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Building on work of Gaifman [Gai82] it is shown that every first-order formula is logically equivalent to
a formula of the form ∃x1, . . . , xl∀yϕ where ϕ is r-local around y, i. e. quantification in ϕ is restricted to
elements of the universe of distance at most r from y.

From this and related normal forms, variants of the Ehrenfeucht game for first-order and existential
monadic second-order logic are developed that restrict the possible strategies for the spoiler, one of the
two players. This makes proofs of the existence of a winning strategy for the duplicator, the other player,
easier and can thus simplify inexpressibility proofs.

As another application, automata models are defined that have, on arbitrary classes of relational struc-
tures, exactly the expressive power of first-order logic and existential monadic second-order logic, respec-
tively.
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1 Introduction

First-order (FO) logic and its extensions play an important role in many branches of (theoreti-
cal) computer science. Examples that will be considered in this paper are automata theory and
descriptive complexity. Since Büchi’s and Elgot’s famous characterization of the regular string
languages as the sets of models of (existential) monadic second-order (MSO) sentences, (exis-
tential) MSO logic has been used as a guideline in the search for reasonable automata models
for other kinds of structures like trees or graphs. In descriptive complexity, since Fagin [Fag74]
showed that the complexity class NP coincides with the sets of models of existential second-
order (Σ1

1) sentences, many complexity classes have been characterized by extensions of FO logic
[Var82, Imm86, Imm87, AV89, Grä92] and there is still hope that separations of complexity classes
might be possible by separating the expressive power of the respective logics. For a recent result
in this direction see the paper of Libkin and Wong [LW98].

Despite its importance as an ingredient for more expressive logics, it is well-known that the
expressive power of FO logic is rather limited. It can only express properties that depend on
the local appearance of a structure. This intuition has been formalized in different ways by
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Hanf [Han65] and Gaifman [Gai82]. Hanf showed that, for every first-order formula ψ, there is
an r such that whether ψ holds in a structure A (“A |= ψ”) only depends on the multiset of
isomorphism types of all r-spheres in A. Here an r-sphere is a substructure of A which is induced
by all elements of A that have distance at most r from a fixed element of A. On the other hand,
Gaifman showed that, for every first-order formula ψ, there are r and d such that whether A |= ψ
holds depends only on how many elements with pairwise disjoint r-neighbourhoods exist that
fulfil θ, for every formula θ of quantifier depth at most d.

The starting question for the present investigation was to which extent Hanf’s and Gaifman’s
conditions could be combined. The goal was to replace the isomorphism types in Hanf’s condition
by something weaker and to get rid of the “disjoint r-neighbourhoods” constraint in Gaifman’s
condition. (For very interesting recent results concerning Hanf’s and Gaifman’s theorems from
a different point of view see the papers of Libkin and Dong et al. [Lib97, DLW97].) It is easy
to see that the straightforward attempt to replace the isomorphism type of a sphere S in Hanf’s
condition by its Hintikka-type for some d (i. e. by the set of formulas of quantifier depth at most
d that hold in S) does not work. A counterexample is given by the set of clique graphs. For every
d, the spheres of a graph consisting of one 2d-clique fulfil exactly the same formulas of quantifier
depth at most d as those of a graph which consists of two disjoint d-cliques. Nevertheless, it turns
out that it is indeed possible to combine the two approaches in the following sense. For every FO
formula ψ there are l and r such that A |= ψ if and only if it is possible to put l pebbles onto A
such that in the resulting structure all r-spheres fulfil the same FO formula ϕ. Put in another
way, every FO formula is logically equivalent to a formula of the form ∃x1, . . . , xl∀yϕ where ϕ
is r-local around y, i. e. quantification in ϕ is restricted to elements of the universe with distance
at most r from y. From this normal form one can easily derive normal forms for other logics
like monadic second-order logic. For existential monadic second-order logic we can show a bit
more. Every such formula is, on classes of connected structures, equivalent to a formula of the
form ∃X1, . . . , Xl∃x∀yϕ where ϕ is restricted as above. If every structure has an element which is
uniquely definable by a local formula, we can even achieve a formula of the form ∃X1, . . . , Xl∀yϕ.

As one application of the normal forms we get variants of the Ehrenfeucht game [Ehr61] for
first-order logic and existential monadic second-order logic in which the spoiler has only restricted
global access to the structures that are played. After a phase in which he can select some vertices
of the first graph (before having seen the other one) and one vertex of the other graph, in the
second phase all moves are restricted to the neighbourhoods of one vertex in each graph.

Another application concerns a form of automata on relational structures. It is well-known that
regular sets of strings can be obtained as projections of locally testable sets, namely the sets of
transition sequences of a (nondeterministic) automaton. Thomas [Tho91] used this idea to extend
the notion of recognizability to other objects like grids and graphs of uniformly bounded degree.
The normal forms allow to generalize the method of local testing further to sets of arbitrary
relational structures. Moreover, they maintain the correspondence to definability in a natural
logic.

