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Tropical secant graphs of monomial curves

Marı́a Angélica Cueto1†and Shaowei Lin1‡
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Abstract. We construct and study an embedded weighted balanced graph in Rn+1 parameterized by a strictly increas-
ing sequence of n coprime numbers {i1, . . . , in}, called the tropical secant surface graph. We identify it with the
tropicalization of a surface in Cn+1 parameterized by binomials. Using this graph, we construct the tropicalization of
the first secant variety of a monomial projective curve with exponent vector (0, i1, . . . , in), which can be described
by a balanced graph called the tropical secant graph. The combinatorics involved in computing the degree of this
classical secant variety is non-trivial. One earlier approach to this is due to K. Ranestad. Using techniques from
tropical geometry, we give algorithms to effectively compute this degree (as well as its multidegree) and the Newton
polytope of the first secant variety of any given monomial curve in P4.

Résumé. On construit et on étude un graphe plongé dans Rn+1 paramétrisé par une suite strictement croissante de n
nombres entiers {i1, . . . , in}, premiers entre eux. Ce graphe s’appelle graphe tropical surface sécante. On montre
que ce graphe est la tropicalisation d’une surface dans Cn+1 paramétrisé par des binômes. On utilise ce graphe
pour construire la tropicalisation de la première sécante d’une courbe monomiale ayant comme vecteur d’exponents
(0, i1, . . . , in). On répresent ce variété tropical pour un graphe balancé (le graphe tropical sécante). La combinatoire
qu’on utilise pour le calcul du degré de ces variétés sécantes classiques n’est pas triviale, et a été developé par K.
Ranestad. En utilisant des techniques de la géométrie tropicale, on donne des algorithmes qui calculent le degré
(même le multidegré) et le polytope de Newton de la première sécante d’une courbe monomiale de P4.

Keywords: monomial curves, secant varieties, resolution graphs, tropical geometry, Newton polytope

1 Introduction
In this paper, we define and study an abstract graph (the abstract tropical secant surface graph) which we
embed in Rn+1, assigning integer coordinates to each node. This graph is parameterized by a sequence
of n coprime positive integers i1 < . . . < in. The abstract graph is constructed by gluing two caterpillar
trees and several star trees, according to the combinatorics of the given integer sequence. Our embedding
has a key feature: we can endow this graph with weights on all edges in such a way that it satisfies
the balancing condition (Theorem 3). We call this weighted graph the tropical secant surface graph
or master graph (Section 2). As the name suggests, this balanced graph is closely related to a tropical
surface and it will be the cornerstone of our paper. More precisely, it is the building block for constructing
the tropicalization of a threefold: the first secant variety of a monomial projective curve whose set of
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exponents is {0, i1, . . . , in}. By definition, this secant variety is the closure of the union of lines that meet
the curve in two distinct points. These varieties have been studied extensively in the literature (Cox and
Sidman, 2007; Ranestad, 2006). We describe this tropical connection in Section 6.

The tropicalization of the first secant variety of a monomial projective curve strictly contains, as a sub-
fan, the set of all tropical lines between any two points in the tropicalization of the monomial curve itself,
i.e. points that are obtained as coordinatewise minima of two points in the classical plane spanned by the
lattice Λ = 〈1(0, i1, . . . , in)〉. The latter is the first tropical secant variety of the corresponding classical
line in the n-dimensional tropical projective torus TPn = Rn+1/(1, . . . , 1). The union of these tropical
lines is precisely the cone from the classical line R〈(0, i1, . . . , in)〉 over the pure 1-dimensional subfan
of the secondary fan of the point configuration {0, i1, . . . , in} ⊂ R consisting of all regular subdivisions
with the property that two of its facets contains all n + 1 points. By (Theorem 3.1, Develin, 2006), we
know that this subfan is precisely the cone from the plane R ⊗ Λ over the complex of lower faces of the
cyclic polytope C(2, n−1) (i.e. n−1 points in dimension 2). This complex is the subgraph of the tropical
secant graph consisting of the chain graph with n− 1 nodes Ei1 , . . . , Ein−1

, depicted in Figure 1.
In recent years, tropical geometry has provided a new approach to attack implicitization problems

(Dickenstein et al., 2007; Sturmfels et al., 2007; Cueto et al., 2010). In particular, tropicalization interplays
nicely with several classical constructions, such as Hadamard products of subvarieties of tori. Using
such techniques, we can effectively compute the Chow polytope of these secant varieties, as we discuss
in Section 7. In the case of the secants of monomial curves in P4, the Chow polytopes coincide with
the Newton polytopes of these hypersurfaces. Interpolation techniques can then be used to obtain their
defining equations.

As one may suspect, computing the tropicalization of an algebraic variety without information on its
defining ideal is not an easy task. Such methods rely on a parametric representation of the variety and
the characterization of tropical varieties in terms of valuations (Bieri and Groves, 1984), and they are
known as geometric tropicalization (Theorem 7). As we explain in Section 4, the main difficulty lies
in finding a suitable compactification of the variety such that its boundary has simple normal crossings,
or combinatorial normal crossings in the case of surfaces. However, this geometric construction does
not provide information about the tropical variety as a weighted set: the multiplicities are missing in the
construction of Hacking et al. (2009) and they are essential for tropical implicitization methods. We give a
formula to compute these numbers in Theorem 8. The combinatorics involved in the construction of such
compactifications is non-trivial, since they are the combinatorial counterpart of the algebro-geometric
process of resolution of singularities.

