
FPSAC 2009, Hagenberg, Austria DMTCS proc. AK, 2009, 847–858

Spanning forests, electrical networks, and a
determinant identity†
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Abstract. We aim to generalize a theorem on the number of rooted spanning forests of a highly symmetric graph
to the case of asymmetric graphs. We show that this can be achieved by means of an identity between the minor
determinants of a Laplace matrix, for which we provide two different (combinatorial as well as algebraic) proofs in
the simplest case. Furthermore, we discuss the connections to electrical networks and the enumeration of spanning
trees in sequences of self-similar graphs.

Résumé. Nous visons à généraliser un théorème sur le nombre de forêts couvrantes d’un graphe fortement symétrique
au cas des graphes asymétriques. Nous montrons que cela peut être obtenu au moyen d’une identité sur les deter-
minants mineurs d’une matrice Laplacienne, pour laquelle nous donnons deux preuves différentes (combinatoire ou
bien algébrique) dans le cas le plus simple. De plus, nous discutons les relations avec des réseaux électriques et
l’énumération d’arbres couvrants dans de suites de graphes autosimilaires.

Keywords: spanning forest, electrical network, Laplace matrix, determinant identity

1 Introduction
It is known since Kirchhoff’s days [10] that there is a close relationship between electrical networks,
spanning trees, and the Laplace matrix of a graph. There is a vast amount of literature on spanning trees,
electrical networks and related notions: see e.g. [1, 4, 8, 12, 13]. The relation to probability theory was
studied in [9, 14]. The celebrated matrix-tree theorem is the most important tool for the enumeration of
spanning trees, and it has been successfully used to find closed formulæ for the number of spanning trees
in various classes of graphs. A version of the matrix-tree theorem considers all minors of the Laplace
matrix of a graph G rather than just those that result from deleting one row and one column. It turns out
that the determinants of smaller submatrices count spanning forests of G:

Theorem 1 Let G = (V,E) be a graph and L = LG its Laplace matrix. For a subset R ⊆ V , let L(R)
be the matrix that results from deleting all rows and columns that correspond to vertices in R. Then, the
number r(R) = rG(R) of rooted spanning forests whose roots are precisely the vertices in R is given by

r(R) = detL(R).
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We refer the interested reader to [5, 6, 15] for a proof of this theorem. This important result was used
in a recent paper by the authors [17], in which the following theorem was given as a byproduct:

Theorem 2 Let G be a connected, finite (multi-)graph and let D ⊆ V be a subset of θ distinguished
vertices. Suppose that G is strongly symmetric with respect to D, i.e. the restriction of the automorphism
group of G to D is either the entire symmetric group or the alternating group. Then we have

r(R) = kρk−1θ1−kt(G)

for all sets R ⊆ D of cardinality k, where ρ is the resistance scaling factor of G with respect to D and
t(G) is the number of spanning trees of G.

A precise definition of the resistance scaling factor is given in Section 3. The above result was inspired
by the problem of enumerating spanning trees in certain sequences of self-similar graphs which in turn
was motivated by applications in statistical physics [7]. However, it appeared that the condition “strongly
symmetric with respect to the distinguished vertices” is stronger than necessary, and experimentally, it
seemed that it could be relaxed to “the automorphism group acts 2-homogeneously on the set of distin-
guished vertices”. In this paper, we show that this will be a consequence of a certain determinant identity,
thus providing a generalization to the case of graphs that lack symmetry. We prove this determinant iden-
tity in the simplest case (three distinguished vertices) in two different ways and discuss its implications to
the theory of electrical networks and the aforementioned enumeration of spanning trees in sequences of
self-similar graphs. The general form of the determinant identity is left as a conjecture to be proved at a
later stage. This conjecture reads as follows:

Conjecture 3 Let G be a (possibly edge-weighted, not necessarily connected) graph and L its weighted
Laplace matrix. For a set R of vertices, we write L(R) for the matrix that results from deleting all rows
and columns corresponding to R as before. Furthermore, we set r(R) = detL(R), and t(G) denotes the
number of spanning trees of G (counted according to the weights). Then, the identity

r(R)t(G)|R|−2 =
∑
B

α(B)
∏

{v,w}∈E(B)

r({v, w}) (1)

holds for all sets R with |R| ≥ 2, where the sum is taken over all graphs B with vertex set R and the
following properties:

• The number of edges of B is exactly |R| − 1,

• All components ofB are either paths (possibly single vertices) or cycles (which includes the 2-cycle
with two edges connecting the same vertices).