The paper is organized as follows. In Section 2 we give basic definitions and fix some notation.
In Section 3 we show the normal form theorems. In Section 4 we define the simplified games
for first-order logic and monadic Σ1

1-logic. The analogous results for automata are presented
in Section 5. The ensuing automata models are also compared with the automata of [Tho91,
Tho97b, Tho97a] and [Cou90]. Section 6 contains a conclusion.
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2 Definitions and Notations
A relational signature σ is a finite set of relation symbols R, each with a fixed arity a(R), and
constant symbols c. We do not use function symbols. A σ-structure A consists of a universe
UA (the vertices of A), an a(R)-ary relation RA on UA, for every relation symbol R of σ and a
constant cA, for every constant symbol c of σ. All theorems in this paper are valid for infinite
and finite structures. We assume that all structures contain at least two elements.

Let the Gaifman graph of a σ-structure A have universe UA and edges between vertices a and b
whenever a and b occur in a common tuple of a relation of A. The distance δ(a, b) of the vertices
a and b of A is given by their (standard graph) distance in the Gaifman graph of A. For a tuple
b = b1, . . . , bl of vertices of A we define δ(a,b) := min{δ(a, bi) | i ≤ l}. For a tuple b = b1, . . . , bl
of vertices of A and r ≥ 0 we define Sr(b) := {a ∈ UA | δ(a,b) ≤ r}. We let Nr(b) (resp. Nr(a),
for a = a1, . . . , al) denote the substructure of A which is induced by the vertices of Sr(b) (resp.
Sr(a)) and has b (the ai) as distinguished elements.

Let Hd(A) denote the depth-d-Hintikka-type of A, i. e., the set of all FO sentences of quantifier-
depth at most d that hold in A [EF95]. Recall that Hd(A) contains only finitely many differ-
ent formulas w. r. t. logical equivalence. The elementary type of a tuple a1, . . . , ak of vertices
of A is the conjunction of all atomic σ-formulas with variables from x1, . . . , xk that hold in
〈A, a1, . . . , ak〉.

Now we are going to define our notions of locality, r-locality and basic locality. Informally, a
formula is r-local around its free variables x, if its truth depends only on Sr(x). More formally,
a FO formula ϕ(x,u) with free variables from x = x1, . . . , xl and u = u1, . . . , um is r-local
around x if all variables that are quantified in ϕ are bounded to Sr(x). I. e., if ∃yψ (resp. ∀yψ)
is a subformula of ϕ then ψ is of the form (δ(y,x) ≤ r) ∧ χ (resp. (δ(y,x) ≤ r)→ χ), for some
χ which is r-local around x. A formula is local around x if it is r-local around x for some r.
Here, (δ(y,x) ≤ r) is an abbreviation for the straightforward FO formula which expresses that
the distance of y from x is at most r. A formula ϕ is basic local around x if it is a Boolean
combination of formulas each of which is local around some variable xi. I. e., properties that are
expressed by basic formulas depend only on combinations of the properties of spheres. A formula
is ∃∗∀–local if it is of the form ∃x1, . . . , xl∀yϕ where ϕ is basic local around x1, . . . , xl, y. It
should be noted that in Gaifman’s terminology [Gai82] a formula is local around a variable x
only if x is its single free variable.

3 Normal Forms
By definition, every basic local formula around x is logically equivalent to a local formula around
x. The following lemma shows that the converse is also true. This will be an important tool in
the proof of the normal form theorem.

Lemma 3.1 Every first-order formula ϕ which is local around variables x = x1, . . . , xl is logically
equivalent to a formula which is basic local around x.

Proof. Let ϕ be a first-order formula with free variables x = x1, . . . , xl and u = u1, . . . , um
that is local around x. The proof is by induction on the structure of ϕ. If ϕ is an atomic formula,
it is basic local around x by definition. If ϕ is of the form ¬ψ or ψ1∨ψ2 then the statement holds
by the induction hypothesis.
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In the only remaining case, ϕ is of the form ∃y((δ(y,x) ≤ r)∧χ) for some r and some formula
χ which is local around x. By induction, χ is logically equivalent to a formula which is basic
local around x. By writing χ in disjunctive normal form, we get that χ is logically equivalent to
a formula of the form

∨
j

∧
i

χji, where, for some r′, every χji is r′-local around xi. Hence, ϕ is

logically equivalent to a disjunction of formulas

∃y((δ(y,x) ≤ r) ∧
∧
i

χi) , (*)

where every χi is r′-local around xi. In the following, we assume w. l. o. g. that ϕ is of the form
(*). In a sense, we have to distribute the quantification of y over the χi. The problem which
arises is that some of the xi might be close to each other, so that y might play a role for several
χi simultaneously. To get around this problem we choose, for every “cluster”C of vertices xi that
are close to each other, a representative v(C) such that quantification around any xi of C can
be replaced by quantification around v(C). More formally, we proceed as follows. We associate
with every structure A and tuple a = a1, . . . , al of vertices of A a graph G(A,a) with vertex set
V = {1, . . . , l} and edge set E, which contains the edge (i, j) whenever δ(ai, aj) ≤ R := r+r′+1.
We are going to construct, for every graph G on {1, . . . , l}, formulas θG and ϕG each of which is
basic local around x, such that, for every A and a it holds that

• A |= θG iff G(A,a) = G, and

• if G = G(A,a) then [A |= ϕG ⇐⇒ A |= ϕ].

