
AofA’12 DMTCS proc. AQ, 2012, 413–424

Mixing times of Markov chains on
3-Orientations of Planar Triangulations
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Given a planar triangulation, a 3-orientation is an orientation of the internal edges so all internal vertices have out-
degree three. Each 3-orientation gives rise to a unique edge coloring known as a Schnyder wood that has proven
useful for various computing and combinatorics applications. We consider natural Markov chains for sampling uni-
formly from the set of 3-orientations. First, we study a “triangle-reversing” chain on the space of 3-orientations of a
fixed triangulation that reverses the orientation of the edges around a triangle in each move. We show that (i) when
restricted to planar triangulations of maximum degree six, the Markov chain is rapidly mixing, and (ii) there exists a
triangulation with high degree on which this Markov chain mixes slowly. Next, we consider an “edge-flipping” chain
on the larger state space consisting of 3-orientations of all planar triangulations on a fixed number of vertices. It was
also shown previously that this chain connects the state space and we prove that the chain is always rapidly mixing.
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1 Introduction
The 3-orientations of a graph have given rise to beautiful combinatorics and computational applications.
A 3-orientation of a planar triangulation is an orientation of the internal edges of the triangulation such that
every internal vertex has out-degree three. We study natural Markov chains for sampling 3-orientations in
two contexts, when the triangulation is fixed and when we consider the union of all planar triangulations
on n vertices. When the triangulation is fixed, we allow moves that reverse the orientation of edges around
a triangle if they form a directed cycle. We show that the chain is rapidly mixing (converging in poly-
nomial time to equilibrium) if the maximum degree of the triangulation is six, but can be slowly mixing
(requiring exponential time) if the degrees are unbounded. To sample from the set of all 3-orientations of
triangulations with n vertices we use a simple “edge-flipping” chain and show it is always rapidly mixing.
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These chains arise in contexts such as sampling Eulerian orientations and triangulations of fixed planar
point sets, so there is additional motivation for understanding their convergence rates.

More precisely, given an undirected graph G = (V,E) and a function α : V → Z+, an α-orientation is
an orientation ofE where each vertex v has outdegree α(v). Several fundamental combinatorial structures
– spanning trees, bipartite perfect matchings, Eulerian orientations, etc. – can be seen as special instances
of α-orientations of planar graphs. We refer the reader to [11, 12, 14] for extensive literature on the subject.
Not surprisingly, counting α-orientations is #P -complete. Namely, consider an undirected Eulerian graph
G (with all even degrees); the α-orientations ofG, where α(v) = d(v)/2, correspond precisely to Eulerian
orientations of G. The latter problem has been shown to be #P -complete by Mihail and Winkler [20],
and more recently Creed [7] showed that it remains #P -complete even when restricted to planar graphs.

The term 3-orientation refers to an α-orientation of a planar triangulation where all internal vertices
(vertices not bounding the infinite face) have α(v) = 3 and all external vertices (the three vertices bound-
ing the infinite face) have α(v) = 0. Each 3-orientation gives rise to a unique edge coloring, known as
a Schnyder wood, whose many combinatorial applications include graph drawing [22, 6] and poset di-
mension theory [23]. Several intriguing enumeration problems remain open, such as the complexity of
enumerating 3-orientations of a planar triangulation (see e.g., [14].) We study the problem of sampling
3-orientations of a fixed (planar) triangulation and sampling 3-orientations of all triangulations with n
internal vertices. In particular, we analyze the mixing times of two natural Markov chains, which were
introduced previously but had thus far resisted analysis.

First, we study the problem of sampling 3-orientations of a fixed triangulation, which was stated as an
open problem by Felsner and Zickfeld [14]. Although there is no known efficient method for counting
exactly, there are polynomial-time algorithms for approximately counting and sampling 3-orientations
due to a bijection with perfect matchings of a particular bipartite graph (see Section 6.2 in [14]). This
bijection allows us to sample 3-orientations in time O∗(n7) using an algorithm due to Bezáková et al. [1]
(improving on the results of Jerrum, Sinclair and Vigoda [17]), but this approach is indirect and intricate.

