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Weakly directed self-avoiding walks
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Abstract. We define a new family of self-avoiding walks (SAW) on the square lattice, called weakly directed walks.
These walks have a simple characterization in terms of the irreducible bridges that compose them. We determine
their generating function. This series has a complex singularity structure and in particular, is not D-finite. The growth
constant is approximately 2.54 and is thus larger than that of all natural families of SAW enumerated so far (but
smaller than that of general SAW, which is about 2.64). We also prove that the end-to-end distance of weakly directed
walks grows linearly. Finally, we study a diagonal variant of this model.

Résumé. Nous définissons une nouvelle famille de chemins auto-évitants (CAE) sur le réseau carré, appelés chemins
faiblement dirigés. Ces chemins ont une caractérisation simple en termes des ponts irréductibles qui les composent.
Nous déterminons leur série génératrice. Cette série a une structure de singularités complexe et n’est en particulier
pas D-finie. La constante de croissance est environ 2,54, ce qui est supérieur à toutes les familles naturelles de SAW
étudiées jusqu’à présent, mais inférieur aux CAE généraux (dont la constante est environ 2,64). Nous prouvons
également que la distance moyenne entre les extrémités du chemin croît linéairement. Enfin, nous étudions une
variante diagonale du modèle.
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1 Introduction
A lattice walk is self-avoiding if it never visits twice the same vertex (Fig. 1). Self-avoiding walks (SAW)
have attracted interest for decades, first in statistical physics, where they are considered as polymer mod-
els, and then in combinatorics and in probability theory [20]. However, their properties remain poorly
understood in low dimension, despite the existence of remarkable conjectures. See [20] for dimension 5
and above.

On two-dimensional lattices, it is strongly believed that the number cn of n-step SAW and the average
end-to-end distance Dn of these walks satisfy

cn ∼ αµnnγ and Dn ∼ κnν (1)

where γ = 11/32 and ν = 3/4. Several independent, but so far not completely rigorous methods
predict these values, like numerical studies [12, 24], comparisons with other models [6, 21], probabilistic
arguments involving SLE processes [19], enumeration of SAW on random planar lattices [10]... The
growth constant (or connective constant) µ is lattice-dependent, and believed to be

√
2 +
√

2 for the
honeycomb lattice, and another bi-quadratic number (approximately 2.64) for the square lattice [16].

1365–8050 c© 2010 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France

http://www.dmtcs.org/dmtcs-ojs/index.php/proceedings/
http://www.dmtcs.org/dmtcs-ojs/index.php/proceedings/dmANind.html


474 Axel Bacher and Mireille Bousquet-Mélou

Fig. 1: A self-avoiding walk on the square lattice, and a (quasi-)random SAW of length 1,000,000, constructed by
Kennedy using a pivot algorithm [17].

Given the difficulty of the problem, the study of restricted classes of SAW is natural, and probably as
old as the interest in SAW itself. The rule of this game is to design new classes of SAW that have both:

– a natural description (to be conceptually pleasant),
– some structure (so that the walks can be counted, and their asymptotic properties determined).

The two simplest classes of SAW on the square lattice probably consist of directed and partially directed
walks: a walk is directed if it involves at most two types of steps (for instance North and East), and
partially directed if it involves at most three types of steps. (Partially directed walks play a prominent role
in the definition of our weakly directed walks.) Among other solved classes, let us cite spiral SAW [22, 13]
and prudent walks [3, 8, 7]. Each time such a new class is solved, one compares its properties to (1): have
we reached with this class a large growth constant? Is the end-to-end distance of the walks sub-linear?

At the moment, the largest growth constant (about 2.48) is obtained with prudent SAW. However, this
is beaten by certain classes whose description involves a (small) integer k, like SAW confined to a strip
of height k [1, 26], or SAW consisting of irreducible bridges of length at most k [15, 18]. The structure
of these walks is rather poor, which makes them little attractive from a combinatorial viewpoint. In the
former case, they are described by a transfer matrix (the size of which increases exponentially with the
height of the strip); in the latter case, the structure is even simpler, since these walks are just arbitrary
sequences of irreducible bridges of bounded length. In both cases, improvements on the growth constant
much rely on progresses in the computer power. Regarding asymptotic properties, almost all solved
classes of SAW exhibit a linear end-to-end distance, with the exception of spiral walks. But there are very
few such walks [13], as their growth constant is 1.