Once we have established the existence of such formulas the statement of the lemma follows
immediately because ϕ ≡

∨
G(θG ∧ϕG), where the disjunction is over all graphs G on {1, . . . , l}.

Let in the following a graph G = (V,E) be fixed. The definition of θG is straightforward:

θG :=
∧
i∈V

(
∧
j∈V

(i,j)∈E

(δ(xi, xj) ≤ R) ∧
∧
j∈V

(i,j)/∈E

(δ(xi, xj) > R)) .

It is easy to see that, for every i, the i-th conjunct can be made R-local around xi. In order to
construct ϕG we choose from each connected component C of G a vertex v(C). Then ϕG can be
defined as ∨

C,α

(∃y[(δ(y, xv(C)) ≤ R|C|) ∧ α ∧
∨
i∈C

(δ(y, xi) ≤ r) ∧
∧
i∈C

χ′i,C ] ∧
∧
i/∈C

χ′i,C,α) .

Here, the disjunction is over all connected components C of G and all (finitely many) elementary
types α of x,u, y. If i ∈ C then χ′i,C is obtained from χi by making all quantifications R-local
around xv(C). If i /∈ C then χ′i,C,α is obtained from χi by

• replacing every atomic subformula that contains the variable y and a variable that is bound
in χi with false, and

• rewriting all other atomic formulas that refer to y according to α.
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These replacements assure that y does not occur in χ′i,C,α and that every χ′i,C and every χ′i,C,α
is local around xi. It should be pointed out that the internal subformula [· · · ] can only become
true if δ(, xi) ≤ r holds, for some i ∈ C, hence if δ(y, xj) ≤ r′+ 1 does not hold. This justifies the
replacement of atomic subformulas that contain the variable y and a variable that is bound in
χi with false. We note that already a smaller radius of y around xv(C) suffices if v(C) is chosen
closer to the “center” of C.

Theorem 3.2 Every FO formula is logically equivalent to a ∃∗∀–local formula.

Proof. Let Ψ be a first-order formula with free variables u = u1, . . . , um. First we are going to
show that Ψ is logically equivalent to a positive Boolean combination of ∃∗∀–local formulas. In
the following, if ϕ is r-local around its single variable, we write ∃rl xϕ(x) as an abbreviation for

∃x1, . . . , xl[
l∧
i=1

ϕ(xi) ∧
∧
i 6=j

(δ(xi, xj) > 2r)] .

Gaifman’s theorem implies that Ψ is logically equivalent to a positive Boolean combination of
formulas of the following three types.

1. ∃rl xϕ(x),

2. ¬∃rl xϕ(x), and

3. local formulas around u.

We are going to show that formulas of each of these types are logically equivalent to positive
Boolean combinations of ∃∗∀–local formulas. Formulas of type 1 are already ∃∗-local because
δ(xi, xj) > 2r can be easily expressed by a formula which is 2r-local around xi. A formula
ϕ(u) of type 3 is logically equivalent to ∃x(x = u ∧ ϕ(x)). As, by Lemma 3.1, ϕ(x) is logically
equivalent to a formula that is basic local around x we obtain again a ∃∗-local formula. We still
have to consider formulas of type 2. Let ψ ≡ ¬∃rl xϕ(x). ψ is logically equivalent to

¬∃xϕ(x) ∨
l−1∨
i=1

[∃rixϕ(x) ∧ ¬∃ri+1xϕ(x)] .

Of course, ¬∃xϕ(x) is equivalent to ∀x¬ϕ(x), which is of the required form. For every i, ∃rixϕ(x)∧
¬∃ri+1xϕ(x) is logically equivalent to

∃x1, . . . , xi∀y[
∧
i

ϕ(xi) ∧
∧
i 6=j

(δ(xi, xj) > 2r) ∧

∀z1, . . . , zi+1¬(
∧
j

(δ(zj ,x) ≤ 2r) ∧
∧
i 6=j

(δ(zi, zj) > 2r) ∧
∧
j

ϕ(zj)) ∧

¬((δ(y,x) > 2r) ∧ ϕ(y))] ,

(**)

expressing that there are x1, . . . , xi that fulfil ϕ, but
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• neither there is a y which fulfils ϕ and is far from all the xj ,

• nor there exist different z1, . . . , zi+1 all of which fulfil ϕ and are close to the xj .

As the [· · · ] part of this formula can be made local around x1, . . . , xi, y, it is logically equivalent
to a basic local formula around x1, . . . , xi, y by Lemma 3.1. We conclude that ψ is logically
equivalent to a ∃∗∀–local formula.

It remains to show that every positive Boolean combination of ∃∗∀–local formulas is logically
equivalent to a ∃∗∀–local formula. Consider two ∃∗∀–local formulas ψ1 ≡ ∃x1, . . . , xk∀yϕ1(x, y)
and ψ2 ≡ ∃x′1, . . . , x′m∀y′ϕ2(x′, y′). ψ1 ∧ ψ2 is equivalent to ∃x,x′∀y[ϕ1(x, y) ∧ ϕ2(x′, y)] and
ψ1 ∨ ψ2 is equivalent to

∃z, z′,x,x′∀y(z = z′ ∧ ϕ1(x, y)) ∨ (z 6= z′ ∧ ϕ2(x′, y)) .