We consider instead a natural “triangle-reversing” Markov chain, MTR, that reverses the orientation
of a directed triangle in each step, thus maintaining the outdegrees. Brehm [5] showed that for any fixed
triangulation T ,MTR connects the state space Ψ(T ). We also consider a related “cycle-reversing” chain,
MCR, that can reverse directed cycles containing more than one triangle. The chainMCR is a non-local
version ofMTR based on “tower moves” reminiscent of those in [18]. We show that both of these chains
are rapidly mixing. Let ∆I(T ) denote the maximum degree of any internal vertex of T . We show:

Theorem 1 If T is a planar triangulation with ∆I(T ) ≤ 6, then the mixing time ofMCR on the state
space Ψ(T ) satisfies τ(MCR) = O(n5).

We use a standard comparison argument together with Theorem 1 to infer a bound on the mixing time of
the triangle-reversing chainMTR. Thus we prove:

Theorem 2 If T is a planar triangulation with ∆I(T ) ≤ 6, then the mixing time ofMTR on the state
space Ψ(T ) satisfies τ(MTR) = O(n8).

Note that the class of planar triangulations with ∆I ≤ 6 is exponentially large in n, the number of
internal vertices. An interesting case is when the fixed triangulation is a finite region Λ of the triangular
lattice, since sampling 3-orientations on Λ corresponds to sampling Eulerian orientations. Creed [7]
independently solved the sampling problem in this special case using a similar approach based on towers;
he shows that for certain subsets of the triangular lattice the tower chain can be shown to mix in time
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O(n4). In addition, it was previously shown that similar cycle-reversing chains are rapidly mixing in
the context of sampling Eulerian orientations on the Cartesian lattice [18] and the 8-vertex model [10].
Our analysis here bounding the mixing rate of MCR in the general setting of arbitrary planar graphs
with maximum degree 6 requires additional combinatorial insights because we no longer have the regular
lattice structure. In particular, we make use of a combinatorial structure outlined by Brehm [5]. In fact,
this structure allows us to extend our analysis to certain non-4-connected triangulations that have vertices
of degree greater than six. Next, we prove that when ∆I is unbounded, MTR may require exponential
time. Specifically, we prove:

Theorem 3 For any (large) n, there exists a triangulation T of size n for whichMTR on the state space
Ψ(T ) has mixing time τ(MTR) = Ω(2n/4).

Based on the construction we give here, Felsner and Heldt [13] recently constructed another, somewhat
simpler, family of graphs for which the mixing rate ofMTR andMCR is exponentially large. However,
we note that their family also has maximum degree that grows with n.

The second problem we study is sampling from the set of all 3-orientations arising from all possible
triangulations on n internal vertices. Let Ψn be the set of all triangulations of a labelled fixed point set
with n + 3 vertices, three of which are external vertices, where the edges of the triangulation are not
required to be straight and the fixed positions of the points are arbitrary (i.e. all fixed positions result
in the same set Ψn). The set Ψn is known to be in 1-1 correspondence with all pairs of non-crossing
Dyck paths, and as such has size Cn+2Cn − C2

n+1, where Cn is the nth Catalan number. Since exact
enumeration is possible, we can sample using the reduction to counting; this was explicitly worked out by
Bonichon and Mosbah [4]. We consider a natural Markov chain approach for sampling that in each step
selects a quadrangle at random, removes the interior edge, and replaces it with the other diagonal in such a
way as to restore the out degree at each vertex. Bonichon, Le Saëc and Mosbah [3] showed that the chain
MEF connects Ψn and we present the first bounds showing that the chain is rapidly mixing. Although
the exact counting approach already yields a fast approach to sampling, the chain MEF is compelling
because it arises in contexts where we do not have methods to count exactly. For example, it has been
proposed as a method for sampling triangulations of a fixed planar point set, a problem that has been open
for over twenty years. In addition, there is interest in the mixing rate of this chain precisely because the
number is related to the Catalan numbers; there has been extensive work trying to bound mixing rates of
natural Markov chains for various families of Catalan structures (see, e.g., [19]). Specifically, we prove:

Theorem 4 The mixing time ofMEF on the state space Ψn satisfies τ(MEF ) = O(n10 log n).