With the weakly directed walks of this paper, we reach a growth constant of about 2.54. These walks are
defined in the next section. Their generating function is given in Section 5, after some preliminary results
on partially directed bridges (Sections 3 and 4). This series turns out to be much more complicated that
the generating functions of directed and partially directed walks, which are rational: we prove that it has
a natural boundary in the complex plane, and in particular is not D-finite (that is, it does not satisfy any
linear differential equation with polynomial coefficients). However, we are able to derive from this series
certain asymptotic properties of weakly directed walks, like their growth constant and average end-to-end
distance (which we find, unfortunately, to grow linearly with the length). Finally, we perform in Section 6
a similar study for a diagonal variant of weakly directed walks.

Due to space constraints, most proofs are only sketched or even omitted in this abstract. Details will
appear in the complete version of the paper.
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2 Weakly directed walks: definition
Let us denote by N, E, S and W the four square lattice steps. All walks in this paper are self-avoiding, so
that this precision will often be omitted. For any subset S of {N,E,S,W}, we say that a (self-avoiding)
walk is an S-walk if all its steps lie in S. We say that a SAW is directed if it involves at most two types of
steps, and partially directed if it involves at most three types of steps. The definition of weakly directed
walks stems for the following simple observations:

(i) between two visits to any given horizontal line, a NE-walk only takes E steps,
(ii) between two visits to any given horizontal line, a NEW-walk only takes E and W steps.

Conversely, a walk satisfies (i) if and only if it is either a NE-walk or, symmetrically, a SE-walk. Similarly,
a walk satisfies (ii) if and only if it is either a NEW-walk or, symmetrically, a SEW-walk. Conditions (i)
and (ii) thus respectively characterize (up to symmetry) NE-walks and NEW-walks.

Definition 1 A walk is weakly directed if, between two visits to any given horizontal line, the walk is
partially directed (that is, avoids at least one of the steps N, E, S, W).

Examples are shown in Fig. 2.

Fig. 2: Two weakly directed walks. The second one is a bridge, formed of 5 irreducible bridges. Observe that these
irreducible bridges are partially directed.

We will primarily focus on the enumeration of weakly directed bridges. As we shall see, this does
not affect the growth constant. A self-avoiding walk starting at v0 and ending at vn is a bridge if all its
vertices v 6= vn satisfy h(v0) ≤ h(v) < h(vn), where h(v), the height of v, is its ordinate. Concatenating
two bridges always gives a bridge. Conversely, every bridge can be uniquely factored into a sequence
of irreducible bridges (bridges that cannot be written as the product of two non-empty bridges). This
factorization is obtained by cutting the walk above each horizontal line of height n + 1/2 (with n ∈ Z)
that the walk intersects only once (Fig. 2, right). It is known that the growth constant of bridges is the
same as for general self-avoiding walks [20]. Generally speaking, the fact that bridges can be freely
concatenated makes them useful objects in the study of self-avoiding walks [14, 15, 18, 19, 20].

The following result shows that the enumeration of weakly directed bridges boils down to the enumer-
ation of (irreducible) partially directed bridges.
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Proposition 2 A bridge is weakly directed if and only if each of its irreducible bridges is partially directed
(that is, avoids at least one of the steps N, E, S, W).

We discuss in Section 6 a variant of weakly directed walks, where we constrain the walk to be partially
directed between two visits to the same diagonal line (Fig. 3). The notion of bridges is adapted accord-
ingly, by defining the height of a vertex as the sum of its coordinates. We will refer to this model as the
diagonal model, and to the original one as the horizontal model. There is, however, no simple counterpart
of Proposition 2: a (diagonal) bridge whose irreducible bridges are partially directed is always weakly
directed, but the converse is not true, as can be seen in Fig. 3. Thus bridges with partially directed irre-
ducible bridges form a proper subclass of weakly directed bridges. We will enumerate this subclass, and
study its asymptotic properties.

Fig. 3: Two weakly directed walks in the diagonal model. The second one is a bridge, factored into 6 irreducible
bridges. Observe that the third irreducible bridge is not partially directed.

3 Partially directed bridges: a step-by-step approach
Let us equip the square lattice Z2 with its standard coordinate system. With each model (horizontal or
diagonal) is associated a notion of height: the height of a vertex v, denoted h(v), is its ordinate in the
horizontal model, while in the diagonal model, it is the sum of its coordinates. Recall that a walk, starting
at v0 and ending at vn, is a bridge if all its vertices v 6= vn satisfy h(v0) ≤ h(v) < h(vn). If the weaker
inequality h(v0) ≤ h(v) ≤ h(vn) holds for all v, we say the walk is a pseudo-bridge. Note that nonempty
bridges are obtained by adding a step of height 1 to a pseudo-bridge (a N step in the horizontal model, a
N or E step in the diagonal model). It is thus equivalent to count bridges or pseudo-bridges.