In fact, by a closer inspection of Theorem 3.2, we can go one step further and show that local
quantification around one single variable is enough.

Theorem 3.3 Every first-order formula is logically equivalent to a formula of the form ∃x1, . . . , xl
∀yϕ(x, y), where ϕ is local around y.

Proof. We refer in the following to the threefold case distinction in the proof of Theorem 3.2.
Formulas of type 1 can be transformed into

∃x1, . . . , xl∀y
l∧
i=1

[y = xi→ (ϕ(y) ∧ ∀z((δ(z, y) ≤ 2r)→
∧
j 6=i

(z 6= xj)))] .

For formulas of type 3 we apply the same idea, obtaing a formula ∃x∀y(x = u∧ϕ′(x, y)), where ϕ′

is obtained by applying Lemma 3.1 and replacing every local subformula θ(xi) by y = xi→ θ(y).
For formulas of type 2 we first note that in (**) the subformulas of line 1 and 3 can be

transformed into the correct form easily. The subformula of the second line, which does not refer
to y, can be made local around x and therefore, again by Lemma 3.1, basic local around x. By
applying the same idea as in the cases 1 and 3 above, we obtain eventually a formula of the
correct kind.

There are straightforward analogues of Theorem 3.2 for other logics. Of special interest is the
case of monadic Σ1

1-logic, as quantification of unary relations does not change the locality prop-
erties of a structure. We get immediately that every monadic Σ1

1-formula is logically equivalent
to a formula of the form

∃X1, . . . , Xl∃x1, . . . , xm∀yϕ ,

where ϕ is local around y. For classes of structures that have a connected Gaifman graph we can
show even stronger normal forms. The basic idea is that global information about the structure
can be transported along the relations and collected in a designated place. This generalizes a
similar procedure in [Tho97b, Tho97a], where the transport is much more deterministic.
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Theorem 3.4 Let C be a class of structures with a connected Gaifman graph. Then the following
hold.

(a) On C every monadic Σ1
1 formula is equivalent to a formula of the form ∃X1, . . . , Xl∃x∀yϕ,

where ϕ is local around y.

(b) If there exists a formula ρ that is local around its one free variable such that, for every
structure A of C, A |= ∃!xρ(x) then on C every monadic Σ1

1 formula is equivalent to a
formula ∃X1, . . . , Xl∀yϕ, where ϕ is local around y.

Proof. We only give sketches of the proofs.

(a) Let ψ ≡ ∃X1, . . . , Xl∃x1, . . . , xm∀yϕ, where ϕ is basic r-local around y. We explain how
the xi can be eliminated in favour of one x. We have to find a way to distinguish m vertices
in a structure A. The idea is to guess a vertex x and m minimal paths p1, . . . , pm in the
Gaifman graph of A such that, for every i, pi starts in x and ends in xi. Note that we
view these graph as directed although the Gaifman graph is an undirected graph. Every pi
is encoded by two unary relations Yi, Zi. Yi contains all vertices of pi. As pi is a shortest
path we can conclude that x and xi have degree 1 w. r. t. pi and all other vertices of pi
have degree 2 w. r. t. pi. Zi is used to give pi an orientation. v ∈ Zi just in case v is the
j-th vertex of pi, for some j, (where x is the 0-th vertex) and j is congruent to one of 0,1,3
modulo 6.

It is straightforward that there exists a formula ρ(x, y) that is local around y such that
〈A,Y,Z, x〉 |= ∀yρ if and only if Y and Z encode m paths that have their starting point in
x. (Y and Z might also encode some directed cycles but this does not matter.) It remains
to show how in ϕ all references to variables xj can be replaced. All atomic formulas θ in
which a xj occurs together with y or with a variable that is bound in ϕ (around y!) can be
easily replaced by a formula ∃z((δ(z, y) ≤ r + 1) ∧ χi(z) ∧ θ′), where χi(z) tests that z is
the sink of pi (this can be checked 5-locally around z, hence (r + 6)-locally around y) and
in θ′ every occurrence of xj is replaced by z.

To replace atomic formulas that only refer to variables of x (and u, the free variables)
we proceed as follows. For every atomic formula α which only contains variables from x
and u we introduce a unary relation Tα. The intention is that Tα = UA in the case that
〈A,x,u〉 |= α and Tα = ∅ otherwise. Because A is connected, the formula

∀y[y ∈ Tα↔∀z((δ(z, y) ≤ 1)→ z ∈ Tα)]

checks that Tα contains either all or no vertices. It is also easy to check by a 6-local formula
around y (using some χi as needed) that Tα contains all vertices just in case the endpoints
of (some of) the m paths behave according to α.

(b) In the construction of part (a), x only occurs in θ. Instead of guessing x and paths that
start in x we can guess paths that start in the vertex that is distinguished by ρ.

Theorem 3.4 (b) can be generalized in a straightforward way to classes of structures with a
bounded number of connected components. In the respective generalization of Theorem 3.4 (a)
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the number of connected components bounds the number of existentially quantified FO variables
in the normal form. On the other hand, it can be seen by a simple game argument (cf. Section
4 below) that the set of two-vertex-graphs can not be characterized by a formula of the type
considered in Theorem 3.4 (a).