In the case of surfaces, the resolution can be achieved in theory by blowing up plane curves at finitely
many points, as described in Section 5. We then use the rational parameterization of the original surface
to obtain a resolution of this surface from the resolution of the arrangement of plane curves in T2. In prac-
tice, knowing which points to blow up and how the intersection multiplicities of proper transforms and
exceptional divisors are carried along the various blow-ups can be a combinatorial challenge. However,
the surfaces studied in this paper (binomial surfaces obtained from a dehomogeneization of the first secant
of monomial projective curves) have very rich combinatorial structures, and we can make full use of this
feature to compute their tropicalizations via resolutions. Indeed, our methods allow us to read off the in-
tersection numbers of the boundary divisors directly from the master graphs, which encode the resolution
diagrams of these surfaces (Figure 1). This is carried out in Section 3, in particular in Theorem 3.

Finally, we use this tropical surface to effectively compute the first secant variety of any monomial
curve as a collection of 4-dimensional cones with multiplicities (Theorem 16). From this construction we
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recover the multidegree of this secant variety with respect to the rank-two lattice generated by the all-one’s
vector and the exponent vector parameterizing the curve. The degree of this variety was previously worked
out in (Ranestad, 2006), and our work gives similar combinatorial formulas for this degree in terms of the
exponent vector. But tropical methods enable us to obtain more information, namely the Chow polytope
of the secant variety. We illustrate all our results in Example 18 which was inspired by (Ranestad, 2006).

2 The master graph
In this section, we describe the main object of this paper: the master graph. We start by defining an
abstract graph, called the abstract tropical secant surface graph, parameterized by a list (i1, . . . , in) of
n distinct, coprime, nonnegative integers. Throughout the paper, we set n ≥ 4 and we call i0 = 0 to
simplify notation. We construct this abstract graph by gluing three different families of graphs along the
common labeled nodes Dij , as depicted in Figure 1. The first two graphs GE,D and Gh,D are caterpillar
trees with 2n − 1 and 2n nodes, grouped in two levels, with labels D0, Di1 , . . . , Din , Ei1 , . . . , Ein−1

and hi1 , . . . , hin−1
respectively. The third family of graphs is parameterized by subsets of the index set

{0, i1, . . . , in} of size at least two, which are obtained by intersecting an arithmetic progression of integers
with the index set. Note that several arithmetic progressions can give the same subset of {0, i1, . . . , in}
and all of them will give the same node Fa in the graph. If a = {ij1 , . . . , ijk} then the graph GFa,D has
k + 1 nodes and k edges: a central node Fa and k nodes labeled Dij1

, . . . , Dijk
. The central node is

connected to the other k nodes in the graph.

a = {ij1 , . . . , ijk}

Fig. 1: The graphs GE,D , Gh,D and GFa,D glue together to form the abstract tropical secant surface graph.

Next, we embed this graph in Rn+1, mapping each node to an integer vector, as in Definition 1. Our
chosen embedding has addition data: a weight on each edge that makes the graph balanced. We call this
weighted graph the tropical secant surface graph or master graph. For a numerical example, see Figure 2.

Definition 1 The master graph is a weighted graph in Rn+1 parameterized by {i1, . . . , in} with nodes:

(i) Dij = ej := (0, . . . , 0, 1, 0, . . . , 0) (0 ≤ j ≤ n),

(ii) Eij = (0, i1, . . . , ij−1, ij , . . . , ij) , hij = (−ij ,−ij , . . . ,−ij ,−ij+1, . . . ,−in) (1 ≤ j ≤ n−1),
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(iii) Fa =
∑
ij∈a ej where a ⊆ {0, i1, . . . , in} has size at least two and is obtained by intersecting an

arithmetic progression of integers with the index set {0, i1, . . . , in}.

Its edges agree with the edges of the abstract tropical secant surface graph, and have weights:

(i) mDi0
,hi1

= 1 , mDin ,Ein−1
= gcd(i1, . . . , in−1) , mDin ,hin−1

= in,

(ii) mDij
,Eij

= gcd(i1, . . . , ij) , mDij
,hij

= gcd(ij , . . . , in) (1 ≤ j ≤ n− 1),

(iii) mEij
,Eij+1

=gcd(i1, . . . , ij) , mhij
,hij+1

=gcd(ij+1, . . . , in) (1 ≤ j ≤ n− 2),

(iv) mFa,Dij
=
∑
r ϕ(r), where we sum over the common differences r of all arithmetic progressions

containing ij and giving the same subset a. Here, ϕ denotes Euler’s phi function.

