Tuh, we = Y192 ...y, h' € ' agroup operation is defined in the following way: first, con-
catenate the two words, then replagg in the middle byy; 4, such thay/ is a representative for the class
of hy;. Iterate the last step with, y, and so on. Finally, we get a word of the form. .. z, 9] ... y,,hn
with h,, € H, that is, we get the requested equivalent form (4) for thecatenated wora; o wo. Note
also thatw=" = h~'2;'...27" is the inverse ofv; and can be written in the form of (4). The empty
word e is the identity of this group operation. Observe that elaclts a subset of'.

Suppose we are given probability measyieen ;. Letaq, . .., «, be strictly positive real numbers
such thafy"’_, o; = 1. A probability measure of is given by

A (z) Hr () (m)a if v € UZ:l F1><
plx) =30  oipi(x), ifezeH
0, otherwise

Then-th convolution power of: is denoted by:(™. The random walK X, )nen, OnT is then governed
by the transition probabilities(w; , w2) := p(w] "ws), wherew;, w, € T'. Initially, X, := e.

Lemma 3.1 The random walk of' is recurrentifand only iff =2 = [I'y : H] = [['y : H].

Proof: Assumer = 2 = [I'y : H] = [I'2 : HJ. This providesH <T';,T9, thatis,(I'y «x T's)/H ~
(I'/H) « (I'y/H) andI’'y /H ~ Z/2Z ~ T'y/H. Since it is well-known that each random walk on the
free produci(Z/2Z) = (Z/2Z), which arises from a convex combination of probability meeas on the
single factors, is recurrent, the random walklbalso must be recurrent.

Assume now that = 2 = [I'; : H|] = [I'; : H] does not hold. Then either > 3 or w.l.o.g.
[['y : H] > 3. In both cased" is non-amenable (for further details see e.g. Woess (24,0Tt0)). With
Woess (24, Cor.12.5) we get that the random walk'anust be transient. O

From now on we exclude the case- 2 = [I'; : H1] = [['2 : Hs]. In the following three subsections we
want to compute three explicit formulas for the rate of esaafpur random walk ofv. The first approach
uses the technique from the previous section, while thergkapproach arises from an application of a
theorem of Sawyer and Steger (21). The third technique segroup structure df, but is restricted to
the computation of the rate of escape w.r.t. the natural Jesrgth.
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3.2 Exit Time Technique

We use the technique developped in Section 2.2 to compidetice thafl" is a special case of a regular
language and our random walk drfulfills the assumptions of our investigated random walksexyular
languages: starting fromaword . . . z,h € I' we can only move in one step with positive probability to
a word of the form

o z1...xp12, ' Witha b’ € T, ), namely with probability:(h~ " 2}, 1), or
o 1. Lp@p 1 M With 0 h' € Uiy isr () T Nnamely with probabilitys(h =" z,,4.17"), or

e z1...7,_1h with b’ € H, namely with probability.(h =tz 11h’),

wherez1, ..., zp41,2), € J,_; R; andh,h’' € H.
We may now apply the technique of Section 2.2 with some sligbdlifications and simplifications.
The exit-times are now given by

ey :=sup{m € No | || Xpn|| = k}.
Analogously,W, := X, andi; := e, — e;_1. We define forany,y € R;, i € {1,...,r}, h,h' € H,

H(zh,h|z) = Y Pup[Xn =1, Ym <n:|Xn|>1]2",
n=1
i) = > p(gha) - (1 -y H(ghl,hzll)) > 0,
gh1€Ujoy ;i T he€H
Glah,yh/|z) = > Pon[Xp=yh',¥m <n: || Xl > 1] 2.
n=0

The functionsH (zh, h'|z) andG(xh, yh'|z) can be computed by solving a finite system of non-linear
equations; compare with (2) and (3). Analogously to PrapmsR. 1, it is easy to see th@Wk, ik)keN is
a Markov chain. The state spagecan now be restricted to
T € URi,hGH,nE N}.

=1
Define[z; ... xz,h] := x,h. Then([Wg])ren is also a irreducible Markov chain on a finite state space
with invariant probability measunre Thus, we get

. ’ E(T(J}h)) 0 / / =1l
A= Z V(yh)ma{ Z p(yh,th)~z~G(hw,zh|z)]

Zp = {(xhvn)

zhyh'eU;_, T, wel” ) z=1
T(zh)#T(yh')
and
A= Z v(yh') - % () Z p(yh', yh'w) - G(Ww, zh|1).
zh,yh'eU;_, ), welX

T(zh)#7(yh')
Finally, we obtain:
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Corollary 3.2

O U(Xn) A
lim = — almost surely.
n—oo n A

3.3 Computation by Double Generating Functions

In this section we derive another formula for the rate of peaaith the help of a theorem of Sawyer and
Steger (21, Theorem 2.2), which we reformulate adapted tgituation:

Theorem 3.3 (Sawyer and Steger) Suppose we can write for sorfie> 0

E(w, z) == E(Z w!Xn) z") C((w,z) forw,z € (1 —4;1),

= 9(w, 2)
whereC(w, z) andg(w, z) are analytic forjlw — 1|, |z — 1| < d andC(1,1) # 0. Then

e}
n Eg 17

almost surely.