2 Preliminaries
We begin with background on 3-orientations, Schnyder woods, and Markov chains. Fraysseix and Ossona
de Mendez defined a bijection between Ψ(T ) and the Schnyder woods of T [15]. A Schnyder wood (see
Figure 4) is a 3-coloring and orientation of the edges of T such that for every internal vertex v, v has out-
degree exactly 1 in each of the 3 colors, and the clockwise order of the edges incident to v is: outgoing
green, incoming blue, outgoing red, incoming green, outgoing blue and incoming red (see Figure 1).
In our figures, we differentiate the colors of edges in the Schnyder woods by dashed lines (green), dotted
lines (red), and solid lines (blue). Notice the orientation of the edges of the Schnyder wood is a 3-
orientation and that each of the colors forms a directed tree which spans the internal vertices and is rooted
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Fig. 1: (a) The vertex condition. (b) A red/green swap.

at one of the external vertices. Throughout the proofs, when we refer to the colors of the edges of a
3-orientation, we mean the colors of the Schnyder wood associated with that 3-orientation.

Next, we present some background on Markov chains. The time a Markov chain takes to converge to
its stationary distribution π is measured in terms of the distance between π and Pt, the distribution at
time t. The total variation distance at time t is ‖Pt, π‖tv = maxx∈Ψ

1
2

∑
y∈Ψ |Pt(x, y) − π(y)|, where

Pt(x, y) is the t-step transition probability and Ψ is the state space. For all ε > 0, the mixing time τ ofM
is defined as τ = min{t : ‖Pt′ , π‖tv ≤ 1/4,∀t′ ≥ t}. We say that a Markov chain is rapidly mixing if
the mixing time is bounded above by a polynomial in n. In this case, n is the number of internal vertices.

3 Sampling 3-orientations of a fixed triangulation
In this section, we consider a Markov chain for sampling the 3-orientations of a given triangulation. Let
T be a planar triangulation with n internal vertices. Consider the following natural local Markov chain
MTR on the set of all 3-orientations of T . Select a directed 3-cycle at random and reverse its orientation.
We will see that MTR samples from the uniform distribution, but its efficiency will depend on T . In
Section 3.1 we show that if the maximum degree of any internal vertex is at most 6, MTR is rapidly
mixing. In contrast, in Section 3.2 we demonstrate a triangulation T but with unbounded degree for
whichMTR takes exponential time to sample from the state space Ψ(T ). DefineMTR as follows.

The Markov chainMTR

Starting at any σ0 ∈ Ψ(T ), iterate the following:

- Choose a triangle t in σi u.a.r.

- If t is a directed cycle, then with prob. 1/2 reverse t to obtain σi+1.

- Otherwise, σi+1 = σi.

Brehm proved thatMTR connects the state space, Ψ(T ) [5]. Since all valid moves have the same transi-
tion probabilities,MTR converges to the uniform distribution over Ψ(T ).

3.1 Fast mixing ofMTR for maximum degree at most 6
In this section we prove thatMTR is rapidly mixing on the state space Ψ(T ), if T is a planar triangulation
with ∆I(T ) ≤ 6. First, we introduce an auxilliary chainMCR, which we will then use to derive a bound
on the mixing time of MTR. The Markov chain MCR involves towers of moves of MTR, based on
the nonlocal chain introduced in [18]. Notice that if a face f cannot move then two of its edges have
the same orientation and the other edge does not (see, e.g., the face f1 in Figure 2(a)). We call this edge
the disagreeing edge of f . Define a tower of length k to be a path of faces f1, f2, . . . , fk such that the
following three conditions are met: fk is the only face which is bounded by a directed cycle (i.e. it has
a move); for every 1 ≤ i < k, the disagreeing edge of fi is also incident to fi+1; and every vertex v is
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incident to at most three consecutive faces in the path (see Figure 2). The idea of the tower is that once
the edges of fk are reversed, then the edges of fk−1 can be reversed, and so on. We call f1 the beginning
of the tower, and fk the end. Notice that every face is the beginning of at most one tower (it may be a
tower of length 1). The effect of making this sequence of moves is to reverse the edges of the directed
cycle surrounding the tower (although the colors on the internal edges also change).

f1

f2

f3

f4

f5

f6

f1

f2

f3

f4

f5

f6

Fig. 2: A tower of length 6.