Definition 2 Let (G,m) ⊂ RN be a weighted graph where each node has integer coordinates. Let w
be a node in G and let {w1, . . . , wr} be the set of nodes adjacent to w. Consider the primitive lattices
Λw = R〈w〉 ∩ ZN and Λw,wi = R〈w,wi〉 ∩ ZN . Then Λw,wi/Λw is a rank one lattice, and it admits
a unique generator ui lifting to the cone R≥0〈w,wi〉/R〈w〉. We say that the node w is balanced if∑r
i=1m(wi, w)ui = 0 ∈ RN/R〈w〉. If all nodes are balanced, then G satisfies the balancing condition.

Theorem 3 The master graph satisfies the balancing condition.

Remark 4 If the arithmetic progression a has two elements, then Fa is a bivalent node and we can safely
eliminate it from the graph if desired, replacing its two adjacent edges by a single edge. Both edges have
the same multiplicity, which we assign to the new edge. To simplify notation, we keep these bivalent nodes.

3 The master graph is a tropical surface
In this section, we explain the suggestive name “tropical secant surface graph.” More concretely, we
show that the master graph is the tropicalization of a surface in Cn+1 parameterized by the binomial map
(λ,w) 7→ (1− λ,wi1 − λ, . . . , win − λ). Before that, we review the basics of tropical geometry.

Definition 5 Given a variety X ⊂ CN with defining ideal I = IX , we define the tropicalization of X as

T X = T I = {w ∈ RN : inw(I) does not contain a monomial}.

Here, inw(I) = 〈inw(f) : f ∈ I〉, and if f =
∑
α cα x

α where all cα 6= 0, then inw(f) =
∑
α·w=W cα x

α

where W = min{α · w : cα 6= 0}. In the case of an embedded projective variety X ⊂ PN , the
tropicalization of X is defined as T (X ′) ⊂ RN+1 where X ′ is the affine cone over X in CN+1.

Although it may not be clear from Definition 5, tropicalizations are toric in nature. More precisely, let
TN = (C∗)N be the algebraic torus. Let Y be a subvariety of TN with defining ideal IY ⊆ C[TN ] =
C[y±1 , . . . , y

±
N ]. We define the tropicalization of Y ⊂ TN as

T Y = {v ∈ RN : 1 /∈ inv(IY )}.

Here, the initial ideal with respect to a vector v is the same as that in Definition 5. Consider the Zariski
closure Y of Y in CN . It is easy to see that T Y equals T Y . Indeed, this follows from the fact that IY
is the saturation ideal

(
IY C[TN ] : (y1 · · · yN )∞

)
and IY = IY ∩ C[y1, . . . , yN ]. Therefore, if we start
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with an irreducible variety X ⊂ CN not contained in a coordinate hyperplane, then we can consider the
very affine variety Y = X ∩ TN , which has the same dimension as X . The tropical variety T Y is a pure
polyhedral subfan of the Gröbner fan of I and it preserves an important invariant of Y : both objects have
the same dimension (Bieri and Groves, 1984). We can choose to study T Y or T X , and both sets will give
us equivalent information about X . This approach will be useful in subsequent sections.

Tropical implicitization is a recently developed technique to approach classical implicitization prob-
lems (Sturmfels and Tevelev, 2008). For instance, when Y is a codimension-one hypersurface, IY = 〈g〉
is principal and T Y is the union of non-maximal cones in the normal fan of the Newton polytope of g,
so knowing T Y can help us in finding g. But to achieve this, we need to compute T Y without explicitly
knowing IY . We show how to do this in Section 4.

A point w ∈ T X is called regular if T X is a linear space locally near w. We can assign a positive
integer number to regular points of the tropical variety, to have good properties. More precisely, we define
the multiplicity mw of a regular point w as the sum of multiplicities of all minimal associated primes of
the initial ideal inw(I). For a given maximal cone σ in T X , we define its multiplicity as the multiplicity
at a regular point w in σ, that is, the multiplicity of any point in the relative interior. One can show that
this assignment does not depend on the choice of w and that with these multiplicities, the tropical variety
satisfies the balancing condition (Corollary 3.4, Sturmfels and Tevelev, 2008).

In the case of projective varieties, or in general, when we have a torus action, the tropical variety T X
has a lineality space, that is, the maximal linear space contained in all cones of the fan T X . For example,
the lineality space of a tropical hypersurface T (g) will equal the orthogonal complement of the affine span
of the Newton polytope of g, after appropriate translation to the origin. The extreme cases correspond to
toric varieties globally parameterized by a monomial map with associated matrixA. Their tropicalizations
T X will be classical linear spaces: the row span of A. In particular, T X coincides with its lineality space
as sets with constant multiplicity one (Dickenstein et al., 2007).

We now realize the master graph as a tropical surface in Rn+1:

Theorem 6 Fix a strictly increasing sequence (0, i1, . . . , in) of coprime integers. Let Z be the surface in
Cn+1 parameterized by (λ, ω) 7→ (1− λ, ωi1 − λ, . . . , ωin − λ). Then, the tropical surface T Z ⊂ Rn+1

coincides with the cone over the master graph as weighted polyhedral fans, with the convention that we
assign the weight mDi1 ,Ei1

+mFe,Di1
to the cone over the edge Di1Ei1 and we disregard the cone over

the edge Di1Fe, if the ending sequence e = {i1, . . . , in} gives a node Fe in the master graph.