Moreover, if( X, )nen, IS @ reversible Markov chain, then wigfr, s) := g(e™", e™*)

Y, —nl o _ 0,0) + 20-22_5(0,0) — £2-2-5(0,0
" N(0,0?) inlaw, where 0% = 579(0,0) + ‘956’ 3(0,0) 759 ).

vn ’ £5(0,0)

We remark that (21, Theorem 2.2) also comprises a centraltlieorem. Similar limit theorems are well-
known in analytical combinatorics, see e.g. Bender andRaoid (1) and Drmota (4), (5). We show now
how to write the expectation in the theorem in the requireg. Wet s be the stopping time of the first
return toH after start at, that is,sy = inf{l <m € N | X,,, € H}. Forh € H,i € {1,...,7},

x €T;\ H andz € C we define

L(h,z|z) : ZPh =ax,sp >n]z" = Z p(h,y) - z- Gy, z|2).

n>0 yEFiX

Additionally, we setL(h, h|z) := 1 andL(h, h'|z) := 0 for b’ € H \ {h}. With this notation we have

ZZ}) ezzwl(x)*ZZGehLz (h,z|z) w

zel' neNy zel'he H

Setting

LH(w,z) = ZL(e,x|z)wl(w) and
zeFf

Ei(w,z) = Z Z L(€,$1-...’L’nh|z) wl(atl...a:nh)7

n>1lxzy..xphel,
1 el"i><
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we have .
= Z Lie,z|z)w'® =1+ Zﬁi(w, z). (5)
zel i=1

We now rewritel; (w, z):

Li(w,z) = E;r (w,z) - (1 4 Z Z Lie,xs...xnh|2) wl(zQ...znh))

n>2xs..xn he'\H,
zo@Iy

= Lf(w,z2)- (lJr Z L;( wz)zﬁj(w,z)~(ﬁ(w,z)fﬁi(w,z)). (6)

J=1,j#1

From (5) and (6) we obtain

(w, 2)
L(w, z _1+Z—1+£+wz) ;

yielding
1

r E;r('w,z)
1 Zi:l 1+E;r(w,z)

L(w,z) =

Now we can write the expectation of Theorem 3.3 in the recuaesty:

E(w,z) = ZG(e,h|z)zL(e,h_1x|z)wl(z)

heH zel
Gle,h
= Y Glehl2) . Lie,az) '™ = Dhen (z,+ 2)
heH zel 1-— ZT: i (w,2)

i=1 1+£:r(w,z)

Thus, we can apply Theorem 3.3 withw, z) = >, . ;; G(e, h|z) and

L (w,2)
gw,z) =1 —217.
pt 1+ L (w,2)

Corallary 3.4 The rate of escape w.ri(-) is

(X,
lim Xn) _ 10 almost surely,
n—oo n 2
where /
- i errj l(z) L(e,z[1) and T i Zzel‘j L'(e,z|1)
1= ) 2 = 3 -
=1 (1 + ZzEFiX L(€7$|1)) i=1 (1 + ZIEF; L(e, IE|1))

Proof: Computing the derivatives @f(w, z) w.r.t. w andz leads to the proposed formula. O
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3.4 Computation via the Limit Process
In this section we derive another formula for the rate of pscar.t. the natural word length ||. First,

B Xn] =Y lgllu™ (@) and E[[Xnal]l= Y llggll ulg) £ ().
gel g,geTl
Thus, we have
Bl Xos1]] - B[ Xal] = 3 (g / (9]l = 1 Xn]}) dia®
gel

SinceE[|| X,||]/n converges t&d = lim, . || X,||/n, it is sufficient to prove that this difference of

expectations converges; the limit must then equdlhe proces$ X, ).cn, COnverges to some random
elementX, valued in

,

'y := {.I'lmg e € FN x; € U Rj,T(.I’i) 75 T(.I'H_l)}

Jj=1

in the sense that the length of the common prefiXgfand X ., goes to infinity. We denote bg(éi) the
first letter of X, and forg € |J,_, I'; we define
1, ifx8¢r,,
Yy = lim [lgXal| = [ Xal = ¢ -1, it X&) e g'H
0, otherwise

At this point we need the equatidaz|| = ||z|| for h € H andz € T'. This equation is, in general, not
satisfied for other length functions. The Green functioits, y) = >, ., P.[X, = y], wherez,y € T';
foranyi € {1,...,r}, satisfy the following linear recursive equations:
G(z,y) = 0(y) + Y_ pla,w) Glw,y) + > plx,zwh) Y H(wh,h'|1) G(zh',y).
wel; szhﬁf‘, h'eH
zwh||=2

This system of Green functions can be solved, when the fum&H (wh, h'|1) can be obtained by solving
(3). We now define

o)) :=P[XxQ eTy] = 3" Gle.hl1) Y ulg) (1 -3 H(hg,h’|1)).
heH gery WeH
By transience) "', o(i) = 1. FurthermoreP[Y, = 1] =1 — o(7(g )) and

=Y Fleg 'h)- (1-o(r(9) = 179 ZGeg_lh

heH heH
By Lebesgue’s Dominated Convergence Theorem,

E[| X l] = B[IXall] 2= 3 3 ula) (LY, = 1] - BIY, = -1]).