The coefficient α(B) is then given by

α(B) =
∏

C∈C(B)

β(C),

where C(B) is the set of all components of B and

β(C) =


21−` if C is a path of length ` > 0,
−21−` if C is a cycle of length ` > 2,
1 if C is a single vertex,
− 1

4 if C is a 2-cycle.
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Remark 1 Note that t(G) = r({v}) for any vertex v. Hence, (1) remains true for |R| = 1 if the empty
product is considered to be 1.

If the graph G is connected (hence t(G) > 0), we may write Formula (1) in the form

r(R)
t(G)

=
∑
B

α(B)
∏

{v,w}∈E(B)

r({v, w})
t(G)

.

Thus the equation above relates the quotient r(R)/t(G) for arbitrary root set R to the same quantities for
root sets of size 2. The quantity r({v, w})/t(G) measures the effective resistance between v and w, see
Section 3 for further information about this.

2 Proof of the special case
As mentioned in the introduction, we want to exhibit two different ways to prove our determinant identity
in the case of three distinguished vertices. In this simple case, it reads as follows:

r({v, w, x})r({v}) = 1
2

(
r({v, w})r({v, x}) + r({v, w})r({w, x}) + r({v, x})r({w, x})

)
− 1

4

(
r({v, w})2 + r({v, x})2 + r({w, x})2

)
(2)

for arbitrary vertices v, w, x ∈ V .

2.1 Combinatorial proof
First, we construct a graph H as follows: let G and G′ be disjoint isomorphic copies of G, with an
isomorphism φ : G → G′. The vertices in G′ that correspond to v, w, x are denoted by v′, w′, x′. Now,
we identify v and v′, w and w′, and x and x′. Furthermore, we impose an additional weight λ on all edges
of G and an additional weight µ on all edges of G′ (note that edges connecting v, w, x are doubled and
thus receive a weight of λ+ µ). If the Laplace matrix of G has the shape

LG =

L1 L2

L3 L4

 ,

where L1 and L2 form the rows corresponding to v, w, x, and L1 and L3 form the respective columns,
then the Laplace matrix of H has the shape

LH =


(λ+ µ)L1 λL2 µL2

λL3 λL4 0

µL3 0 µL4

 .

We delete the first row and column to obtain a matrix L̃ of the form

L̃ =


(λ+ µ)L̃1 λL̃2 µL̃2

λL̃3 λL4 0

µL̃3 0 µL4

 .
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The weighted number of spanning trees of H is given by

det L̃ = det


(λ+ µ)L̃1 λL̃2 µL̃2

λL̃3 λL4 0

0 −µL4 µL4

 = det


(λ+ µ)L̃1 (λ+ µ)L̃2 µL̃2

λL̃3 λL4 0

0 0 µL4


= (λ+ µ)2λ|V |−3µ|V |−3 det

L̃1 L̃2

L̃3 L4

 detL4.

Note that the coefficient of λ|V |−2µ|V |−2 gives those spanning trees which contain |V | − 2 edges in G
and |V | − 2 edges in G′ and thus induce two spanning forests with two components each on G and G′.
From the above expression for the determinant, it is obvious that this coefficient is exactly

2 det

L̃1 L̃2

L̃3 L4

detL4 = 2r({v})r({v, w, x}).

This means that the left hand side of (2) is also the (weighted) number of unordered pairs (F1, F2) of
spanning forests with two components in G resp. G′ and the property that their union is a spanning tree in
H (note that φ(F1) 6= F2 for such a pair, since this would yield a cycle, and thus the number of unordered
pairs is indeed just 1

2 of the number of ordered pairs). We want to show that this is exactly the right
hand side of (2). Each component of F1 and F2 has to contain at least one of the vertices v, w, x, since
their union forms a spanning tree, and they are only joined at v, w, x. The right hand side of (2) only
counts pairs of (rooted) spanning forests with this property by definition, hence it suffices to consider
such spanning forests.

