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Abstract. We present statistic-preserving bijections between four classes of combinatorial objects. Two of them, the
class of unlabeled (2 + 2)-free posets and a certain class of chord diagrams (or involutions), already appeared in
the literature, but were apparently not known to be equinumerous. The third one is a new class of pattern avoiding
permutations, and the fourth one consists of certain integer sequences called ascent sequences.

We also determine the generating function of these classes of objects, thus recovering a non-D-finite series obtained
by Zagier for chord diagrams. Finally, we characterize the ascent sequences that correspond to permutations avoiding
the barred pattern 31̄524̄, and enumerate those permutations, thus settling a conjecture of Pudwell.

Résumé. Nous présentons des bijections, transportant de nombreuses statistiques, entre quatre classes d’objets.
Deux d’entre elles, la classe des EPO (ensembles partiellement ordonnés) sans motif (2 + 2) et une certaine classe
d’involutions, sont déjà apparues dans la littérature. La troisième est une classe de permutations à motifs exclus, et la
quatrième une classe de suites que nous appelons suites à montées.

Nous déterminons ensuite la série génératrice de ces classes, retrouvant ainsi un résultat prouvé par Zagier pour les
involutions sus-mentionnées. La série obtenue n’est pas D-finie. Apparemment, le fait qu’elle compte aussi les EPO
sans motif 2 + 2 est nouveau. Finalement, nous caractérisons les suites à montées qui correspondent aux permutations
évitant le motif barré 31̄524̄ et énumérons ces permutations, ce qui démontre une conjecture de Pudwell.

Keywords: (2 + 2)-free poset, interval order, pattern-avoidance, enumeration, ascent sequence, kernel method.

†MBM was supported by the French “Agence Nationale de la Recherche”, project SADA ANR-05-BLAN-0372.
‡AC and SK were supported by grant no. 060005013 from the Icelandic Research Fund.

1365–8050 c© 2009 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France

http://www.dmtcs.org/proceedings/
http://www.dmtcs.org/proceedings/dmAKind.html


218 Mireille Bousquet-Mélou, Anders Claesson, Mark Dukes and Sergey Kitaev

1 Introduction
This paper presents correspondences between four seemingly unrelated structures; unlabeled (2 + 2)-free
posets on n elements, certain sequences of n nonnegative integers called ascent sequences, a new class of
permutations on n letters, and finally certain involutions on 2n points.

A poset is said to be (2 + 2)-free if it does not contain an induced subposet that is isomorphic to 2 + 2,
the union of two disjoint 2-element chains. Fishburn [6] showed that a poset is (2 + 2)-free precisely
when it is isomorphic to an interval order. Another characterization is that a poset is (2 + 2)-free if and
only if the collection of strict principal down-sets can be linearly ordered by inclusion [5; 4].

Our ascent sequences have a simple recursive definition, given in Section 2. We also define there the
class of permutations we consider: they avoid a particular pattern of length three, but this type of pattern
is new, in the sense that it does not admit an expression in terms of the dashed(i) patterns introduced by
Babson and Steingrı́msson [1]. It is our hope that the results of this paper will stimulate research into
these new patterns. We show how to deconstruct these permutations element by element, and how this
gives a bijection with ascent sequences. In Section 3 we perform a similar task for (2 + 2)-free posets.

In Section 4 we present a simple algorithm that given an ascent sequence x computes what we call the
modified ascent sequence, denoted x̂. Some of the properties of the permutation and the poset correspond-
ing to x are more easily read from x̂ than from x. We also explain how to go directly from a given poset
to the corresponding permutation as opposed to via the ascent sequence. As an additional application, we
show that the fixed points under x 7→ x̂ are in one-to-one correspondence with permutations avoiding the
barred pattern 31̄524̄. We count ascent sequences that are left unchanged by the map x 7→ x̂, thus proving
a conjecture of Lara Pudwell on the number of 31̄524̄-avoiding permutations.