Of course, Theorem 3.2 is also true with ∀∗∃-local formulas in place of ∃∗∀-local formulas.
Although it is easy to see that ∃∗-local formulas do not capture all first-order properties (e. g.
they cannot express the property “every vertex is coloured black”), it follows from results of
Compton [Com83] that Boolean combinations (including negations!) of ∃∗-formulas do.

From Theorem 3.2 we can conclude that every first-order (and monadic Σ1
1) formula on graphs

(suitably represented by adjacency lists) can be evaluated by a nondeterministic Random-Access-
Machine with unit-cost measure in time O(ndO(1)), where n denotes the number of vertices and
d the maximal vertex-degree.

4 Games
Ehrenfeucht games – invented in [Ehr61] building on work of Fräıssé [Fra54] – are an important
tool for proving inexpressibility results in Mathematical Logic. In fact, in Finite Model Theory,
where only finite structures are considered, they are the major tool available (cf. [Fag97]). To
show that a given property P of finite structures is not expressible in FO logic it is enough
to prove that the duplicator, one of two players, has a winning strategy in the ordinary FO
Ehrenfeucht game for P (for a definition see e. g. [EF95]). Variants of Ehrenfeucht games are
available for proving inexpressibility results for many other logics, including second-order logics
[Ten75], existential second-order logics [Ten75, AF90], transitive closure logics [CM91] and finite
variable logics [Bar77, Imm82].

Proving the existence of a winning strategy for the duplicator is often very difficult. To sim-
plify such proofs the following approaches have been taken. There have been developed sev-
eral conditions that assure that the duplicator has a winning strategy on two given structures:
the Hanf-condition [FSV95], the Arora-Fagin condition [AF97] and the condition of Schwentick
[Sch96] (for a survey see [Fag97]). All of these conditions exploit the fact that FO logic can only
express combinations of local properties, i. e. properties of regions of bounded size. On the other
hand there have been attempts to make the game easier to play for the duplicator. An important
example is the invention of the Ajtai-Fagin game for existential second-order logic which allows
the duplicator to choose the second structure after the spoiler (the duplicator’s opponent) has
selected relations for the first structure. The idea behind that game can be used whenever all
formulas of a logic have an existential quantifier-prefix.

In this section we introduce local Ehrenfeucht games for FO logic and monadic Σ1
1 logic.

Additionally, we characterize the mentioned logics in terms of Hintikka-types (cf. Section 2).
First of all, we describe the local first-order Ehrenfeucht game for a class C of σ-structures. Like
the ordinary Ehrenfeucht game it is played by two players, called the spoiler and the duplicator.
It has three parameters, l, r and d and consists of three stages.

Stage 1 The duplicator chooses a σ-structure A ∈ C. The spoiler selects vertices x1, . . . , xl from
A. Then the duplicator chooses a σ-structure A′ /∈ C and vertices x′1, . . . , x

′
l from A′.

Stage 2 The spoiler chooses a vertex y′ from A′, then the duplicator chooses a vertex y from A.
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Stage 3 The spoiler and the duplicator play an ordinary d-round Ehrenfeucht game on the
structures 〈Nr(y), x1, . . . , xl〉 and 〈Nr(y′), x′1, . . . , x

′
l〉.

Here 〈Nr(y), x1, . . . , xl〉 denotes the structure that is induced by Sr(y) and x and has x1, . . . , xl
and y as distinguished elements. The spoiler wins the game if he wins the game of stage 3 in the
usual sense. Otherwise, the duplicator wins.

Theorem 4.1 Let C be a class of σ-structures. The following are equivalent.

1. C is first-order definable.

2. For some l, r and d, the spoiler has a winning strategy in the local FO Ehrenfeucht game
on C with parameters l, r and d.

3. There exists a set H of Hintikka-types such that, for some l, r and d, for every σ-structure A
it holds that A ∈ C if and only if there exist x1, . . . , xl ∈ A with {Hd(〈Nr(y), x1, . . . , xl〉) | y ∈
UA} ⊆ H.

Proof. (1) =⇒ (2): If C is first-order definable, by Theorem 3.2, there is a formula ∃x1, . . . , xl∀yϕ
that characterizes the structures of C. Furthermore ϕ is basic r-local around x, y, for some r.
Let d denote the quantifier-depth of ϕ. It follows in a straightforward manner that the spoiler
has a winning strategy in the local first-order Ehrenfeucht game on C with parameters l, r and d
(compare with [AF90]).

(2) =⇒ (1): From a winning strategy of the spoiler in the local first-order Ehrenfeucht game on
C with parameters l, r and d one can easily derive a winning strategy in the ordinary (l+1+r+d)-
round Ehrenfeucht game on C. The spoiler simply plays l+ 1 + r rounds according to his winning
strategy in the local game. The additional d rounds assure that the spoiler immediately has a
win if, in stage 3, the duplicator does not play in the d-neighbourhoods of y and y′.

(1) =⇒ (3): This follows immediately from Theorem 3.3.
(3) =⇒ (1): This holds because Hintikka-types can be described by first-order formulas.