By Proposition 2, the enumeration of weakly directed bridges boils down to the enumeration of (irre-
ducible) partially directed bridges. In this section and the following one, we address the enumeration of
these building blocks, first in a rather systematic way based on a step-by-step construction, then in a more
combinatorial way based on heaps of cycles.



Weakly directed self-avoiding walks 477

Fig. 4: A NES-pseudo-bridge in the horizontal model. (b) An ESW-pseudo-bridge in the diagonal model. (c) A
NES-pseudo-bridge in the diagonal model.

As partially directed walks are defined by the avoidance of (at least) one step, there are four kinds
of these. Hence, in principle, we should count, for each model (horizontal and diagonal), four families
of partially directed bridges. However, in the horizontal model, there exists no ESW-bridge, and every
NEW-walk is a pseudo-bridge. The latter class of walks is very easy to count. Moreover, a symmetry
transforms NES-bridges into NSW-bridges, so that there is really one class of bridges that we need to
count. In the diagonal model, we need to count ESW-bridges (which are equivalent to NSW-bridges by
a diagonal symmetry) and NES-bridges (which are equivalent to NEW-bridges). Finally, to avoid certain
ambiguities, we need to count ES-bridges, but this has already been done in [5].

From now on, the starting point of our walks is always at height 0. The height of a walk is then defined
to be the maximal height reached by its vertices.

3.1 NES-bridges in the horizontal model
Proposition 3 Let k ≥ 0. In the horizontal model, the length generating function of NES-pseudo-bridges
of height k is

B(k)(t) =
tk

Gk(t)
,

where Gk(t) is the sequence of polynomials defined by

G−1 = 1, G0 = 1− t, and for k ≥ 0, Gk+1 = (1− t+ t2 + t3)Gk − t2Gk−1.

Equivalently, ∑
k≥0

vktk

B(k)(t)
=
∑
k≥0

vkGk =
1− t− t2v

1− (1− t+ t2 + t3)v + t2v2
,

or

B(k)(t) =
U − Ū(

(1− t)U − t
)
Uk −

(
(1− t)Ū − t

)
Ūk

,

where

U =
1− t+ t2 + t3 −

√
(1− t4) (1− 2t− t2)

2t

is a root of tu2 −
(
1− t+ t2 + t3

)
u+ t = 0 and Ū := 1/U is the other root of this polynomial.
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Proof: Let T be the set of NES-walks that end with an E step, and in which each vertex v satisfies
0 ≤ h(v) ≤ k. Let Ti be the subset of T consisting of walks that end at height i. Let Ti(t) ≡ Ti be the
length generating function of Ti, and define the bivariate generating function

T (t;u) ≡ T (u) =

k∑
i=0

Ti(t)u
i.

This series counts walks of T by their length and the height of their endpoint. Pseudo-bridges walks of
height k containing at least one E step are obtained by adding a sequence of N steps of appropriate length
to a walk of T , and this gives

B(k)(t) = tk +

k∑
i=0

Ti(t)t
k−i = tk (1 + T (1/t)) (2)

(the term tk accounts for the walk formed of k consecutive N steps.)
A step-by-step construction of the walks of T yields the following lemma.

Lemma 4 Let ū = 1/u. The series T (t;u), denoted T (u) for short, satisfies the following equation:(
1− ut2

1− tu
− t

1− tū

)
T (u) = t

1− (tu)k+1

1− tu
− t (tu)k+1

1− tu
T (1/t)− t2ū

1− tū
T (t).

The equation of Lemma 4 is easily solved using the kernel method (see e.g. [2, 4, 23]). The kernel of
the equation is the coefficient of T (u), namely

1− ut2

1− tu
− t

1− tū
.

It vanishes when u = U and u = Ū := 1/U , whereU is defined in the lemma. Since T (u) is a polynomial
in u, the series T (U) and T (Ū) are well-defined. Replacing u byU or Ū in the functional equation cancels
the left-hand side, and hence the right-hand side. One thus obtains two linear equations between T (t) and
T (1/t), which involve the series U . Solving them gives in particular the value of T (1/t), and thus of
B(k)(t) (thanks to (2)). This provides the second expression of B(k)(t) given in the lemma. The other
results easily follow, using elementary arguments about linear recurrence relations and rational generating
functions.