The proof of this statement involves techniques from geometric tropicalization and resolution of singular-
ities of plane curves. Beautiful combinatorics emerge from them, as we will see in the next sections.

4 Geometric Tropicalization
In this section, we present the basics of geometric tropicalization. The spirit of this approach relies on
computing the tropicalization of subvarieties of tori by analyzing the combinatorics of their boundary in
a suitable compactification of the torus and of the subvariety therein. In what follows, we describe the
method and its applications to implicitizations of subvarieties of tori.

Let f1, . . . , fN be Laurent polynomials in C[t±1 , . . . , t
±
r ] and consider the rational map f : Tr 99K TN ,

f = (f1, . . . , fN ). For simplicity, we will assume that the fiber of f over a generic point of Y ⊂ TN
is finite. Our goal is to compute the tropicalization T Y of the closure of the image of the map f inside
the torus without knowledge of its defining ideal. When the coefficients of f1, . . . , fN are generic with
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respect to their Newton polytopes, a method for constructing T Y was given in (Thm 2.1, Sturmfels et al.,
2007) and proved in (Thm 5.1, Sturmfels and Tevelev, 2008). We describe an algorithm proposed in (§5,
Sturmfels and Tevelev, 2008) which may be applied to maps f which are non-generic. For simplicity, we
state it for the case of parametric surfaces, although the method generalizes to higher dimensions as well.

Theorem 7 (Geometric Tropicalization (Hacking et al., 2009, §2)) Let TN be theN -dimensional torus
over C with coordinate functions t1, . . . , tN , and let Y be a closed surface in TN . Suppose Y is smooth
and Y ⊃ Y is any compactification whose boundary D = Y \ Y is a smooth divisor with simple nor-
mal crossings. Let D1, . . . , Dm be the irreducible components of D, and write ∆Y,D for the intersection
complex of the boundary divisor D, i.e. the graph on {1, . . . ,m} defined by

{ki, kj} ∈ ∆Y,D ⇐⇒ Dki ∩Dkj 6= ∅.

Define the integer vectors [Dk] := (valDk
(t1), . . . , valDk

(tN )) ∈ ZN (k = 1, . . . ,m), where valDk
(tj)

is the order of zero-poles of tj along Dk. For any σ ∈ ∆Y,D, let [σ] be the cone in ZN spanned by
{[Dk] : k ∈ σ} and let R≥0[σ] be the cone in RN spanned by the same integer vectors. Then,

T Y =
⋃

σ∈∆Y,D

R≥0[σ].

We complement the previous result by a formula giving the multiplicities of regular points in tropical
surfaces. A similar formula will hold in higher dimensions:

Theorem 8 (Cueto, 2011) In the notation of Theorem 7, the multiplicity of a regular point w in the
tropical surface equals:

mw =
∑

σ∈∆Y,D

w∈R≥0[σ]

(Dk1 ·Dk2) index
(
(R⊗Z [σ]) ∩ ZN : Z[σ]

)
,

where Dk1 ·Dk2 denotes the intersection number of these divisors and we sum over all two-dimensional
cones σ whose associated rational cone R≥0[σ] contains the point w.

To compute T Y using the previous theorems, we require a compactification Y ⊃ Y whose boundary
has simple normal crossings (SNC). In words, all components of the divisor D should be smooth and they
show intersect “as transversally as possible.” One method for producing such a tropical compactification
is taking the closure Y of Y in PN ⊃ TN and finding a resolution of singularities for the boundary Y \Y .
This latter step can be difficult. However, in the case of surfaces, it is enough to require the boundary
to have combinatorial normal crossings (CNC), that is, “no three divisors intersect at a point” (Sturmfels
and Tevelev, 2008). We describe the resolution process for our binomial surface Z in the next section.

5 Combinatorics of Monomial Curves
In this section, we compute the tropical variety of the surfaceZ described in Theorem 6. Let fij := ωij−λ
(0 ≤ j ≤ n) and consider the parameterization f : C2 → Z given by these n + 1 polynomials. Since
geometric tropicalization involves subvarieties of tori, we restrict our domain toX = T2r

⋃n
j=1(fij = 0).
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We give a compactification of X which, in turn, gives a tropical compactification of Z ∩Tn+1 with CNC
boundary via the map f .

First, we naively compactify X inside P2. The components of the boundary divisor are Dij =
(fhij (ω, λ, u) = 0) and D∞ = (u = 0), where fhij is the homogenization of fij with respect to the
new variable u. We encounter three types of singularities: the origin, the point (0 : 1 : 0) at infinity,
and isolated singularities in T2. We resolve them by blowing up these points and contracting divisors
with negative self-intersection (encoded by superfluous bivalent nodes), in a way that preserves the CNC
condition. The resolutions diagrams will precisely be the graphs in Figure 1, where h1 corresponds to the
divisor D∞. The nodes Eij (1 ≤ j ≤ n − 1) and hij (2 ≤ j ≤ n − 1) will correspond to exceptional
divisors. All intersection multiplicities will equal one, so to compute the multiplicities of the edges in T Z
involving nodes hij or Eij , we only need to calculate indices of suitable lattices associated to these edges.