Now we only have to show that an unordered pair (F1, F2) of spanning forests with two components
each of which contains at least one vertex of {v, w, x} is counted with coefficient 1 on the right hand side
of (2) if the union is a spanning tree and with coefficient 0 otherwise. We distinguish three cases:

• F1 and F2 induce distinct connections on the set {v, w, x}, so that the union forms a spanning tree.
Without loss of generality, we assume that F1 connects v and w, while F2 connects v and x. Then,
F1 can be rooted at v and x or at w and x, and F2 can be rooted at v and w or at w and x. The four
possibilities yield a total coefficient of 1:

roots of F1 roots of F2 coefficient

v, x v, w 1
2

v, x w, x 1
2

w, x v, w 1
2

w, x w, x −2 · 1
4

• F1 and F2 induce the same connections on the set {v, w, x}, so that a cycle is formed, but φ(F1) 6=
F2. Without loss of generality, we assume that F1 and F2 connect v and w. Again, we have to
consider four possibilities:
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roots of F1 roots of F2 coefficient

v, x v, x −2 · 1
4

v, x w, x 1
2

w, x v, x 1
2

w, x w, x −2 · 1
4

The total coefficient is 0, as desired.

• φ(F1) = F2. Suppose for instance that F1 connects v and w. As in the previous case, the union is
not a spanning tree, and again, we obtain a coefficient 0:

roots of F1 roots of F2 coefficient

v, x v, x − 1
4

v, x w, x 1
2 · 1

2

w, x v, x 1
2 · 1

2

w, x w, x − 1
4

Putting everything together, we reach the desired result.

2.2 Algebraic proof
We are now going to derive Formula (2) using basic linear algebra and the Desnanot-Jacobi identity (also
known as condensation formula, see for example [3]): For simplicity we assume that the vertex set V is
given by V = {1, 2, . . . , n}with v = 1, w = 2, x = 3. Furthermore, we write LAB to denote the submatrix
of L obtained by deleting the rows in A ⊆ V and columns in B ⊆ V and set DA

B = det(LAB). Then
Formula (2) reads as follows:

D1
1D

1,2,3
1,2,3 = 1

2

(
D1,2

1,2D
1,3
1,3 +D1,2

1,2D
2,3
2,3 +D1,3

1,3D
2,3
2,3

)
− 1

4

((
D1,2

1,2

)2 +
(
D1,3

1,3

)2 +
(
D2,3

2,3

)2)
In order to prove this identity we start with the following simple observation: Let b1, b2, . . . , bn be the
column vectors of L1,2. Then b1 + b2 + b3 + b4 + · · ·+ bn = 0, since the sum of column vectors in L is
equal to 0. Hence

0 = det(b1 + b2 + b3, b4, . . . , bn)

= det(b3, b4, . . . , bn) + det(b2, b4, . . . , bn) + det(b1, b4, . . . , bn) = D1,2
1,2 +D1,2

1,3 +D1,2
2,3.

By symmetry of L the minors D1,2
2,3 and D2,3

1,2 are equal. Thus

D1,2
1,2 +D1,2

1,3 +D2,3
1,2 = 0.

Similarly, we find that

D1,2
1,3 +D1,3

1,3 +D2,3
1,3 = 0 and D2,3

1,2 +D2,3
1,3 +D2,3

2,3 = 0.
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Adding the first two equations and subtracting the last one we obtain

2D1,2
1,3 = D2,3

2,3 −D1,2
1,2 −D1,3

1,3. (3)

By the Desnanot-Jacobi identity we have

D1,2,3
1,2,3D

1
1 = D1,2

1,2D
1,3
1,3 −D1,2

1,3D
1,3
1,2 = D1,2

1,2D
1,3
1,3 −

(
D1,2

1,3

)2
, (4)

where D1,2
1,3 = D1,3

1,2 by symmetry of L. By inserting (3) into (4) we finally obtain the asserted identity.