In Section 5 we present statistics on the objects that are preserved under the stated bijections. In
Section 6, we determine the generating function of ascent sequences (and thus, of (2 + 2)-free posets
and pattern avoiding permutations), which turns out to be a rather complicated, non-D-finite series. This
series has already been shown by Zagier [13] to count certain chord diagrams, or involutions, introduced
by Stoimenow [12] to give upper bounds on the dimension of the space of Vassiliev’s knot invariants of
a given degree. In Section 7 we give a new proof of this result by establishing a bijection between these
involutions and (2 + 2)-free posets.

The proofs are omitted in this abstract, but can be found in the full version of the paper [2].

2 Ascent sequences and pattern avoiding permutations
Let (x1, . . . , xi) be an integer sequence. The number of ascents of this sequence is

asc(x1, . . . , xi) = |{ 1 ≤ j < i : xj < xj+1 }|.

Let us call a sequence x = (x1, . . . , xn) ∈ Nn an ascent sequence of length n if it satisfies x1 = 0 and
xi ∈ [0, 1+asc(x1, . . . , xi−1)] for 2 ≤ i ≤ n. For instance, (0, 1, 0, 2, 3, 1, 0, 0, 2) is an ascent sequence.
The length (number of entries) of a sequence x is denoted |x|.

Let Sn be the symmetric group on n elements. Let V = {v1, v2, . . . , vn} with v1 < v2 < · · · <
vn be any finite subset of N. The standardisation of a permutation π on V is the permutation std(π)

(i) Babson and Steingrı́msson call these patterns “generalized” rather than “dashed”, but we wish to promote a change of terminology
here, since “dashed” is more descriptive.
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on [n] := {1, 2, . . . , n} obtained from π by replacing the letter vi with the letter i. As an example,
std(19452) = 15342. LetRn be the following set of permutations:

Rn = {π1 . . . πn ∈ Sn : if std(πiπjπk) = 231 then j 6= i+ 1 or πi 6= πk + 1 }.

Equivalently, if πiπi+1 forms an ascent, then πi − 1 is not found to the right of this ascent. This class
of permutations could be more descriptively written asRn = Sn

( )
, the set of permutations avoiding

the pattern in the diagram. Dark lines indicate adjacent entries (horizontally or vertically) whereas lighter
lines indicate an elastic distance between the entries.

As illustrated here, the permutation 31524 avoids the pattern
while the permutation 32541 does not.
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Consider the following three symmetries of a square: reflection in a centered vertical line, reflection
in a centered horizontal line, and reflection in the diagonal x = y. In the context of permutations these
operations are known as reverse, complement and inverse, respectively. Together they generate the dihe-
dral group D8, the symmetry group of a square. This is the symmetry of classical patterns. The dashed
patterns of Babson and Steingrı́msson [1] can be seen as those patterns that allow dark vertical (but not
horizontal) lines in their diagram. That set of patterns is not closed under inverse: under reflection in
the diagonal x = y a (dark) vertical line turns into a (dark) horizontal line. Thus dashed patterns only
enjoy the symmetry of a rectangle. Our patterns provide the minimal extra generality needed to contain
the dashed patterns and have the full symmetry of a square.

Let us return to the set R := ∪nRn of permutations avoiding . Let π be a permutation of Rn,
with n > 0. Let τ be obtained by deleting the entry n from π. Then τ ∈ Rn−1. Indeed, if τiτi+1τj
is an occurrence of the forbidden pattern in τ (but not in π), then this implies that πi+1 = n. But then
πiπi+1πj+1 would form an occurrence of the forbidden pattern in π.

This property allows us to construct the permutations of Rn inductively, starting from the empty per-
mutation and adding a new maximal value at each step. Given τ = τ1 . . . τn−1 ∈ Rn−1, the sites where
n can be inserted in τ so as to produce an element of Rn are called active. It is easily seen that the site
before τ1 and the site after τn−1 are always active. The site between the entries τi and τi+1 is active if and
only if τi = 1 or τi − 1 is to the left of τi. Label the active sites, from left to right, with labels 0, 1, 2...