We now describe the resolution process at each one of our three types of singular points. At the origin,
all curvesDij (except forD0) intersect and they are tangential to each other. For any j, the strict transform
of a given Dij , after a single blow-up, equals Dij−1, so we can resolve this singularity after in−1-blow-
ups. The exceptional divisors are labeled Ek (1 ≤ k ≤ in−1) and all of them give bivalent nodes in the
resolution diagram, except for the n − 1 nodes Eij . We eliminate the bivalent nodes by contraction. By
induction, we see that the valuation of each exceptional divisor is the integer vectors Eij from Theorem 3.

At infinity, the resolution process is more delicate. Here, the singular point p = (0 : 1 : 0) corresponds
to the intersection of D∞ and all divisors Dij with ij ≥ 2. However, we know that p is a singular point of
all prime divisorsDij . Therefore, we first need to perform a blow-up to smooth them out. More precisely,
if π denotes this blow-up and H is the exceptional divisor, we obtain π∗(Dij ) = Dij + (ij − 1)H ,
π∗(D∞) = D′∞ + H , where H = (t = 0), and D′ij = (ω − tij−1 = 0), D′∞ = (w = 0) are the strict
transforms. Therefore, the new setting is very similar to the one we described before for the singularity
of the boundary D at the origin. The main difference with the resolution at the origin is that along the
series of blow-ups, the strict transform of H will continue to be tangential to the divisors intersecting at
a “fat point”, whereas H was not present in the resolution at the origin. All exceptional divisors will be
denoted by hk (k = 2, . . . , in) and again we only keep the non-bivalent nodes hij (2 ≤ j ≤ n) after
appropriate contractions. For simplicity, we denote the strict transform of D∞ by h1. At the end of the
resolution processH gets contracted, explaining why we do not see it in the resolution diagram (Figure 1).
As expected, we recover the integer vectors hij from Theorem 3.

Finally, we come to multiple intersections among the divisors Dij in T2. If (λ, ω) satisfies fij =
λ− ωij = 0 and fik = λ− ωik = 0, then ωij = λ = ωik , so ω is a primitive r-th root of unity for some
r | (ik − ij). Alternatively, ij ≡ ik ≡ s (mod r), ω = e2πip/r and λ = ωs for p coprime to r. All other
curves (fil = 0) with il ≡ s (mod r) will also meet at (λ, ω). We represent this crossing point (λ, ω) by
xp,r,s and the index set of curves meeting at xp,r,s by ar,s, or a for short. That is,

xp,r,s = (e2πips/r, e2πip/r), a = ar,s := {ij |ij ≡ s (mod r)}.

Furthermore, the curves Dij = (fij = 0) meeting at xp,r,s intersect transversally.
If three or more curves meet at a point, we blow up this point to separate the curves. To simplify

notations, we also blow up crossings with |a| = 2. After a single blow-up at each crossing point xp,r,s we
obtain a new divisor Fa,xp,r,s

(the exceptional divisor associated to the point xp,r,s) which intersects the
proper transform of all Dij normally, for j ∈ a. After studying the coefficient of Fa,xp,r,s in the pull-back
of each character of the torus Tn+1 under the map f , we get the node Fa = [Fa,xp,r,s ] =

∑
ij∈a ej , as

desired. The resolution diagram will correspond to the graph in the right-hand side of Figure 1.
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Finally, we use Theorem 8 to compute the multiplicity of the edge FaDij in T Z. All summands equal
one and so the multiplicity is just the number of such summands, that is, the number of points xp,r,s such
that Fa = [Fa,xp,r,s ]. This number equals the sum

∑
l ϕ(l) over all common differences l giving a.

6 The tropical secant graph is a Hadamard product
In this section, we use the master graph to effectively compute the tropicalization of the first secant
variety of a monomial projective curve C. Without loss of generality, we may assume that the curve is
parameterized as (1 : ti1 : . . . : tin), where 0 < i1 < . . . < in are coprime integers. By definition,

Sec1(C) = {a · p+ b · q : a, b ∈ C, p, q ∈ C} ⊂ Pn.

As discussed in Section 3, tropicalizations are toric in nature. Thus, for the rest of this section, instead of
looking at the projective varieties C and Sec1(C), we study the corresponding very affine varieties which
are intersections of their affine cones in Rn+1 with the algebraic torus Tn+1. To simplify notation, we will
also denote them by C and Sec1(C) in a way that is clear from the context. Tropicalizations of projective
varieties and their corresponding very affine varieties are the same.

We parameterize this secant variety by the secant map φ : T4 → Tn+1, φ(a, b, s, t) = (asik +
btik)0≤k≤n. After a monomial change of coordinates b = −λa and t = ωs, this map can be written as

φ(a, s, ω, λ) =
(
asik (ωik − λ)

)
0≤k≤n.

From this observation, it is natural to consider the Hadamard product of subvarieties of tori:

Definition 9 Let X,Y ⊂ TN be two subvarieties of tori. The Hadamard product of X and Y equals

X � Y = {(x1y1, . . . , xNyN ) |x ∈ X, y ∈ Y } ⊂ TN .