The Markov chainMCR operates as follows. Starting at any σ0, iterate the following: Choose a (finite)

face f u.a.r.; if f is the beginning of a tower of length k, then with probability

{
1
6k : k ≥ 2
1
2 : k = 1

reverse this

tower to obtain σi+1; else, σi+1 = σi. The moves ofMTR are a subset of the moves ofMCR, soMCR is
connected as well. We first consider the case that T is 4-connected, then we apply the comparison theorem
to prove thatMTR is also rapidly mixing and extend the result to non-4-connected triangulations using
a result of Brehm [5]. Notice that if T is 4-connected, every 3-cycle is facial, so MTR selects a face
and rotates the edges around that face if possible. The bulk of the work to prove Theorems 1 and 2 is to
show thatMCR is rapidly mixing when T is 4-connected. The main tool we use in the case where T is
4-connected is a path coupling theorem due to Dyer and Greenhill [9].

Theorem 5 Let T be a 4-connected planar triangulation with ∆I(T ) ≤ 6. Then the mixing time ofMCR

on the state space Ψ(T ) satisfies τ(MCR) = O(n5).

Proof. Let T be a 4-connected planar triangulation such that ∆I(T ) ≤ 6. First we prove that MCR

is rapidly mixing on Ψ(T ). Define the distance d between any two 3-orientations in Ψ(T ) to be the
minimum number of steps ofMTR from one to the other. Assume σ, τ ∈ Ψ(T ) and τ is obtained from
σ by reversing a facial triangle f . We use the trivial coupling that chooses the same face for σ and τ
at every step. Suppose without loss of generality that the edges of f are clockwise in σ. There are two
obvious moves that decrease the distance, namely whenMCR selects the face f and chooses to direct the
cycle either way, each of which happens with probability 1/(2(2n + 1)). Any move ofMCR that does
not involve an edge of f occurs with the same probability in σ and τ , and hence is neutral (i.e. does not
change the distance). Finally, we call a tower bad if it contains a neighbor f ′ of f that is not the end of
the tower. In this case, we say this bad tower is associated with f ′. On the other hand, a tower is good
if it ends in f , or if it ends in a face f ′ adjacent to f and contains no other faces adjacent to f . We will
show that the good towers in σ have corresponding good towers in τ , while the bad towers in σ fail in τ ,
increasing the distance. Any tower that is neither good nor bad does not contain an edge of f .

Suppose k ≥ 1, (f1, f2, . . . , fk) is a good tower in σ, and fk is adjacent to f . We claim that
(f1, f2, . . . , fk, f) is a good tower in τ . It is clear that in τ , f is the only one of these faces that is
bounded by a cycle, and that upon rotating f , the tower (f1, f2, . . . , fk) is possible. We must check two
things: that (f1, f2, . . . , fk, f) is a path of faces (i.e. does not contain any cycle of faces), and that every
vertex is incident to at most three consecutive faces. The first condition is clear, since fk is the only
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neighbor of f in {f1, f2, . . . , fk}, and (f1, f2, . . . , fk) is a path of faces. Suppose the second condition
does not hold. Then there is a vertex v incident to f, fk, fk−1, and fk−2. The edges between faces fk−2

and fk−1 and between fk−1 and fk are either both incoming to v or both outgoing from v. Moreover,
since the edge between fk−2 and fk−1 is the disagreeing edge of fk−2, the two edges of fk−2 incident
to v are either both incoming to v or both outgoing from v (similarly the two edges of fk incident to v
are either both incoming to v or both outgoing). Hence there are four edges incident to v which are all
incoming or all outgoing; a contradiction since a vertex of degree at most 6 with exactly three outgoing
edges can have at most three incoming edges as well. Therefore if a good tower of length k ≥ 1 begins
on a face f1 and ends on a neighbor fk of f in σ then there is a corresponding tower of length k + 1 that
begins on f1 and ends on f in τ . Thus we have shown that if (f1, f2, . . . , fk) is a good towner in σ, then
(f1, f2, . . . , fk, f) is a good tower in τ . On the other hand, it should be clear that if (f1, f2, . . . , fk, f) is
a good tower of length k + 1 ≥ 2 that ends on f in σ then (f1, f2, . . . , fk) is a good tower of length k in
τ . In either case, if k ≥ 2 then the expected change in distance given the choice of these towers is

1

2n+ 1

(
− 1

6(k + 1)
+ k

(
1

6k
− 1

6(k + 1)

))
= 0.