3.2 ESW-bridges in the diagonal model
Proposition 5 Let k ≥ 0. In the diagonal model, the length generating function of ESW-pseudo-bridges
of height k is

B
(k)
1 (t) =

tk

Gk(t)
,

where Gk(t) is the sequence of polynomials defined by

G0 = 1, G1 = 1− t2 and for k ≥ 1, Gk+1 = (1 + t2)Gk − t2(2− t2)Gk−1.
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The length generating function of NES-pseudo-bridges of height k is

B
(k)
2 (t) = (2− t2)kB

(k)
1 (t).

Finally, the length generating function of ES-pseudo-bridges of height k is

B
(k)
0 (t) =

tk

Fk(t)
,

where the sequence Fk(t) is defined by F−1 = 1, F0 = 1, and Fk+1 = Fk − t2Fk−1 for k ≥ 0.

4 Partially directed bridges via heaps of cycles
In this section, we give alternative (and more combinatorial) proofs of the results of Section 3. In partic-
ular, these proofs explain why the numerators of series counting partially directed bridges of height k are
so simple (tk or tk(2− t2)k, depending on the model).

Let Γ = (V,E) be a directed graph. To each edge of this graph, we associate a weight taken in some
commutative ring (typically, a ring of formal power series). A cycle of Γ is a path ending at its starting
point, taken up to a cyclic permutation. A path is self-avoiding if it does not visit the same vertex twice.
A self-avoiding cycle is called an elementary cycle. Two paths are disjoint if their vertex sets are disjoint.
The weight w(π) of a path (or cycle) π is the product of the weights of its edges. A configuration of cycles
γ = {γ1, . . . , γr} is a set of pairwise disjoint elementary cycles. The signed weight of γ is

w̃(γ) := (−1)r
r∏
i=1

w(γi).

For two vertices i and j, denote by Wi,j the generating function of paths going from from i to j:

Wi,j =
∑
π:i;j

w(π).

We assume that this sum is well-defined, which is always the case when considering length generating
functions.

Proposition 6 The generating function of paths going from i to j in the weighted digraph Γ is

Wi,j =
Ni,j
G

,

where G =
∑
γ w̃(γ) is the signed generating function of configuration of cycles, and

Ni,j =
∑
η,γ

w(η)w̃(γ),

where η is a self-avoiding path going from i to j and γ is a configuration of cycles disjoint from η.
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This result can be proved as follows: one first identifies Ni,j as the (i, j) coefficient of the matrix (1 −
A)−1, where A is the adjacency matrix of Γ. Thanks to standard linear algebra, this coefficient can be
expressed in terms of the determinant of (1 − A) and one of its cofactors. A simple expansion of these
as sums over permutations shows that the determinant is G, and the cofactor Ni,j . Proposition 6 can also
be proved without any reference to linear algebra, using the theory of partially commutative monoids, or
heaps of pieces [11, 25]. In this context, configurations of cycles are called trivial heaps of cycles. This
justifies the title of this section.

4.1 Bridges with large down steps
Let Γk be the graph with vertices {0, . . . , k} and with the following weighted edges:

– ascending edges of height 1, i→ i+ 1, with weight A, for i = 0, . . . , k − 1;
– descending edges of height h, i→ i− h, with weight Dh, for i = h, . . . , k and h ≥ 0.

For k ≥ 0, denote by C(k) the generating function of paths from 0 to k in the graph Γk. These paths may
be seen as pseudo-bridges of height k with general down steps.

Lemma 7 The generating function of pseudo-bridges of height k is

C(k) =
Ak

Hk
,

where the generating function of the denominators Hk is∑
k≥0

Hkv
k =

1−D(vA)

1− v + vD(vA)
, (3)

with D(v) the generating function of descending steps:

D(v) =
∑
h≥0

Dhv
h.

Proof: With the notation of Proposition 6, the series C(k) reads N0,k/G. Since all ascending edges have
height 1, the only self-avoiding path from 0 to k consists of k ascending edges, and has weight Ak. As it
visits every vertex of the graph, the only configuration of cycles disjoint from it is the empty configuration.
Therefore, the numeratorN0,k is simplyAk. The elementary cycles consist of a descending step of height,
say, h, followed by h ascending steps. The weight of this cycle is DhA

h.
To underline the dependance of our graph in k, denote by Hk the denominator G of Proposition 6.