From the construction, we get the following characterization of our secant variety:

Proposition 10 The first secant variety Sec1(C) ⊂ Rn+1 of the monomial curve C parameterized by
t 7→ (1 : ti1 : . . . : tin) ∈ Pn equals C � Z ⊂ Tn+1 where Z is the surface parameterized by (λ, ω) 7→
(1− λ, ωi1 − λ, . . . , ωin − λ).

We now explain the relationship between Hadamard products and their tropicalization:

Proposition 11 (Corollary 13, Cueto et al., 2010) Given C,Z as in Proposition 10, then as sets

T Sec1(C) = T C + T Z, (1)

where the sum on the (RHS) denotes the Minkowski sum in Rn+1.

As we mentioned earlier, T C = R〈1, (0, i1, . . . , in)〉 with constant weight one. By construction, the
lineality space of T Z ⊂ Rn+1 is the origin, and the lineality space of T Sec1(C) ⊂ Rn+1 equals T C.

As occurs in general with Hadamard products and their tropicalizations, the right-hand side of (1) has
no canonical fan structure. Some maximal cones can be subdivided, whereas others can be merged into
bigger cones. Hence, we present this set as a collection of four-dimensional weighted cones in Rn+1

obtained as a Minkowski sum of maximal cones in T C and T Z. The multiplicity at a regular point would
simply be the sum of multiplicities of all cones in the collection containing it. Moreover, we will be able
to express this number in terms of the multiplicities in T Z, using the following result from (Sturmfels and
Tevelev, 2008) that shows the interplay between maps on tori and their tropicalization. Let α : Tr → TN
be a homomorphism of tori, that is, a monomial map whose exponents are encoded in a matrixA ∈ ZN×r.
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Theorem 12 (Sturmfels and Tevelev, 2008) Let V ⊂ Tr be a subvariety. Then T (α(V )) = A(T V ).
Moreover, if α induces a generically finite morphism of degree δ on V , then the multiplicity of T (α(V ))

at a regular point w is

mw =
1

δ
·
∑
v

mv · index (Lw ∩ ZN : A(Lv ∩ Zr)), (2)

where the sum is over all points v ∈ T V withAv = w. We also assume that the number of such v is finite,
and that all of them are regular in T V . In this setting, Lv,Lw denote the linear spans of neighborhoods
of v ∈ T V and w ∈ A(T V ) respectively.

The key fact in the computation of multiplicities for T Sec1(C) is that we can express the Hadamard
product in terms of the monomial map α : T2n+2 → Tn+1 given by the matrix A = (In+1 | In+1) ∈
Z(n+1)×2(n+1). The subvariety V ⊂ T2n+2 is the Cartesian product C × Z, where we consider each
surface inside the torus. From (Cueto et al., 2010), we have T V = T (C × Z) = T C × T Z and the
multiplicity mv at a regular point v = (c, z) of V equals mz . By dimension arguments, we see that α is
generically finite when restricted to V , so we can use formula (2) to compute multiplicities in T Sec1(C).

Lemma 13 For V = C × Z and α as above, the generic fiber of α|V has size 2, hence δ = 2.

Next, we compute the fiber of a regular point w in T (α(V )) under the linear map A. The strategy
will be to pick all possible pairs of maximal cones σ, σ′ in T Z and to compute the dimension of (Rσ +
T C)

⋂
(Rσ′ + T C). If this dimension is strictly less than four, then we know that generic points in

T C × σ and T C × σ′ belong to different fibers of A. If it equals four, we compute the fiber of A at any
point in the intersection. In particular, we conclude:

Lemma 14 (i) The cones 〈D0, hi1〉+T C, 〈F{0,i1,...,in}, Dij 〉+T C (0 ≤ j ≤ n), 〈Din , Ein−1
〉+T C

and 〈Din , hin−1
〉+T C are not maximal, so we disregard them together with the node F{0,i1,...,in}.

(ii) For all 1 ≤ j ≤ n−2, we have equalities 〈Eij , Dij 〉+T C = 〈hij , Dij 〉+T C and 〈Eij , Eij+1
〉+

T C = 〈hij , hij+1
〉+ T C because Eij ≡ hij modulo T C. Hence, we disregard all nodes hij .

(iii) i1 · Fe = Ei1 and (in − in−1) · Fb ≡ Ein−1
modulo T C, where e = {i1, . . . , in} and b =

{0, i1, . . . , in−1}. Thus, the maximal cones R〈Fe, Di1〉+ T C and R〈Ei1 , Di1〉+ T C coincide, as
well as R〈Fb, Din−1〉+ T C and R〈Ein−1 , Din−1〉+ T C.

(iv) All other fibers have size one.

As a consequence of this lemma, in numerical examples we will identify the nodes Ei1 and Fe, as well as
Ein−1 and Fb. In this identification, the nodes Fe and Fb are removed, and the edges adjacent to the nodes
Fe and Fb are added to those of Ei1 and Ein−1 . We also merge the corresponding edges Ei1Di1 and
FeDi1 (resp. Ein−1

Din−1
and FbDin−1

) in the tropical secant graph, assigning the sum of their weights
to the new edge.