But this limit must be the rate of escaperhus:
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Corollary 3.5

o=t el STl i) - 2 XS utoctes ).

n—oo N e
i=1 gEFiX heH

As a final remark observe that the formulas of Corollaries342and 3.5 have complexities in decreasing
order: while the computation of the rate of escape by CanpB8a2 needs three systems of equations to be
solved and derivatives to be calculated, the computatiocdopllaries 3.4 or 3.5 needs only two systems
of equations to be solved, while the formula in Corollary @e#ls also with derivatives.

4 Sample Computations
4.1 A Regular Language

Let be A = {a,b,c} and we set(a) = I(b) = I(c) = 1. We consider the sef of all words over the
alphabet4, such that in eacly € L the letterb is the first letter ofw or follows after the letter; and the
letterc may only appear after the lettere.g.,abcaba € L, butabcba ¢ L. Consider the random walk on
L given by the following transition probabilities:

1 1 1 1 1 1
plaa, aaa) = % plaa, aab) = 3. plaa,a) = 3. plab,aba) = <. plab,abe) = 3. plaba) = I
1 1 1 1
p(ba,baa) - Zv p(ba,bca) - Zv p(ba,bab) - Zv p(ba,a) - Zv
(be, bea) = =, p(be,a) = =, plca, caa) = =, plca, cab) = =, p(ca, a) = =
plbe, bea) = 5, plbe,a) = 5, plea, caa) = -, p(ca, cab) = 3, plca,a) = .

Note that it is not necessary to specify any further tramsiprobabilities, as the formula for the rate
of escape does not depend on the transition probabilitieseoformP[X,,;1 = v’ | X,, = w|, where
w € {eg,a,b,c}. The system of equations 3 is then

H(aa,alz) = %(H(aa, alz) - H(aa,a|z) + H(ab,alz) - H(aa,alz) + 1),

H(ab,alz) = %H(bc,a|z) - H(aa,a|z) + %H(ba,a|z) - H(aa,a|z) + g,

H(ba,alz) = Z(H(aa, alz) - H(ba,a|z) + H(ca,alz) - H(ba,a|z) + H(ab,alz) - H(ba,a|z) 4 1),
H(bc,a|lz) = %H(ca, alz) - H(ba,alz) + %,

H(ca,a|lz) = ZH(aa,aLz) - H(ca,alz) + gH(ab,a|z) - H(ca,alz) + Z

This system in the unknown variablé&(aa, a|z), H(ab,a|z), H(ba,a|z), H(bc,alz) and H(ca, a|z),
wherez appears as a parameter, can be solved with the helpagHEMATICA. With these solutions
we can compute the modified Green functi@ns, -|z) by solving the linear system (2). Note that only

G(aa, aalz), G(ab, aa|z), G(ba,ba|z), G(be,ba|z), G(ca, ca|z) are non-zero functions. Moreover, we
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get
£laaa) = £(baa) = &(caa) = %(1 — H(aa,all)) + %(1 — H(ab,al1)),
E(aab) = &(bab) = &(cab) = %(1 — H(ba,a|1)) + %(1 — H(bc,al1)),
£(aba) = 3(1 — H(aa,a|l)) + i(l — H(ca,all)) + i(l — H(ab,a)),
£(abe) = %(1 — H(ca,a|l)), &(bea) = 3(1 — H(aa,all)) + %(1 — H(ab,al1)).

Sincev(abc) = ZdeerS v(def) q(def, abc), we can compute the invariant measure as

v(aaa) = 0.32475, v(aab) = 0.13194, v(aba) = 0.12597, v(abc) = 0.08021, v(baa) = 0.05350,
v(bca) = 0.13095, v(bab) = 0.02174, v(caa) = 0.07844, v(cab) = 0.05251.

Now we have all necessary ingredients to compute 3.78507, and finally we get the rate of escape as
¢ =0.264196.

4.2 AT %79 7] dZ.

Consider the free product by amalgamatiOhilZ x4z, Z./dZ, d € N even, over the common subgroup
7./27. Suppose thdk /dZ is generated by some elementith a® equal to the identity. Setting; (a) =
p2(a) =1 anda; = as = 1/2 we get the following values for the rate of escdper.t. || - |I:

dl 6 | 8 | 10 | 12
]0.24749 | 0.40859 | 0.46144 | 0.47543
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