Consider a configuration of cycles of Γk: either the vertex k is free, or it is occupied by a cycle; this gives
the following recurrence relation, valid for k ≥ 0:

Hk = Hk−1 −
k∑
h=0

DhA
hHk−h−1.

with the initial condition H−1 = 1. This is equivalent to (3).
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4.2 Partially directed self-avoiding walks as arbitrary paths
It is not straightforward to apply Proposition 6 (or Lemma 7) to the enumeration of partially directed
bridges, because of the self-avoidance condition. To circumvent this difficulty, we will first prove that
partially directed self-avoiding walks are arbitrary paths on a graph with generalized steps. We only deal
with the horizontal model, but the diagonal model can be addressed in a similar way.

Let us say that a NES-walk is proper if it neither begins nor ends with a S step. All NES-pseudo-
bridges are proper, whether in the horizontal or diagonal model. The following lemma explains how to
see proper NES-walks as sequences of generalized steps.

Lemma 8 Every proper NES-walk has a unique factorization into N steps and nonempty proper ES-
walks with no consecutive E steps.

This result, combined with Lemma 7, gives an alternative proof of Proposition 3.

5 Weakly directed walks: the horizontal model
We now return to the weakly directed walks defined in Section 2. We determine their generating function,
study their asymptotic number and average end-to-end distance, and finally prove that the generating
function we have obtained has infinitely many singularities, and hence, cannot be D-finite.

5.1 Generating function
By combining Propositions 2 and 3, it is now easy to count weakly directed bridges.

Proposition 9 In the horizontal model, the generating function of weakly directed bridges is:

W (t) =
1

1 + t− 2tB
1+tB

where B :=
∑
k≥0B

(k)(t) is the generating function of NES-pseudo-bridges, given by Proposition 3.

The generating function of general weakly directed walks is a bit more involved, but the numbers of
weakly directed walks and bridges of length n only differ asymptotically by a multiplicative constant.

5.2 Asymptotic results
Proposition 10 The generating function W of weakly directed bridges, given in Proposition 9, is mero-
morphic in the diskD = {z : |z| <

√
2− 1}. It has a unique dominant pole in this disk, ρ ' 0.3929. This

pole is simple. Consequently, the number wn of weakly directed bridges of length n satisfies wn ∼ κµn,
with µ = 1/ρ ' 2.5447.

Let Nn denote the number of irreducible bridges in a random weakly directed bridge of length n. The
mean and variance of Nn satisfy:

E(Nn) ∼ mn, V(Nn) ∼ s2 n,

where m ' 0.318 and s2 ' 0.7, and the random variable Nn−mn
s
√
n

converges in law to a standard normal
distribution. In particular, the average end-to-end distance, being bounded from below by E(Nn), grows
linearly with n.
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We have designed an algorithm for the random generation of weakly directed bridges, using a Boltzmann
sampler [9]. A sample output of this algorithm is shown in Figure 5, confirming the linear form of weakly
directed bridges.

Fig. 5: A random weakly directed bridge of length 1009, rotated by 90◦.

5.3 Nature of the series
Proposition 11 The generating function B of NES-pseudo-bridges, given in Proposition 3, converges
around 0 and has a meromorphic continuation in C\E , where E consists of the two real intervals [−

√
2−

1,−1] and [
√

2− 1, 1], and of the curve

E0 =

{
x+ iy : x ≥ 0, y2 =

1− x2 − 2x3

1 + 2x

}
. (4)

This curve, shown in Fig. 6, is a natural boundary of B. That is, every point of E0 is a singularity of B.
The above statements hold as well for the generating function W of weakly directed bridges. In partic-

ular, neither B nor W is D-finite.

–1

–0.5

0.5

1

y

–2 –1.5 –1 –0.5 0.5 1

x

Fig. 6: The curve E0 and the zeroes of the polynomial G20.

6 The diagonal model
We have defined weakly directed walks in Section 2 by requiring that the portion of the walk joining
two visits to the same diagonal is partially directed. Here, we study a proper subclass of these walks,
consisting of bridges formed of partially directed irreducible bridges.
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Proposition 12 The generating function of bridges formed of partially directed irreducible bridges is

W∆(t) =
1

1 + 2t− 2tB1

1 + tB1
− 4tB2

1 + 2tB2
+

2tB0

1 + tB0

,

where the series Bi =
∑
k≥0B

(k)
i (t) are given in Proposition 5.

The growth constant is found to be a bit smaller than in the horizontal model (about 2.5378). The
end-to-end distance is again linear.
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