Remark 2 Let us note that we have verified Conjecture 3 for the case of four and five boundary vertices
using a similar algebraic argument and a more general version of the Desnanot-Jacobi identity (see [11]).

3 Electrical networks
Let G = (V,E, c) be an edge-weighted graph (network) with weights (conductances) c : E → [0,∞).
The (weighted) Laplace matrix L is defined by its entries

Lx,y =

{
−c({x, y}) if x 6= y,∑
z∼x c({x, z}) if x = y

for all vertices x, y ∈ V . We say that two networks (V (G), E(G), cG) and (V (H), E(H), cH) are
electrically equivalent with respect to D ⊆ V (G) ∩ V (H), if they cannot be distinguished by applying
voltages to D and measuring the resulting currents on D. By Kirchhoff’s current law this means that the
rows corresponding to D of LGH

V (G)
D and LHH

V (H)
D are equal, where HV (G)

D is the matrix associated
to harmonic extension. If u, v ∈ V (G) are vertices in G and H is the complete graph with vertex set
{u, v}, then there exists a conductance ceff(u, v) on the single edge of H , so that (V (G), E(G), cG)
and H equipped with ceff(u, v) are equivalent. The number ρeff(u, v) = ceff(u, v)−1 is called effective
resistance of u and v.

In combinatorics unit conductances are of great interest because of the well-known relation between
electrical networks and the number of spanning trees. Let G be a graph and cG be unit conductances on
the edges of G. We say that G has resistance scaling factor ρ = ρD with respect to D ⊆ V , if (G, cG)
is electrically equivalent to (H, ρ−1cH), where H is a complete graph with vertex set V (H) = D and
cH are unit conductances on H . Note that the effective resistance of vertices u and v in a graph with unit
conductances is exactly the resistance scaling factor with respect to {u, v}.

Theorem 2 implies that the effective resistance of two vertices u, v in a connected graph with unit
conductances is given by

ρeff(u, v) =
rG({u, v})
t(G)

. (5)

This can also be obtained from Kirchhoff’s famous result connecting currents and spanning trees (see for
example [2]). Now Conjecture 3 allows the following interpretation: given all effective resistances of a
graph, we can determine all quotients of the form

rG(R)
t(G)

.
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In particular, if two graphs G and H are electrically equivalent with respect to D, then

rG(R)
t(G)

=
rH(R)
t(H)

for all R ⊆ D (note that Theorem 2 is the special case when H = Kθ). If we pursue this thought to its
climax, we finally end up with the following question: Given all effective resistances of a graph, can we
reconstruct the original graph?

Of course, we may state this question more generally for networks: Let G be a complete graph on n
vertices and conductances on the edges. Clearly the conductances comprise a tuple of

(
n
2

)
non-negative

numbers. Given the conductances we can compute all effective resistances in this network easily. The
effective resistances also form a tuple of

(
n
2

)
non-negative numbers. Hence we may ask whether it is

possible to reverse this computation.

Conjecture 4 Given effective resistances for each pair of vertices of a complete graph, there is exactly
one tuple of conductances, which yields the given effective resistances, and there is a formula similar to
(1) that determines them.

It is plausible that this or similar problems have been considered in physics and related fields. Yet
we were unable to find anything in the literature we studied, and the expert colleagues we discussed the
problem with were not aware of any results in this direction either.

If we are given the numbers t(G) and rG({u, v}) for all u, v ∈ V (G) of a connected graph, we can
compute all effective resistances of G by means of (5). Assuming that the conjecture above holds, we can
now reconstruct the network and hence the graph. With full information it is finally easy to compute the
numbers rG(R) for all R ⊆ V (G). Hence Conjecture 3 is plausible, if Conjecture 4 holds.