The local FO Ehrenfeucht game can be easily adapted for the case of monadic Σ1
1-logic. The

resulting game has one additional parameter m. In stage 1 of the local monadic Σ1
1 Ehrenfeucht

game the spoiler chooses, before the duplicator chooses A′, unary relations X1, . . . , Xm and
vertices x1, . . . , xl in A and the duplicator has to choose corresponding relations X ′1, . . . , X

′
m

and vertices x′1, . . . , x
′
l in A′.

Theorem 4.2 Let C be a class of σ-structures. The following are equivalent.

1. C is monadic Σ1
1 definable.

2. For some m, l, r and d, the spoiler has a winning strategy in the local monadic Σ1
1 Ehren-

feucht game on C with parameters m, l, r and d.

3. There exists a set H of Hintikka-types such that, for some m, l, r and d, for every σ-
structure A it holds that

A ∈ C ⇐⇒ there exist unary relations X1, . . . , Xm and elements x1, . . . , xl

with {Hd(〈Nr(y), X1, . . . , Xm, x1, . . . , xl〉) | y ∈ UA} ⊆ H .
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The proof is an easy generalization of the proof of Theorem 4.1.
In a similar manner one can derive respective games from Theorem 3.4. Although we have not

used Theorems 4.1 and 4.2 to derive any new inexpressibility results we are optimistic that the
local Ehrenfeucht games will turn out to be a useful tool to get such results. One indication in
this direction is the fact that many of the inexpressibility proofs that are given in the literature
can be proved by using these games (e. g. [FSV95, Sch95]).

One particular example is the proof of Ajtai and Fagin [AF90], which has already been simplified
by Arora and Fagin in [AF97]. In both of these proofs the notion of the (r, d)-colour of a vertex
or an edge is used. As the graphs that were used in those proofs do not contain small cycles all
r-spheres are rooted trees. The definition assures that if two vertices have the same (r, d)-colour
their r-neighbourhoods have the same d-Hintikka-type. As in the construction of [AF90] both
structures have exactly the same multisets of (r, d)-colours Theorem 4.2 implies their result. It
should be noted that the additional choice of vertices x1, . . . , xl does not make the construction
of the graphs more difficult, as they can almost be treated like l additional unary relations with
the proviso that each of these colours appears in every graph exactly once.

5 Automata
The conditions (3) of Theorems 4.1 and 4.2 give rise to a generalized form of automata. In this sec-
tion we are going to introduce automata models for FO logic and monadic Σ1

1 logic, respectively.
Vaguely similar machine models are known for relational databases [Lei89, GPPdB94, AV95].
Informally the FO automaton works as follows. First it nondeterministically pebbles vertices
b1, . . . , bg of its input structure A, for some g. Then, for every vertex a of A, it inspects in a con-
stant number of steps (alternating between nondeterminism and parallelism) the neighbourhood
of a. Navigation through the neighbourhood is only along edges.

We now define the model more formally. Let σ be a relational signature. A first-order
σ-automaton M consists of a tuple (g, l, I, ϕ), where g ≥ 0 is the size of the global read-only
store, l ≥ 0 is the size of the local store, I is a finite sequence of instructions and ϕ is a test. The
store will hold a vector of (pointers to) elements of the structure. Instructions are of the form
〈any i, j〉 or 〈all i, j〉, where 1 ≤ i, j ≤ l. The test is a quantifier-free formula with variables
from x1, . . . , xl, y1, . . . , yg. A configuration (J,b,a) consists of a (possibly empty) sequence J of
instructions yet to be executed and the contents b and a of the global and local store, respec-
tively. Let b ∈ Al and v ∈ A. A configuration tree of M for b and v is defined as follows. It is a
rooted tree, directed from the root to the leaves, and has configurations of M as vertices. It has
the start configuration (I,b, vl) as its root. The leaves are terminal configurations (ε,b,a). An
inner vertex (ιJ,b,a) has

• one child (J,b,a′), where a′j is ai or a neighbour of ai and a′k = ak for every k 6= i, if ι is
〈any i, j〉, and

• all children (J,b,a′), where a′j is ai or a neighbour of ai and a′k = ak for every k 6= i, if ι is
〈all i, j〉.

A terminal configuration (ε,b,a) is accepting, if 〈A,a,b〉 |= ϕ(x,y), otherwise rejecting. A
configuration tree is accepting, if all its leaves are accepting. We say that M accepts A if there is
a b ∈ Ag such that for every v ∈ A there is an accepting configuration tree of M with b and a.
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A monadic Σ1
1 σ-automaton similarly consists of a tuple (Q, g, l, I, ϕ), where g, l, I, ϕ are

as before and Q is a finite set of states. It starts by nonterministically selecting a mapping
f : UA → Q (represented by unary relations Fq, one for each q ∈ Q). Afterwards it continues
like the FO automaton (where the input structure is extended by the Fq).

Theorem 5.1 A class of σ-structures is first-order definable if and only if it is accepted by a
first-order σ-automaton.