If k = 2 then the expected change in distance is 1
2n+1

(
− 1

12 +
(

1
2 −

1
12

))
= 1/3(2n+ 1).

We point out that if σ and τ have good towers using a neighbor f ′ of f then no bad tower in σ or τ is
associated with f ′; that is, if there exists a bad tower containing f ′ then f ′ is the end of the tower. Suppose
without loss of generality that the good tower is longer in τ than in σ. Then the edge between f and f ′ is
the disagreeing edge of f ′ in σ so the only way to tower is towards f , so f ′ is not in a bad tower in σ. On
the other hand, in τ , f ′ is bounded by a cycle, so it must be the end of any tower containing it.

Moreover, σ and τ can have at most two bad towers associated with a given face f ′ adjacent to f . It is
clear that σ (resp., τ ) has at most one bad tower that begins in f ′, which is defined by the disagreeing edge
of f ′ in σ. However, σ may have a bad tower that uses f ′ but does not begin in f ′. Let (f1, f2, . . . , fk) be
such a tower. We will show that f ′ = f2. Suppose not, so that f ′ = fi, where i ≥ 3. Then, as above, there
is a vertex v that is incident to f, fi, fi−1, and fi−2, and the same proof shows that v must have either
in-degree at least 4 or out-degree at least 4, which is a contradiction. Therefore bad towers associated
with f ′ must either begin in f ′ or in a neighbor f1 of f ′. If there is a bad tower in σ (τ ) beginning in
f1 then in both σ and τ , the edge between faces f ′ and f1 is f1’s disagreeing edge, which means that τ
(resp. σ) cannot have a bad tower beginning in f ′. Therefore there are at most two bad towers in σ or τ
associated with f ′. The expected change in distance given that a bad tower of length k ≥ 2 is chosen is
2k/(6k(2n+ 1)) = 1/(3(2n+ 1)). Therefore E[∆d] ≤ 1

2n+1

(
−2
(

1
2

)
+ 3

(
1
3

))
= 0.

For any pair (σt, τt) in Ψ(T ), by a connectivity proof of Brehm [5], there exists a path of transitions
ofMTR from σt to τt of length d(σt, τt). The first of these transitions occurs with probability at least
1/(4n+ 2) and decreases the distance by 1. Thus, Pr(d(σt, τt) 6= d(σt+1, τt+1)) ≥ 1/(4n+ 2). By the
path coupling theorem [9] and a bound on the distance between any two 3-orientations, we see the mixing
time τ(MCR) ofMCR satisfies τ(MCR) ≤ de(2n+ 1)5/2e = O(n5). 2

Finally, we use the comparison theorem, Theorem 8 introduced in Section 4.2, to derive a bound on
the mixing time τ(MTR) ofMTR for 4-connected planar triangulations. We can then extend both these
results to general planar triangulations with ∆I ≤ 6 using a result of Brehm [5], proving Theorems 1
and 2. In fact, we show that MTR is rapidly mixing for a certain class of planar triangulations that
can have vertices of degree greater than 6 (informally, planar triangulations where each 4-connected sub-
triangulation has ∆I ≤ 6). More details can be found in the full version of the paper.
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3.2 Slow mixing ofMTR for unbounded degree
We now exhibit a triangulation on whichMTR takes exponential time to converge. A key tool is conduc-
tance, which for an ergodic Markov chain with stationary distribution π is

ΦM = min
S⊆Ψ

π(S)≤1/2

1

π(S)

∑
s1∈S,s2∈S

π(s1)P(s1, s2).