Our bijection Λ between permutations of Rn and ascent sequences of length n is defined recursively
on n as follows. For n = 1, we set Λ(1) = (0). Now let n ≥ 2, and suppose that π ∈ Rn is obtained by
inserting n in the active site labeled i of a permutation τ ∈ Rn−1. Then the sequence associated with π
is Λ(π) := (x1, . . . , xn−1, i), where (x1, . . . , xn−1) = Λ(τ).

Example 1 The permutation π = 61832547 corresponds to the sequence x = (0, 1, 1, 2, 2, 0, 3, 1), since
it is obtained by the following insertions (the subscripts indicate the labels of the active sites):

011
x2=17−−−→ 01122

x3=17−−−→ 0113 22
x4=27−−−→ 0113 2243

x5=27−−−→ 0113 225 43

x6=07−−−→ 06 113 225 43
x7=37−−−→ 06 113 225 4374

x8=17−−−→ 6 1 8 3 2 5 4 7.

Theorem 2 The map Λ is a bijection fromRn to the set of ascent sequences of length n.
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The proof proceeds by induction. The key is to understand how the number of actives sites of π, and the
label located just before its maximal entry, can be read in the ascent sequence.

3 Ascent sequences and unlabeled (2 + 2)-free posets
Let Pn be the set of unlabeled (2 + 2)-free posets on n elements. In this section we shall give a bijection
between Pn and the set An of ascent sequences of length n. As in the previous section, this bijection
encodes a recursive way of decomposing (2 + 2)-free posets by removing one maximal element. This
removal procedure is less elementary than in the case of permutations. Before giving these operations we
need to introduce some terminology.

Let D(x) = { y : y < x } be the set of predecessors of x (the strict down-set of x). It is well-known—
see for example Khamis [8]—that a poset is (2 + 2)-free if and only if the set {D(x) : x ∈ P} can be
linearly ordered by inclusion. Let

D(P ) = {D0, D1, . . . , Dk}

with ∅ = D0 ⊂ D1 ⊂ · · · ⊂ Dk. In this context we define Di(P ) = Di and we write `(P ) = k. We
say the element x is at level i in P if D(x) = Di and we write `(x) = i . The set of all elements at
level i we denote Li(P ) = {x ∈ P : `(x) = i } = {x ∈ P : D(x) = Di }. For instance, L0(P ) is the
set of minimal elements. All the elements of Lk(P ) are maximal, but there may be maximal elements of
P at level less than k. If Li(P ) contains a maximal element, we say that the level i contains a maximal
element. Let `?(P ) be the minimum level containing a maximal element.

Example 3
Consider the following (2 + 2)-free poset P , which we
have labeled for convenience. The diagram on the right
shows the poset redrawn according to the levels of the
elements. We have D(a) = {b, c, d, f, g, h}, D(b) = ∅,
D(c) = D(d) = {f, g, h}, D(e) = D(f) = D(g) =
{h} and D(h) = ∅. These may be ordered by inclusion
as

a
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D(h) = D(b)︸ ︷︷ ︸ ⊂ D(e) = D(f) = D(g)︸ ︷︷ ︸ ⊂ D(c) = D(d)︸ ︷︷ ︸ ⊂ D(a)︸ ︷︷ ︸ .
`(h) = `(b) = 0 `(e) = `(f) = `(g) = 1 `(c) = `(d) = 2 `(a) = 3

Thus `(P ) = 3. The maximal elements of P are e and a, and they lie respectively at levels 3 and 1.
Thus `?(P ) = 1. In addition, D0 = ∅, D1 = {h}, D2 = {f, g, h} and D3 = {b, c, d, f, g, h}. With
Li = Li(P ) we also have L0 = {h, b}, L1 = {e, f, g}, L2 = {c, d} and L3 = {a}.