Proof. “only if”: By Theorem 3.3, C can be defined by a ∃∗∀–local formula ∃x1, . . . , xg∀yψ
(without free variables), where ψ is in prenex normal form with d quantifiers (r-local around y)
numbered from left to right with 1, . . . , d. Let l = d + 1 and let I consist of the subsequences
J1, . . . , Jd, where

• Ji is 〈any l, i〉 followed by r − 1 times 〈any i, i〉 (nondeterministic choice of an element of
distance ≤ r from a) if the i-th quantifier is existential, and

• Ji is 〈all l, i〉 followed by r − 1 times 〈all i, i〉 otherwise.

ϕ is the quantifier-free part of ψ.
“if”: Consider an automaton (g, l, I, ϕ). We use one variable yi for each of the l local pointers.

We assign inductively a formula ψJ to every suffix J of I as follows:

• ψε ≡ ϕ

• ψιJ ≡ ∃y((δ(yi, y) ≤ 1)∧∃yj((yj = y)∧ψJ)) if ι is 〈any i j〉. (The extra variable y ensures
that this construction also works for i = j.)

• ψιJ ≡ ∀y((δ(yi, y) ≤ 1) ∧ ∀yj((yj = y) ∧ ψJ)) if ι is 〈all i j〉.

The acceptance condition is then equivalent to

∃x1, . . . , xg∀y∃y1, . . . , yl(
∧

1≤m≤l

(ym = y) ∧ ψI) .

Corollary 5.2 A class of σ-structures is monadic Σ1
1 definable if and only if it is accepted by a

monadic Σ1
1 automaton.

For structures of bounded degree, the monadic Σ1
1 automata generalize those of Thomas [Tho91,

Tho97b, Tho97a]. In this case a Hintikka-type of a small neighbourhood boils down to an
isomorphism type, called tile. The automata of Thomas check that each vertex possesses a
neighbourhood of one among a finite number of allowed isomorphism types. Moreover, some
of them must occur at least a certain number of times and others at most a certain number of
times. (This is the remainder of Hanf’s condition, from which it is actually derived.) Inspecting
Theorem 3.3 again with this in mind, one finds that ϕ describes all admissible tiles, while the
center y runs over all vertices. The variables x are used to distinguish a finite number of vertices.
It is therefore clear that it suffices to require that some tiles (namely those with a center in
x) occur exactly once. Moreover, for structures with a connected Gaifman graph, Theorem 3.4
implies that one occurrence constraint of this form suffices.
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We would also like to compare monadic Σ1
1 automata to the algebraic automata introduced by

Courcelle [Cou90]. On general finite relational structures these automata are very powerful. They
capture MSO logic with a built-in linear order [Cou92, Cou96]. And on grids, for example, this
inclusion is strict. More suitable for a comparison are sets of unordered, unranked trees, which we
simply call trees in the sequel. On these structures, the recognizing power of algebraic automata is
exactly the same as definability in monadic Σ1

1 logic with a built-in linear order, as will be shown
below. Hence the difference between algebraic automata and monadic Σ1

1 automata corresponds
to the difference between monadic Σ1

1 with and without a built-in linear order, two logics which
have different expressive power [Cou90]. (For example, the linear order allows to count branches.)
That such a linear order comes into play on an intentionally unordered structure is obviously due
to the fact that trees must be encoded as terms before they are input to an automaton. The
parallel inspection of local neighbourhoods in monadic Σ1

1 automata avoids such side-effects. This
is remarkable because Theorem 3.4 (b) applies and ensures that monadic Σ1

1 automata do not
need a global store in this case. Therefore, global information about a tree can be collected at
the root without referring to some arbitrary order.

We now introduce trees and algebraic automata more formally. (Compare [Cou90].) A tree
contains a distinguished vertex, its root. Edges are directed from the root to the leaves. They
carry labels from a finite set LE . Vertices are labelled with sets of elements from a finite set LV .
There is no a priori upper bound on the degree of a vertex. In particular, the degree of a vertex
is not determined by its labelling. The class of trees (up to isomorphism) over LV , LE can be
obtained inductively as follows. A few simple trees are assumed to be given. They consist solely
of their root, which can be unlabelled or carry a label l ∈ LV . We denote these one-vertex trees
by constants 1 and l, respectively. Then certain operations allow to construct new trees out of
one or two others. For every label l ∈ LE there is a unary operation l̂ adding to its argument a
new (unlabelled) root and an l-labelled edge to the old root. Finally, a binary operation · glues
its arguments at their roots, taking the union of their respective sets of root labels. It is easy to
see that these operations can generate all trees and only those. In general, there is more than
one way to obtain a particular tree.

An algebraic automaton recognizing a set of trees is an ordinary deterministic tree automaton
working on the inductive representations of the trees (their derivation trees with respect to a
grammar generating all trees). It is required that it accepts or rejects a tree independently of
its representation, that is, all runs on different representations of the same tree produce the
same answer. (Because logical formulas are also compatible to these inductive representations,
algebraic automata are useful to obtain decision procedures.) Formally, an algebraic automaton
consists of a finite set A = {1, . . . ,m} of states, a transition function δ : ({1} ∪ LV ∪ {l̂ | l ∈
LE} ×A ∪A× {·} ×A)→ A and a subset F ⊆ A of accepting states. δ turns A into an algebra
with respect to the tree-building operations: We write t for δ(t), t ∈ {1}∪LV , l̂(a) for δ(l̂, a), and
a1 · a2 for δ(a1, ·, a2). The information contained in all the possible runs of the automaton can
conveniently be expressed as a homomorphism from the set of all terms into A. We may assume
that the homomorphism is surjective, that is, A does not contain superfluous states. Therefore,
because results do not depend on representations, A is a commutative monoid with respect to ·
and has 1 as its neutral element. Moreover, l · l = l for every l ∈ LV . For all a1, . . . , an ∈ A,
n ≥ 0, the value of

∏n
i=1 ai only depends on the “Parikh image” ‖a1 · · · an‖ ∈ Nm, where the
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ith component is |{k | ak = i}|. This means that there is a mapping f : Nm → A such that∏n
i=1 ai = f(‖a1 · · · an‖).