Let us briefly discuss Conjecture 4 for n = 3: Let V = {u, v, w}. A simple computation yields that

ceff(u, v) = c({u, v}) +
c({v, w})c({w, u})
c({v, w}) + c({w, u}) =

t(G)
c({v, w}) + c({w, u}) ,

ceff(v, w) = c({v, w}) +
c({w, u})c({u, v})
c({w, u}) + c({u, v}) =

t(G)
c({w, u}) + c({u, v}) ,

ceff(w, u) = c({w, u}) +
c({u, v})c({v, w})
c({u, v}) + c({v, w}) =

t(G)
c({u, v}) + c({v, w}) ,

noting that t(G) = c({u, v})c({v, w}) + c({v, w})c({w, u}) + c({w, u})c({u, v}). From this it is easy
to deduce that given effective conductances ceff(u, v), ceff(v, w), and ceff(w, u) there is at most one so-
lution for the conductances c({u, v}), c({v, w}), and c({w, u}) of the system above (that can be given
explicitly). Finally, a simple manipulation shows that

c({u, v}) = 1
2 t(G)

(
ρeff({u,w}) + ρeff({v, w})− ρeff({u, v})

)
,

or
c({u, v}) = 1

2

(
rG({u,w}) + rG({v, w})− rG({u, v})),

which shows a certain resemblance to Equation (1).
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4 Enumeration of spanning trees
Recently, it was shown in two papers independently [7, 16] how the number of spanning trees in Sierpiński
graphs (i.e., the finite approximations to the Sierpiński gasket) can be calculated. If Sn denotes the level-n
Sierpiński graph (starting with S0 = K3, see Figure 1), the number of spanning trees is given by the
formula

S0

S1

S2

Fig. 1: Sierpiński graphs

t(Sn) = 4

√
3
20 ·

(
5
3

)−n/2 · ( 4
√

540
)3n

. (6)

The proofs given in [7, 16] make extensive use of symmetry; in this section, we show that all that is
essentially needed is electrical equivalence. To this end, we consider a modified version T0, T1, T2, . . .
of the Sierpiński graphs (see Figure 2). Obviously, the resulting graphs are not as symmetric as the
Sierpiński graphs and we note that the arguments of [7, 16] are not applicable anymore. We do not only
modify the initial graph but also change the number of subdivisions in the construction, since for the
simpler construction rule of Sierpiński graphs not all possible phenomena occur. It is not difficult to see
that the initial graph T0 is electrically equivalent to aK3 (with unit conductances) with respect to the three
corner vertices, and thus this is also the case for all graphs Tn in the sequence (up to a resistance scaling
factor of

(
15
7

)n
, which is easily shown by induction). We write x1,n, x2,n, x3,n for the corner vertices

of Tn; then, if Hn is the complete graph with vertices x1,n, x2,n, x3,n and edge weights (conductances)(
7
15

)n
, we have

rTn(R)
t(Tn)

=
rHn(R)
t(Hn)

for all subsets R ⊆ {x1,n, x2,n, x3,n} of cardinality 2, since the effective resistances are the same. But
this is trivially true for subsets of cardinality 1, and the special case of Conjecture 3 for three vertices
shows that it is also the case for R = {x1,n, x2,n, x3,n}.

Now consider the graph Tn+1, which comprises of six copies of Tn. Fix one of these copies and
call it C. The graph induced by the remaining edges is called B. Every spanning tree of Tn+1 induces
spanning forests on B and C. Now fix a spanning forest F on B that can be extended to a spanning tree
of Tn+1. F induces certain connections on the corner vertices u, v, w of C: If the corner vertices of
C are not connected at all by F , a spanning tree on C is needed to complete a spanning tree on Tn+1.
If F connects precisely two of the corner vertices of C (say u and v), then we need a spanning forest
with two components and the property that u and v are in different components. However, this can also
be interpreted as a rooted spanning forest with roots u and v! If all corner vertices of C are connected
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T0

T1

T2

Fig. 2: Modified Sierpiński graphs with three subdivisions

“from the outside” by F , then we need a rooted spanning forest with three components on C to complete
a spanning tree, where the roots are precisely the corner vertices again. Hence there are coefficients νR
such that

t(Tn+1) =
∑

R⊆{u,v,w}

νR · rC(R),

and these coefficients only depend on B. Note that the coefficient ν{u,v,w} is 0 in the case of ordinary
Sierpiński graphs (Figure 1), which is the reason why we deal with three subdivisions instead of two. If
we replace C by Hn now to obtain a graph T ′n+1, the above considerations show that

t(T ′n+1) =
∑

R⊆{u,v,w}

νR · rHn(R) =
t(Hn)
t(C)

·
∑

R⊆{u,v,w}

νR · rC(R)

=
t(Hn)
t(C)

· t(Tn+1) =
t(Hn)
t(Tn)

· t(Tn+1).