3.1 Removing an element from a (2 + 2)-free poset
The removal operation will be the counterpart of the deletion of the last entry in an ascent sequence (or the
deletion of the largest entry in a permutation of R). Let P be a (2 + 2)-free poset of cardinality n ≥ 2,
and let i = `?(P ) be the smallest level of P containing a maximal element. All the maximal elements
located at level i are order-equivalent in the unlabeled poset P . We will remove one of them. Let Q be
the poset that results from applying:
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(Rem1) If |Li(P )| > 1 then simply remove one of the maximal elements at level i.

(Rem2) If |Li(P )| = 1 and i = `(P ) then remove the unique element lying at level i.

(Rem3) If |Li(P )| = 1 and i < `(P ) then setN = Di+1(P ) \Di(P ). Make each element ofN a maximal
element by deleting from the order all relations x < y where x ∈ N . Finally, remove the unique
element lying at level i.

Example 4 Let P be the unlabeled (2 + 2)-free poset with the following Hasse diagram.

= *

0

1

2

3

4

# #

The second diagram shows the poset re-
drawn according to the levels of the ele-
ments. There is a unique maximal element
of minimal level, which is marked with ∗,
and `?(P ) = 2. Since 2 < `(P ), apply
Rem3 to remove this maximal element.
The elements of N are indicated by #’s.

In order to delete all relations of the
form x ≤ y where x ∈ N , one deletes
all edges corresponding to coverings
of elements of N , and adds an edge
between the elements at level 0 and 3
to preserve their relation. Finally, one
removes the element at level 2. This
gives a new (2 + 2)-free poset, with
level numbers shown on the right.

7→

0

1

3

2

=

3

2

0

1 * *

There are now two maximal elements of min-
imal level `? = 1, both marked by ∗. Remove
one of them according to rule Rem1. This
gives the first poset shown to the right, for
which `? is still 1. Apply Rem1 again to ob-
tain the second poset on the right.

7→
*1

0

2

3

7→
1

0

2

3 *

There is now a single maximal element, lying
at maximal level 3, so we apply rule Rem2.
In the poset thus obtained, `?(P ) = 1 <
`(P ) and there is a unique element at level
1, so apply Rem3. The set N consists of the
rightmost point at level 0.

7→ 1

0

2

*

#

7→

0

1

*

In the new poset, the star element is not alone
at level 0, so apply Rem1, and finally Rem2. 7→

0

1 *

7→ 0

We have thus reduced P to a one element poset by removing the elements in a canonical order.
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3.2 From (2 + 2)-free posets to ascent sequences

Our bijection Ψ between (2 + 2)-free posets of cardinality n and ascent sequences of length n is defined
recursively on n as follows. For n = 1, we associate with the one-element poset the sequence (0). Now let
n ≥ 2, and suppose that the removal operation, applied to P ∈ Pn, gives the poset Q. Then the sequence
associated with P is Ψ(P ) := (x1, . . . , xn−1, i), where i = `?(P ) and (x1, . . . , xn−1) = Ψ(Q).

For instance, the poset of Example 4 corresponds to the sequence (0, 1, 0, 1, 3, 1, 1, 2).

Theorem 5 The map Ψ is a one-to-one correspondence between (2 + 2)-free posets of size n and ascent
sequences of length n.

4 Modified ascent sequences and their applications
In this section we introduce a transformation on ascent sequences and show some applications. For
instance, this transformation can be used to give a non-recursive description of the bijection Λ between
permutations of R and ascent sequences. It is also useful to characterize the image by Λ of a subclass of
R, which we will enumerate in Subsection 4.4. We also describe how to transform (2 + 2)-free posets
into permutations without resorting to ascent sequences.