The indices involved in (2) are calculated as follows. Let l1 = 1 and l2 = (0, i1, . . . , in) be the
generators of T C. For each edge of T Z, we pick its two end points x, y. The index in (2) associated
to a point v ∈ T C + R≥0〈x, y〉 ⊂ T C + T Z is the quotient of the gcd of the 4-minors of the matrix
(x | y | l1 | l2) by the gcd of the 2-minors of the matrix (x | y). These gcd’s are computed as the product
of the nonzero diagonal elements of the Smith normal form of each matrix. Here is our main result:
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Definition 15 The tropical secant graph is a weighted subgraph of the master graph in Rn+1, with nodes:

(i) Dij = ej := (0, . . . , 0, 1, 0, . . . , 0) (0 ≤ j ≤ n),

(ii) Eij = (0, i1, . . . , ij−1, ij , . . . , ij) =
∑
k<j ik · ek + ij · (

∑
k≥j ek) (1 ≤ j ≤ n− 1),

(iii) Fa =
∑
ij∈a ej where a ( {0, i1, . . . , in} varies among all proper subsets containing at least

two elements that are obtained from an arithmetic progression.

The edges are a subset of the edges of the master graph. Their positive weights are assigned as follows:

(i) mEij
,Eij+1

= gcd(i1, . . . , ij) gcd
j<t<n

(in − it) (1 ≤ j ≤ n− 2),

(ii) mDij
,Eij

= gcd
(

gcd(i1, . . . , ij−1) gcd
j<s≤n

(is−ij) ; gcd
0≤k<j

(ij−ik) gcd(ij+1, . . . , in)
)

(1 ≤ j ≤ n−1),

(iii) mFa,Dij
= 1

2

∑
r
ϕ(r) · gcd

(
gcd
il,ik /∈a

(| il − ik |) ; gcd
il,ik∈a
l,k 6=j

(| il − ik |)
)

(ij ∈ a, where the sum runs

over all common differences r of arithmetic progressions giving the subset a).

(By convention, a gcd over an empty set of indices is taken to be 0.)

Theorem 16 Given a monomial curve C with primitive exponent vector (0, i1, . . . , in), 0 = i0 < i1 <
. . . < in, the tropicalization of the first secant variety of C can be characterized set-theoretically as
a collection of 4-dimensional weighted cones (with no fan structure). Each cone has a 2-dimensional
lineality space with basis given by the intrinsic lattice Λ = 〈(1, . . . , 1), (0, i1, . . . , in)〉. The collection is
obtained as the cone from the subspace R⊗Z Λ over the tropical secant graph, preserving all weights.

7 The Newton polytope of the secant graph for P4

In this section, we focus our attention on the inverse problem. That is, given the tropical variety of an
irreducible hypersurface, we wish to recover its defining equation. A first step towards a satisfactory
answer would consist of computing the Newton polytope of the defining equation f =

∑
a cax

a, i.e. the
convex hull of integer vectors a such that xa appears with a nonzero coefficient in f . This will let us find
the defining equation via interpolation.

We now explain the connection between T (f) and NP(f) for an irreducible polynomial f in n + 1
variables defined over C. For a vector w ∈ Rn+1, the initial form inw(f) is a monomial if and only if
w is in the interior of a maximal cone (chamber) of the normal fan of NP(f). The tropical variety of the
hypersurface (f = 0) is the union of codimension one cones of the normal fan of NP(f). The multiplicity
of a maximal cone in T (f) is the lattice length of the edge of NP(f) normal to that cone.

A construction for the Newton polytope NP(f) from its normal fan T (f) equipped with multiplicities
was developed in Dickenstein et al. (2007). We describe this ray-shooting algorithm in Theorem 17:

Theorem 17 Suppose w ∈ Rn+1 is a generic vector so that the ray (w + R>0 ei) intersects T (f) only
at regular points of T (f), for all i. Let Pw be the vertex of the polytope P = NP(f) that attains the
maximum of {w · x : x ∈ P}. Then the ith coordinate of Pw equals

∑
vmv · |lvi |, where the sum is taken

over all points v ∈ T (f) ∩ (w + R>0ei), mv is the multiplicity of v in T (f), and lvi is the ith coordinate
of the primitive integral normal vector lv to the maximal cone in T (f) containing v.
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Fig. 2: The master graph and the tropical secant graph of the monomial curve (1 : t30 : t45 : t55 : t78).

Note that we do not need a fan structure on T (f) to use Theorem 17. A description of T (f) as a
set, together with a way to compute the multiplicities at regular points, gives us enough information to
compute vertices of NP(f) in any generic directions. Computing a single vertex using Theorem 17 will
give us the multidegree of f with respect to the grading given by the intrinsic lattice Λ from Theorem 16.

The entire polytope NP(f) can be computed by iterating the ray-shooting algorithm with different
objective vectors (one per chamber). A method to choose these vectors appropriately was developed in
(Algorithm 2, Cueto et al., 2010): the walking algorithm. The core of the method is to keep track of the
cones that we meet while ray-shooting from a given objective vector, to use the list of such cones to walk
from chamber to chamber in the normal fan of NP(f), picking objective vectors along the way, and to
repeat the shooting algorithm with these new vectors. We illustrate these methods with an example.