Theorem 5.3 A set of trees is recognizable (by algebraic automata) if and only if it is definable
in monadic Σ1

1 logic with the help of a built-in linear order.

That is, we consider monadic Σ1
1 formulas which may use a linear order on the vertices of a

tree but must remain invariant if the linear order is replaced with a different one.
We adapt the proof in [Cou90], which started from slightly different operations and aimed at

a slightly different statement. There is no substantial new idea, only the defining formula has a
more restricted form.
Proof. The only-if part was shown in [Cou92, Cou96]. Since our operations are derivable from
the general (so-called quantifier-free definable) operations on graphs [Cou92], a tree which is
recognizable as a graph is a fortiori recognizable with respect to tree operations. For the if-part
consider a tree T with set of vertices V , set of edges E ⊆ V × V and root r. Let Vl ⊆ V be the
set of vertices labelled with l ∈ LV , and let El ⊆ E be the set of vertex pairs which are connected
by an edge labelled with l ∈ LE . We write Tv for the subtree of T rooted at v ∈ V . Of course,
Tr = T . We determine a mapping ∂ : V → A inductively, moving from the leaves to the root.
Since we can choose the representation of T such that

Tv =
∏
l∈LV
v∈Vl

l ·
∏
l∈LE
v′∈V

(v,v′)∈El

l̂(Tv′) ,

we have

∂(v) =
∏
l∈LV
v∈Vl

l ·
∏
l∈LE
v′∈V

(v,v′)∈El

l̂(∂(v′))

=
∏
l∈LV
v∈Vl

l · f(‖〈l̂(∂(v′)) | l ∈ LE , v′ ∈ V, (v, v′) ∈ El〉‖) .
(∗)

Acceptance of T is equivalent to the existence of ∂ satisfying (∗) and the condition ∂(r) ∈ F .
This can be expressed in monadic Σ1

1 logic with the help of a built-in linear order. As usual,
the existence of pairwise disjoint sets Xi = ∂−1(i), i ∈ A, is required. Besides that, each set⋃
v∈Xi Yi,v, i ∈ A, where

Yi,v = {v′ ∈ Xj | j ∈ A, (∃l ∈ LE) ((v, v′) ∈ El ∧ l̂(j) = i)}

is partitioned into qi sets such that they can be used (together with the built-in linear order) to
determine the cardinality of Yi,v modulo qi for every v ∈ Xi. For suitable qi ≥ 1, i ∈ A, this is
enough to compute f , hence express (∗).

For every a ∈ A, the sequence a0, a1, a2, . . . becomes ultimately periodic. Let pa ≥ 0, qa ≥ 1
be the smallest values such that apa = apa+qa . It is easy to see that f−1(a) is a finite union of
sets of the form

{(n1, . . . , nm) ∈ Nm | ni = p̄i + kiq̄i, ki ≥ 0}
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with p̄i, q̄i ≥ 0. More precisely, for each i ∈ A independently, either p̄i < pi and q̄i = 0, or
pi ≤ p̄i < pi + qi and q̄i = qi. Therefore, f−1(a) can be described by a first-order formula for
every a ∈ A.

6 Conclusion
We introduced a normal form for first-order logic that formalizes the intuition that this logic is
only able to express properties of the form “there are some important parts of the structure that
fulfil given conditions and everywhere else nothing forbidden happens”. Although our normal
forms are mainly useful when structures of unbounded diameter are considered (otherwise the
whole structure is contained in the neighbourhood of all of its vertices and local formulas are
just general first-order formulas) their translation into the language of automata gives uniform
means of evaluating first-order properties “along the edges” of structures. On the other hand it is
applicable to structures of unbounded degree, even in situations where the Hanf argument does
not work.

Our main open question is whether the normal forms have other meaningful applications and
to find new inexpressibility results with the help of the simplified games. Another question is
whether automata models can be designed that inspect the neighbourhoods of vertices in a more
deterministic fashion.

Acknowledgements

This investigation was inspired by a talk that was given by Wolfgang Thomas in Mainz in De-
cember 1996. We would like to thank him, Clemens Lautemann, Juha Nurmonen, Ron Fagin for
many fruitful discussions and suggestions. Thanks also to the anonymous referees.

References
[AF90] M. Ajtai and R. Fagin. Reachability is harder for directed than for undirected finite

graphs. Journal of Symbolic Logic, 55(1):113–150, 1990.

[AF97] Sanjeev Arora and Ronald Fagin. On winning strategies in Ehrenfeucht–Fräıssé
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