4.1 Modified ascent sequences

Let x = (x1, x2, . . . , xn) be any finite sequence of integers. Define

asc(x) =
(
i : i ∈ [n− 1] and xi < xi+1

)
;

so asc(x) = |asc(x)|. In terms of an algorithm we shall now describe a function from integer sequences
to integer sequences. Let x = (x1, x2, . . . , xn) be the input sequence. Do

for i ∈ asc(x):
for j ∈ [i− 1]:

if xj ≥ xi+1 then xj := xj + 1

and denote the resulting sequence by x̂. Assuming that x is an ascent sequence we call x̂ the modi-
fied ascent sequence. As an example, consider the ascent sequence x = (0, 1, 0, 1, 3, 1, 1, 2). We have
asc(x) = (1, 3, 4, 7) and the algorithm computes the modified ascent sequence x̂ in the following steps:

x = 0 1 0 1 3 1 1 2
0 1 0 1 3 1 1 2
0 2 0 1 3 1 1 2
0 2 0 1 3 1 1 2
0 3 0 1 4 1 1 2 = x̂

In each step every element strictly to the left of and weakly larger than the boldface letter is incremented
by one. Observe that the positions of ascents in x and x̂ coincide, and that the number of ascents in x
(or x̂) is asc(x) = asc(x̂) = max(x̂). The above procedure is easily invertible and the map x 7→ x̂ is
therefore injective.
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The modified ascent sequence x̂ is related to the level distribution of
the poset P associated with x. First, observe that the removal operation
of Section 3.1 induces a canonical labelling of the size n poset P by
elements of [n]: the first element that is removed gets label n, and so
on. Applying this to the poset of Example 4 we get the labelling shown
on the right.
The following lemma is easily proved by induction.

0

1

2

3

4

8

7

2

5

46

1 3

Lemma 6 Let P be a (2 + 2)-free poset equipped with its canonical labelling. Let x be the associated
ascent sequence, and x̂ = (x̂1, . . . , x̂n) the corresponding modified ascent sequence. Then for all i ≤ n,
the element i of the poset lies at level x̂i.

For instance, listing the elements of the poset above and their respective levels gives

1 2 3 4 5 6 7 8
0 3 0 1 4 1 1 2 = x̂,

where we recognize the modified ascent sequence of (0, 1, 0, 1, 3, 1, 1, 2) = Ψ(P ).

4.2 From posets to permutations
The canonical labelling of the poset P can also be used to set up the bijection from (2 + 2)-free posets
to permutations of R without using ascent sequences. We read the elements of the poset by increas-
ing level, and, for a fixed level, in descending order of their labels. This gives a permutation f(P ).
In our example we get 31764825, which is the permutation of R8 associated with the ascent sequence
(0, 1, 0, 1, 3, 1, 1, 2) = Ψ(P ).

Proposition 7 For any (2 + 2)-free poset P equipped with its canonical labelling, the permutation f(P )
described above is the permutation ofR corresponding to the ascent sequence Ψ(P ). In other words,

Λ−1 ◦Ψ(P ) = L̂0L̂1 . . . L̂`(P ) := π,

where L̂j is the word obtained by reading the elements of Lj(P ) is decreasing order. Moreover, the active
sites of the above permutation are those preceding and following π, as well as the sites separating two
consecutive factors L̂j .

4.3 From ascent sequences to permutations, and vice-versa
By combining Lemma 6 and Proposition 7, we obtain a non-recursive description of the bijection be-
tween ascent sequences and permutations of R. Let x be an ascent sequence, and x̂ its modified se-
quence. Take the sequence x̂ and write the numbers 1 through n below it. In our running example,
x = (0, 1, 0, 1, 3, 1, 1, 2), this gives

x̂ = 0 3 0 1 4 1 1 2
1 2 3 4 5 6 7 8 .
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Let P be the poset associated with x. By Lemma 6, the element labeled i in P lies at level x̂i. This
information is not sufficient to reconstruct the poset P but it is sufficient to reconstruct the word f(P )
obtained by reading the elements of P by increasing level: Sort the pairs

(bxi

i

)
in ascending order with

respect to the top entry and brake ties by sorting in descending order with respect to the bottom entry. In
the above example, this gives

0 0 1 1 1 2 3 4
3 1 7 6 4 8 2 5 .