The following theorem relates the conductance and mixing time (see, e.g., [16, 24]).

Theorem 6 For any Markov chain with conductance Φ, τ ≥ (4Φ)−1 − 1/2.
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Fig. 3: (a) A triangulation for whichMTR mixes slowly. (b) There is an exponential number of 3-orientations with
edge (v0, vt+1) colored red, corresponding to different orientations of T1, T2, . . . , Tt−2.

Proof of Theorem 3. We show that for the generalized triangulation G given in Figure 3 with n = 4t− 2
internal vertices,MTR takes exponential time to converge. Specifically, we show that although there is
an exponential number of 3-orientations where edge (v0, vt+1) is colored blue or red, all paths between
these 3-orientations with (v0, vt+1) colored differently must include a 3-orientation where (v0, vt+1) is
colored green. There is only a single 3-orientation that satisfies this property (namely, the one pictured
in Figure 3a), which creates a bottleneck in the state space. Let D be the set of 3-orientations of G with
(v0, vt+1) colored red or green and D, the complement of D, be the set of 3-orientations with (v0, vt+1)
colored blue. In order to show that both D and D are exponentially large we produce a triangulation in
each set which contains roughly t directed triangles which do not share any edges and reversing these
triangles does not change the colors of the edges adjacent to v0. Hence each of the 2t choices of the
orientations of these triangles gives a distinct 3-orientation with edge (v0, vt+1) colored appropriately
(see Figure 3b and triangles T1 thru Tt−2). Moreover, there is only one 3-orientation with (v0, vt+1)
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colored green, corresponding to Figure 3a. By the Vertex Condition, if edge (v0, vt+1) is green then
edges (v0, v1), (v0, v2), . . . , (v0, vt) must all be directed toward v0 and colored red; this is because edge
(v0, sblue) is blue and directed toward sblue in every 3-orientation of G. Using a similar argument, one
can check that there is a unique way to extend this coloring of the edges. To go from a configuration where
edge (v0, vt+1) has color red (blue) to blue (resp., red) one must go through a coloring where the edge
is green. This is because the only choices for edge (v0, vt+1) are red directed toward v0, blue directed
toward v0, and green directed away, and any move that changes the color must also change the direction.
Using this bad cut, together with Theorem 6 we show τ(MTR) ≥ 2(n−14)/4) − 1

2 . 2

4 Sampling 3-orientations of triangulations on n internal vertices
We consider a local Markov chain MEF for sampling uniformly from Ψn and show MEF is always
rapidly mixing. Our argument relies on a bijection with pairs of Dyck paths to relate the mixing time of a
chain on Dyck paths toMEF using the comparison method [8]. DefineMEF as follows (see Figure 1).

The Markov chainMEF

Starting at any σ0 ∈ Ψn, iterate the following:

- Choose two facial triangles T1 and T2 with a shared edge −→xy u.a.r.(i)

- Choose an edge −→zx from T1 ∪ T2 u.a.r., if one exists. With prob. 1/2

replace the path {−→zx,−→xy} by {−→xz,−→zw} where w is the remaining vertex of T1∪T2.

- Otherwise, σi+1 = σi.

If the edge−→zx with color ci is replaced by the edge−→xz with color cj , we call this a cj/ci swap. Bonichon,
Le Saëc and Mosbah showed in [3] thatMEF connects the state space Ψn. Since all valid moves have
the same transition probabilities, this implies thatMEF converges to the uniform distribution over Ψn.

4.1 The bijection between Ψn and pairs of Dyck paths
The key to bounding the mixing time of MEF is a bijection between Ψn and pairs of nonoverlapping
Dyck paths of length 2n, introduced by Bonichon [2]. Dyck paths can be thought of as strings a1a2 · · · a2n