Applying this procedure repeatedly for all three copies of Tn, we obtain

Tn Tn Tn

Tn Tn

Tn

Tn+1

Hn Hn Hn

Hn Hn

Hn

Yn+1

Fig. 3: Replacing Tn by Hn

t(Tn+1) =
(
t(Tn)
t(Hn)

)6

· t(Yn+1),
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where Yn+1 comprises of three copies of Hn, as indicated in Figure 3. But Hn and Yn+1 are small graphs
for which the (weighted) number of spanning trees is easily computed explicitly: one has

t(Hn) = 3 · ( 7
15

)2n
and t(Yn+1) = 5292 · ( 7

15

)9n
and thus

t(Tn+1) = 196
27 ·

(
15
7

)3n · t(Tn)6.
Now it is just an easy induction to show that

t(Tn) =
(

312

210 · 53 · 77

)1/25

·
(

15
7

)−3n/5

·
((

210 · 53 · 77

312

)1/25

t(T0)
)6n

In the case of the sequence depicted in Figure 2, we have t(T0) = 12 and obtain

t(Tn) =
(

312

210 · 53 · 77

)1/25

·
(

15
7

)−3n/5

·
(
260 · 312 · 53 · 77

)6n/25

In a similar way, one can derive Equation (6) for the number of spanning trees of the ordinary Sierpiński
graphs. The essential point in this approach was the fact that the graphs S0, S1, . . . and T0, T1, . . . were
electrically equivalent to simple graphs with resistances that could be determined explicitly. If this is
not the case any more, things become more complicated, as can be seen from the final example below.
Nonetheless, we believe that the technique of replacing subgraphs by electrically equivalent graphs can be
very useful for the enumeration of spanning trees (and we also conjecture that it is applicable in general,
not just in the case of three boundary vertices).

U0

U1

U2

Fig. 4: Another modification of the Sierpiński graphs

Let us now consider the sequence of self-similar graphs depicted in Figure 4. We can still replace
the four copies of Un in Un+1 by simple complete graphs Hn ' K3 to obtain a graph Yn+1, but the
conductances in Hn are not all equal any longer. The effective conductances in Un can be found by
iterating the map that is shown in Figure 5: starting with (a0, b0) = (1, 1), one applies the recursion

(an+1, bn+1) =
(

(2an + bn)(3a2
n + 8anbn + b2n)

2(3an + 2bn)(3an + 5bn)
,
bn(2an + bn)
3an + 2bn

)
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a a
a

a

b b b b

b b

b b

≃

(2a+b)(3a2+8ab+b2)
2(3a+2b)(3a+5b)

b(2a+b)
3a+2b

b(2a+b)
3a+2b

Fig. 5: The map that defines the conductances recursively

to obtain the effective conductances (an+1, bn+1) of Un+1 from those of Un. Arguing as in the previous
example, one obtains

t(Un+1) =
(
t(Un)
t(Hn)

)4

· t(Yn+1).

Now one has

t(Hn) = bn(2an + bn) and t(Yn+1) = 2b3n(2an + bn)3(an + 3bn)

and thus

t(Un+1) =
2(an + 3bn)
bn(2an + bn)

· t(Un)4.

There are no simple formulæ for an and bn, but one can show that they behave asymptotically like

an = A · ( 5
9

)n(1 +O
((

2
3

)n))
, bn = 3A · ( 5

9

)n(1 +O
((

2
3

)n))
for some constant A, which results in the following asymptotic behavior for t(Un):

t(Un) ∼ B ·
(

9
5

)−n/3 · C4n

for certain constants B and C. Note that the structure of this asymptotic formula is still the same as for
the sequence of Sierpiński graphs.
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