By Proposition 7, the bottom row, here 31764825, is the permutation Λ−1(x). We have thus established
the following direct description of Λ−1.

Corollary 8 Let x be an ascent sequence. Sorting the pairs
(bxi

i

)
in the order described above gives the

permutation π = Λ−1(x). Moreover, the number of entries of π between the active sites i and i+ 1 is the
number of entries of x̂ equal to i, for all i ≥ 0.

The second statement gives a non-recursive way of deriving x = Λ(π) (or, rather, x̂) from π. Take a
permutation π ∈ Rn, and indicate its actives sites. For instance, π =0 3117642832455. Write the letter i
below all entries πj that lie between the active site labeled i and the active site labeled i+ 1:

3 1 7 6 4 8 2 5
0 0 1 1 1 2 3 4 → Sort the pairs

(
πj

i

)
by increasing order of the πj →

1 2 3 4 5 6 7 8
0 3 0 1 4 1 1 2 .

We have recovered, on the bottom row, the modified ascent sequence x̂ corresponding to π.

4.4 Permutations avoiding 31̄524̄ and self modified ascent sequences
A permutation π avoids the barred pattern 31̄524̄ if every occurrence of the (classical) pattern 231 plays
the role of 352 in an occurrence of the (classical) pattern 31524. In other words, for every i < j < k such
that πk < πi < πj , there exists ` ∈ (i, j) and m > k such that πiπ`πjπkπm is an occurrence of 31524.
Note that every such permutation avoids the pattern , and thus belongs to the set R. A conjecture
concerning the enumeration of these permutations was given by Pudwell [10, p. 84]. Here, we describe
the ascent sequences corresponding to these permutations via the bijection Λ from which we can settle
her conjecture.

An ascent sequence x is self modified if it is fixed by the map x 7→ x̂ defined above. For instance,
(0, 0, 1, 0, 2, 2, 0, 3, 1, 1) is self modified. In view of the definition of the map x 7→ x̂, this means that, if
xi+1 > xi, then xj < xi+1 for all j ≤ i.
Proposition 9 The ascent sequence x is self modified if and only if the corresponding permutation π
avoids 31̄524̄. In this case, max(x) = asc(π) = rmin(π)− 1, where rmin(π) is the number of right-to-
left minima of π, that is, the number of i such that πi < πj for all j > i.

Recall that asc(x) = max(x̂). It is not hard to see that (x1, . . . , xn) is a self modified ascent sequence if
and only if x1 = 0 and, for all i ≥ 1, either xi+1 ≤ xi or xi+1 = 1 + max{xj : j ≤ i}. Consequently,
a modified ascent sequence x with max(x) = k reads 0A01A12A2 . . . k Ak, where Ai is a (possibly
empty) weakly decreasing factor, and each element of Ai is less than or equal to i. This structure is the
key to count these sequences, and thus permutations avoiding 31̄524̄.

Proposition 10 The length generating function of 31̄524̄-avoiding permutations is
∑
k≥1 t

k/(1− t)(
k+1
2 ).

The k-th term of this sum counts those permutations that have k right-to-left minima, or, equivalently, k−1
ascents. This is also the number of self modified ascent sequences of length n with largest element k − 1.
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5 Statistics
We shall now look at statistics on ascent sequences, permutations and posets—statistics that we can trans-
late between using our bijections.