containing an equal number of 1’s and −1’s, where for any 1 ≤ k ≤ 2n,
∑k

i=1 ai ≥ 0. Recall that a 3-
orientation of a triangulation can be viewed as a union of three trees, one in each color. In the bijection, the
bottom Dyck path corresponds to the blue tree and the top Dyck path indicates the degree of each vertex
in the red tree. The green tree is determined uniquely by the blue and red trees. More specifically, given
σ ∈ Ψn, to determine the bottom Dyck path, start at the root of the blue tree and trace along the border of
the tree in a clockwise direction until you end at the root. The first time you encounter a vertex, insert a
1 in the Dyck path, the second time you encounter the vertex insert a −1. Let v1, v2, . . . , vn be the order
of the vertices as they are encountered by performing this DFS traversal of the blue tree in a clockwise
direction and define L to be the resulting linear order on the vertices. Let di be number of incoming red
edges incident to vi. Let r be the number of incoming red edges incident to sred. The top Dyck path is as
follows 1(−1)d2 , 1, (−1)d3 , 1, (−1)d4 . . . 1(−1)dn1(−1)r. The structure of the 3-orientation guarantees
that the top path will never cross below the bottom path. See Figure 4, and [2] for details.

We bound the mixing rate ofMEF by comparing it toMDK , an efficient Markov chain on (pairs of)
Dyck paths introduced by Luby, Randall and Sinclair [18]. The algorithm proceeds as follows. At each

(i) The abbreviation u.a.r. stands for uniformly at random.



Mixing times of Markov chains on 3-Orientations of Planar Triangulations 421

Fig. 4: The bijection between 3-orientations and Dyck paths.

step select a point on one of the two Dyck paths uniformly at random. If the point is a local maximum
(or minimum) then push it down (or up) with probability 1/2 as shown in Figure 5(a-b). If this move is
blocked by a local maximum (or minimum) in the bottom (or top) Dyck path as shown in Figure 5c then
push both Dyck paths down (or up) with probability 1/2 as shown in Figure 5(c-d). The following theorem
due to Wilson [25] bounds the mixing time ofMDK .

(a)

↔

(b) (c)

↔

(d)

Fig. 5: Two moves of the Markov chainMDK .

Theorem 7 (Wilson) The chainMDK has mixing time τ(MDK) = Θ(n3 log n).

Using the above bijection, the Markov chainMDK on Dyck paths can be translated into a Markov chain
on 3-orientations of triangulations, but its moves are quite unnatural in that setting. We obtain a bound on
the mixing time ofMEF using Theorem 7 together with a careful comparison argument.

4.2 Fast mixing ofMEF

Next we show thatMEF is efficient for sampling from Ψn by comparingMEF andMDK . The compar-
ison theorem of Diaconis and Saloff-Coste [8] relates the mixing times of two reversible Markov chains
P and P ′ on the state space Ψ, with the same stationary distribution π, and mixing times τ and τ ′ respec-
tively. Let E(P ) = {(X,Y ) : P (X,Y ) > 0} and E(P ′) = {(X,Y ) : P ′(X,Y ) > 0} denote the transi-
tions of the two Markov chains, viewed as directed graphs. For each X,Y ∈ Ψ with P ′(X,Y ) > 0, de-
fine a canonical path γXY using a sequence of states X = X0, X1, · · · , Xk = Y with P (Xi, Xi+1) > 0,
and let k = |γXY | denote the length. Let Γ(Z,W ) = {(X,Y ) ∈ E(P ′) : (Z,W ) ∈ γXY } be the
set of canonical paths that use the transition (Z,W ) of P . Let π∗ = minX∈Ψ π(X). Finally, define
A = max(Z,W )∈E(P ){(

∑
Γ(Z,W ) |γXY |π(X)P ′(X,Y ))/(π(Z)P (Z,W ))}. We will use a version of the

comparison theorem in terms of mixing times, due to Randall and Tetali [21].

Theorem 8 (Randall and Tetali) With the above notation, we have τ(P ) ≤ 4 log(4/π∗)Aτ
′.

Next we introduce some notation. Let c1 be blue, c2 be red, and c3 be green. Given a vertex v and
i ∈ {1, 2, 3}, the unique outgoing edge of v with color ci is called v’s ci edge. We also define the first
(last) incoming ci-edge of v to be the incoming ci-edge of v that is in a facial triangle with v’s ci−1 edge
(respectively, v′s ci+1 edge, where the subscripts are taken modulo 3).
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x

v

y

x

v

y

x

v

y

x

v

y

Fig. 6: A sequence of red/green swaps.