Example 18 The first secant variety of the monomial curve t 7→ (1 : t30 : t45 : t55 : t78) in P4 is known
to be a hypersurface of degree 1820 (Example 3.3, Ranestad, 2006). We use geometric tropicalization
to compute the tropicalization of this variety. By Theorems 6 and 16, we construct the two graphs in
Figure 2: the leftmost picture corresponds to the master graph, whereas the rightmost picture is the
tropical secant graph. The ten nodes in the tropical secant graph have coordinates D0 = e0, D30 = e1,
D45 = e2, D55 = e3, D78 = e4, E30 = (0, 30, 30, 30, 30), E45 = (0, 30, 45, 45, 45), F{0,30,45,55} ≡
E55 = (0, 30, 45, 55, 55), F{0,30,78} = (1, 1, 0, 0, 1), F{0,30,45,78} = (1, 1, 1, 0, 1), and F{0,30,45} =
(1, 1, 1, 0, 0). The master graph has the five extra nodes h30 = (−30,−30,−45,−55,−78), h45 =
(−45,−45,−45,−55,−78), h55 = (−55,−55,−55,−55,−78), F{0,30,45,55,78} = (1, 1, 1, 1, 1), and
F{0,30,45,55} = (1, 1, 1, 1, 0). The unlabeled nodes in Figure 2 indicate nodes of type Fa, where the
subset a consists of the indices of all nodes Dij adjacent to the unlabeled node. Notice that the nodes E55

and Fb coincide in the tropical secant graph, as predicted by Lemma 14.
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Finally, we apply the ray-shooting and walking algorithms to recover the Newton polytope of this
hypersurface. Its multidegree with respect to the lattice Λ = Z〈1, (0, 30, 45, 55, 78)〉 is (1 820, 76 950).
The polytope has 24 vertices and f -vector (24, 38, 16). Using LattE we see that it contains 7 566 849
lattice points, which gives an upper bound for the number of monomials in the defining equation.

The implicitization methods discussed in this section can be generalized to monomial curves in higher
dimensional projective spaces, where the first secant has no longer codimension one. In this case, one can
recover the Chow polytope of the secant variety by a natural generalization of the ray-shooting method:
the orthant-shooting algorithm (Theorem 2.2, Dickenstein et al., 2007). Instead of shooting rays, we
shoot orthants (i.e. cones spanned by vectors in the canonical basis of Rn+1) of dimension equal to the
codimension of our variety. A formula similar to the one described in Theorem 17 will give us the vertex of
the Chow polytope associated to the input objective vector. However, an analog to the walking algorithm
still needs to be developed, since there is, a priori, no canonical way of ordering the intersection points for
walking along the complement of the tropical variety. We hope to pursue this direction in the near future.

Acknowledgements
We thank Bernd Sturmfels for suggesting this problem to us and for inspiring discussions. We also thank
Melody Chan, Alex Fink and Jenia Tevelev for fruitful conversations.

References
R. Bieri and J. Groves. The geometry of the set of characters induced by valuations. J. Reine Angew.

Math., 347:168–195, 1984. ISSN 0075-4102.

D. Cox and J. Sidman. Secant varieties of toric varieties. J. Pure Appl. Algebra, 209(3):651–669, 2007.
ISSN 0022-4049.

M. A. Cueto. Tropical Implicitization. PhD thesis, University of California - Berkeley, 2011.

M. A. Cueto, E. Tobis, and J. Yu. An implicitization challenge for binary factor analysis. Contribution
MEGA’09 (Barcelona, Spain). Accepted for publication in J. Symbolic Comput., Special Issue, 2010.

M. Develin. Tropical secant varieties of linear spaces. Discrete Comput. Geom., 35(1):117–129, 2006.
ISSN 0179-5376.

A. Dickenstein, E. M. Feichtner, and B. Sturmfels. Tropical discriminants. J. Amer. Math. Soc., 20(4):
1111–1133 (electronic), 2007. ISSN 0894-0347.

P. Hacking, S. Keel, and J. Tevelev. Stable pair, tropical, and log canonical compactifications of moduli
spaces of del Pezzo surfaces. Invent. Math., 178(1):173–227, 2009. ISSN 0020-9910.

K. Ranestad. The degree of the secant variety and the join of monomial curves. Collect. Math., 57(1):
27–41, 2006. ISSN 0010-0757.

B. Sturmfels and J. Tevelev. Elimination theory for tropical varieties. Math. Res. Lett., 15(3):543–562,
2008. ISSN 1073-2780.

B. Sturmfels, J. Tevelev, and J. Yu. The Newton polytope of the implicit equation. Mosc. Math. J., 7(2):
327–346, 351, 2007. ISSN 1609-3321.


	Introduction
	The master graph
	The master graph is a tropical surface
	Geometric Tropicalization
	Combinatorics of Monomial Curves
	The tropical secant graph is a Hadamard product
	The Newton polytope of the secant graph for P4