Let x = (x1, x2, . . . , xn) be any sequence of nonnegative integers. Let last(x) = xn. Define zeros(x)
as the number of zeros in x. A right-to-left maximum of x is a letter with no larger letter to its right; the
number of right-to-left maxima is denoted rmax(x). For example,

rmax(0, 1, 0,2,2, 0,1) = 3;

the right-to-left maxima are in bold. For sequences x and y of nonnegative integers, let x⊕y = xy′, where
y′ is obtained from y by adding 1+max(x) to each of its letters, and juxtaposition denotes concatenation.
For example, (0, 2, 0, 1)⊕ (0, 0) = (0, 2, 0, 1, 3, 3). We say that a sequence x has k components if it is the
sum of k, but not k + 1, nonempty nonnegative sequences. Note that y ⊕ z is a modified ascent sequence
(as defined in Section 4) if and only if y and z are themselves modified ascent sequences. This is the case
in the above example.

For any permutation π = π1 . . . πn, the statistic ldr(π) (the leftmost decreasing run) is defined as the
largest integer i such that π1 > π2 > · · · > πi. For permutations π and σ, let π ⊕ σ = πσ′, where σ′ is
obtained from σ by adding |π| to each of its letters. We say that π has k components if it is the sum of k,
but not k + 1, nonempty permutations. Observe that π ⊕ σ avoids if and only if both π and σ avoid
it. This is the case for instance for 314265 = 3142⊕ 21, which corresponds to the above modified ascent
sequence (0, 2, 0, 1, 3, 3) = (0, 2, 0, 1)⊕ (0, 0).

For π ∈ Rn, label the active sites with 0, 1, 2, etc. Then b(π) denotes the label immediately to the left
of the maximal entry of π.

The number of minimal (resp. maximal) elements of a poset P is denoted min(P ) (resp. max(P )).
The ordinal sum of two posets P and Q is the poset P ⊕ Q on the union P ∪ Q such that x ≤P⊕Q y if
x ≤P y, or x ≤Q y, or x ∈ P and y ∈ Q. The definition applies to labeled or unlabeled posets. Let us
say that P has k components if it is the ordinal sum of k, but not k + 1, nonempty posets. Observe that
P ⊕Q is (2 + 2)-free if and only if both P and Q are (2 + 2)-free.

Theorem 11 Given an ascent sequence x = (x1, . . . , xn) with modified ascent sequence x̂, let P and π
be the poset and permutation corresponding to x under the bijections described in Sections 2 and 3. Then

(min(P ), `?(P ), `(P ),max(P ), comp(P )) = (zeros(x), last(x), asc(x), rmax(x̂), comp(x̂))
=

(
ldr(π), b(π), asc(π−1), rmax(π), comp(π)

)
,

where comp denotes the number of components of the individual structures, as defined above.

Example 12 LetP be the poset from Example 4 and let x and π be the corresponding ascent sequence and
permutation. One checks that the above theorem holds with (min(P ), `?(P ), `(P ),max(P ), comp(P )) =
(2, 2, 4, 2, 1).

P =

0

1

2

3

4

;
x = (0, 1, 0, 1, 3, 1, 1, 2);
x̂ = (0, 3, 0, 1, 4, 1, 1, 2);

π =0 3117642832455,

π−1 = 27158436.
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6 Enumeration
Theorem 13 Let pn be the number of (2 + 2)-free posets of cardinality n and let P (t) =

∑
n≥0 pnt

n be
the associated generating function. Then

P (t) =
∑
n≥0

n∏
i=1

(
1− (1− t)i

)
.

This series also counts permutations ofR, and ascent sequences, by length.

To our knowledge, this result is new. El-Zahar [4] and Khamis [8] used a recursive description of (2 + 2)-
free posets, different from that of Section 3, to derive a pair of functional equations that define the series
P (t). However, they did not solve these equations. Haxell, McDonald and Thomasson [7] provided an
algorithm, based on a complicated recurrence relation, to produce the first numbers pn.