Proof sketch of Theorem 4. In order to apply Theorem 8 to relate the mixing time ofMEF with the mixing
time ofMDK we need to define for each transition ofMDK a canonical path using transitions ofMEF .
There are several cases to consider, depending on whether a move affects the top path, the bottom path or
both, and whether it inverts a valley or a peak. If the move e = (X,Y ) affects both paths, we view the
move as two separate moves (X,Z) and (Z,Y), one on each path, and we concatenate the canonical paths
as follows: γX,Y = (γX,Z , γZ,Y ). Hence in the following, we assume that the transitions ofMDK affect
only one Dyck path. Let e = (X,Y ) be such a transition which moves the ith 1 (where i > 1) on the top
path to the right one position (i.e. the Dyck path move swaps the ith 1 with a −1 on it’s right, changing a
peak to a valley). From the bijection, we know this move does not affect the blue tree and corresponds to,
in the red tree, increasing the incoming degree of vi by one and decreasing the incoming degree of vi+1

by one. If vi and vi+1 are adjacent in the blue tree (there is a blue edge −−−→vi+1vi) this implies that there is
a red/green swap involving vi’s green edge and vi+1’s first incoming red edge. This swap is exactly the
peak to valley move, so γXY = e. Otherwise, we define two stages in the path γXY .

To assist in defining the paths, let gi be the parent of vi in the green tree. Let vj to be the parent of gi
in the red tree. Notice that L(vi) < L(vi+1) ≤ L(vj), since L(vj) > L(gi) and vi’s red and green edges
prevent vj from satisfying L(vi+1) ≥ L(vj) ≥ L(gi) as shown in Figure 7a. In the first stage of the path

gi

vi

vj

(a)

vi+1

vi

vj

gi

→

vi+1

vi

vj

→

(b)

vi+1

vi

vj

→

vi+1

vi

vj

Fig. 7: (a) The vertex vi’s red and green edges prevent vj from satisfying L(vi+1) ≥ L(vj) ≥ L(gi). (b) The
canonical path to move a peak down to a valley in the top Dyck path.

γXY we make the sequence of red/green swaps centered at gi that move the red edge −−→givj to −−→givi without
affecting any other red edges as shown in Figure 7b, step 1 (see Figure 6 for detail on the sequence of
swaps). In the second stage we transfer an incoming red edge from vi+1 to vj , completing γXY .

Given a transition (Z,W ) of MEF we must bound the number of canonical paths γXY using this
edge. To do so, we analyze the amount of information needed in addition to (Z,W ) to determine X
and Y uniquely. We record the vertex vi and the vertex vj . If vi and vi+1 are adjacent we record vi+1

instead of vj . Notice in this case the canonical path only involves red/green and green/red swaps. If we
are moving a red edge to a higher vertex in L then we are in stage 2 and otherwise we are in stage 1.
Given this information we can uniquely recover X and Y . We only need to record two vertices, so in this
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case there are at most n2 canonical paths which use any edge (Z,W ).
We defer the other cases to the full version. Briefly, the canonical path for a valley to peak move on

the top Dyck path is very similar to the above case. However, a move on the bottom Dyck path is quite
different and more complex because these moves significantly change the triangulation. While above, the
moves do not affect the blue tree, moves on the bottom path can make large changes to the blue tree,
which in turn significantly alter the red and green trees as well. The effect of such a move on the blue tree
in Figure 8 is to replace −→ac by

−→
ab and make all of the blue children of

−→
ab point to b. An example of the

canonical path is given in Figure 8. In stage 1 (Figure 8(a-c)), the blue edge of a moves from c to b. Then
in stage 2 (Figure 8(c-d)), a’s red edge moves into position for stage 3 (Figure 8(d-e)), where all incoming
blue edges to a move down to point to b. Finally, in stage 4 we repair the red tree. 2

a

b c

d
rb

ra

a

b c

d
rb

ra

a

b c

d
rb

ra

a

b c

d
rb

ra

a

b c

d
rb

ra

Fig. 8: Canonical path to move a valley up to a peak in the blue tree.
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