These numbers, and the above expression of P (t), occur in the Encyclopedia of Integer Sequences
as sequence A022493 [11]. But there, P (t) is described as counting certain involutions, or chord dia-
grams [12; 13], that form the topic of Section 7. It is known [13] that

pn
n!
∼ κ

(
6
π2

)n√
n,

which proves that the series P (t) is not D-finite (the exponential growth constant would be algebraic).
The proof of Theorem 13 exploits the recursive structure of ascent sequences. The structure translates

into a functional equation that defines a 3-variable generating function F (t;u, v), which counts these
sequences by length (t), ascent number (u) and last entry (v):

(v − 1− tv(1− u))F (t;u, v) = (v − 1)(1− tuv)− tF (t;u, 1) + tuv2F (t;uv, 1).

The so-called kernel method then gives:

F (t;u, 1) =
∑
k≥1

(1− u)uk−1(1− t)k

(u− (u− 1)(1− t)k)
∏k
i=1(u− (u− 1)(1− t)i)

.

Observe that this expression is divergent when u = 1. In a final step, we transform it into

F (t;u, 1) =
∑
n≥0

n∑
`=0

(u− 1)n−`u`
n∑

m=`

(−1)n−m
(
n

m

)
(1− t)m−`

m∏
i=m−`+1

(
1− (1− t)i

)
,

which specializes to Theorem 13 when u = 1.

7 Involutions with no neighbour nesting
As discussed above, the series of Theorem 13 is known to count certain involutions on 2n points, called
regular linearized chord diagrams (RLCD) by Stoimenow [12]. This result was proved by Zagier [13],
following Stoimenow’s paper. In this section, we give a new proof of Zagier’s result, by constructing a
bijection between RLCDs on 2n points and unlabeled (2 + 2)-free posets of size n.
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Let I2n be the collection of involutions π in S2n that have no fixed points and for which every descent
crosses the main diagonal in its dot diagram. Equivalently, if πi > πi+1 then πi > i ≥ πi+1. An
alternative description can be given in terms of the chord diagram of π, which is obtained by joining
the points i and π(i) by a chord (Figure 1, left). Indeed, π ∈ I2n if and only if, for any i, the chords
attached to i and i + 1 are not nested, in the terminology used recently for matchings [3; 9]. That is,
the configurations shown on the left of the rules of Fig. 2 are forbidden (but a chord linking i to i + 1 is
allowed).

Recall that a poset P is (2 + 2)-free if and only if it is an interval order [5]. This means that there
exists a collection of intervals on the real line whose relative order is P , under the order relation:

[a, b] < [c, d] ⇐⇒ b < c.

Let π ∈ I2n with transpositions {(αi, βi)}ni=1 where αi < βi for all i. Define O(π) to be the interval
order (or equivalently, poset) associated with the collection of intervals {[αi, βi]}ni=1.

Example 14 Consider π = 4 5 7 1 2 8 3 6 10 9 ∈ I10. The transpositions of π are shown in the chord
diagram of Figure 1. Beneath the chord diagram is the collection of intervals that corresponds to π, and
the (2 + 2)-free poset O(π) is illustrated on the right hand side. We have added labels to highlight the
correspondence between intervals and poset elements.

b

a d e

c

1 2 3 4 5 6 7

a b c

d

e
8 9 10

Fig. 1: An involution in I10, the corresponding collection of intervals and the associated (2 + 2)-free poset.

Theorem 15 The map O is a bijection between involutions of I2n and (2 + 2)-free posets on n elements.

It is not very hard to prove that O is a surjection. That is, for every (2 + 2)-free order P , one can find an
involution π such that O(π) = P . The proof uses the transformations of Fig. 2. We then explain that the
involution is uniquely determined by the poset.

π
i+1

π
i

i i+1 π
i+1

π
i

i i+1 π π
i+1 i

i i+1 π π
i+1 ii i+1

Fig. 2: Two operations on chord diagrams.
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