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A vertex partition of a graph into disjoint subs&(s is said to be &,4-free coloring if each color clasg induces

a subgraph without a chordless path on four vertices (denoté&d)byExamples oPy-free 2-colorable graphs (also
calledP4-bipartite graphs) include parity graphs and graphs with “f@8 like P4-reducible and’s-sparse graphs.

We prove that, giverk > 2, P4-FREE k-COLORABILITY is NP-complete even for comparability graphs, and for
Ps-free graphs. We then discuss the recognition, perfection and the Strong Perfect Graph Conjecture (SPGC) for
P4-bipartite graphs with speci&-structure. In particular, we show that the SPGC is trudfebipartite graphs with
oneP;s-free color class meeting eveRy at a midpoint.
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1 Introduction

A graphG is perfectif, for each induced subgrapgh of G, the chromatic number dfl is equal to the

cligue number of. Claude Berge introdued perfect graphs and conjectured around 1960’s that a graph is
perfect if and only if it has no induced cycle of odd length at least five or the complement of such a cycle.
Nowadays this conjecture is known as the Strong Perfect Graph Conjecture (SPGC) and is still open. We
refer to [4] for more information on perfect graphs.

A measure of a graph’s imperfection has been considered by Brown and C@rneil [8] as follows. Given a
graphG and a positive integdsq, a maprt: V(G) — {1,...,k} is aperfect k-coloringof G if the subgraphs
induced by each color clags (i) is perfect. Thus, a graph is perfect if and only if it is perfect 1-
colorable. Note also that, by the Perfect Graph Theorem [33], a dBaishperfectk-colorable if and
only if its complemenG is perfectk-colorable. In this paper we consider a particular example of perfect
colorings. Our discussion is motivated by the fact that the perfection of a graph depends only on the
structure of its induced paths on four vertices (denoteB4fysee [36]. In this sense, graphs with empty
Ps-structure B4-free graphs) form a somewhat based graph class in discussing graph’s perfection; they
are indeed perfect by a result due to Seinsche [38] (see alsolIiing [31]).
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Now, we call a perfedt-coloring of a graplies-free k-coloringf the subgraphs of that graph induced by
the color classes afg-free. Note that th@, is self-complementary, hen€is P4-freek-colorable if and
only if G is P4-freek-colorable. For general graphs, Brovin [6] proved fRaFREE k-COLORABILITY is
NP-complete fok > 3, and in [1], Achlioptas proved a more general result implying the NP-completeness
of P4-FREE k-COLORABILITY for k> 2. In the next section we shall prove that, for any intdger 2,
P4-FREE k-COLORABILITY is NP-complete even for (particular) perfect graphs, andPieiree graphs.

In Section 3 we shall give some examplespffree 2-colorable graphs, which we also daftbipartite
graphs Many well understood classes of perfect graphs consifig-bipartite graphs only. In Sections 4
and 5, perfecPs-bipartite graphs and the SPGC fey-bipartite graphs with speci&-structure will be
discussed.

The complement of a grap® is denoted byG. Graphs having no induced subgraphs isomorphic to a
given graphH are calledH-free If X is a set of vertices i, G[X] is the subgraph o6 induced byX,
andNg(X) is theneighborhoodf X in G; that is, the set of all vertices outsideadjacent to some vertex
in X. If the context is clear, we simply writh(X). The path orm verticesvy, vo, ..., v, with edges
ViVit1 (1 <i < m)is denoted byPy, = viv2 - --vin. The verticess; andvpy, are theendpointsof that path,
the other vertices are thmidpoints The cycle ormverticesvy, Vo, ..., Vi With edgesviviyi (1 <i<m)
andvyvy is denoted bYCr, = ViVo - - - Vim. Cox1 andCyy, 1, k > 2, are also calleddd holesrespectively,
odd antiholes Graphs without odd holes and odd antiholes are c@kede graphs

2 NP-completeness results
We now consider the following problem for fixed positive intelger
P;-FREEK-COLORABILITY Is a given graph Rfree k-colorable?

We show in this section that, for fixdd> 2, P4-FREE k-COLORABILITY is NP-complete for perfect
graphs. Notice thal,-free 1-colorability (that is, recognizing,-free graphs) is solvable in linear time
[C4]. We shall reduce the following NP-complete problemli([37], see aiso [16))-tBREEK-COLORABI-
LITY.

NOT-ALL-EQUAL 3SAT Given a collectiorC of clauses over setV of Boolean variables such that each
clause has exactly three literals. Is there a truth assigment for V such that each claddemat least
one true literal and at least one false literal?

A comparability graplG is one which admits a transitive orientatiGn If (x,y) and(y,z) are arcs of,
then(x,z) is also an arc o6. It is well known that comparability graphs are perfect. A typical example
of comparability graphs are-free graphs, as proved by Jungi[31].

Lemma 1 Given a comparability graph G, it is NP-complete to decide whether G-lsijpartite.

Proof. The problem is clearly in NP. We shall reduceoNALL-EQUAL 3SAT to our problem. Let
C ={Cy,Cy,...,Cn} be any set of claus&y = (i1, Ci2, Giz) given as input for dT-ALL-EQUAL 3SarT,
where the literalsi (1 <i<m,1 <k < 3) are taken from the set of variablgs We shall construct a
comparability graptG which has a partition into tw®-free graphs if and only i is satisfiable. For
convenience, we call a vertex partition of a graph into Rydree graphs @ood partitionof that graph.
For each variable € V let G(v,V) be the graph shown in Figufg 1 (left).

Observation 1 G(v,v) has a good partition. Every good partition of(&v) must contain the labelled
vertex v in one part and the labelled vertin the other part>
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For each claus€;, let G(C;) be the graph shown in Figufg 1 (right).

Observation 2 G(GC;) has a good partition. Every good partition of G) must contain two of the labelled
vertices ¢, Gz, Gz in one part and the other labelled vertex in the other part. Moreover, every partition of
{ci1,Ci2, Ci3} into two non-empty subsets can be extended to a good partitio(Gf.G>

<l

Fig. 1: The graph$3(v,V) (left) andG(G;) (right)

The proofs of the observations will follow by inspection, hence are omitted. We now create the graph
G = G(C) from the graph$s(v,V) (v € V) and the graph&(Ci) (1 <i < m) as follows: For eaclr € V
and each K i < m, connect the vertex € {v,v} in G(v,V) with the vertexcy in G(C;) by an edge if,
and only if,x is the literalcy in the clauseC;. Thus, inG, everyci (1 < k < 3) has exactly one neighbor
outsideG(C;) which is one of the labelled verticasv in a graphG(v,v) (with ci € {v,v} in the given
NOT-ALL-EQUAL 3SAT instance).

Suppose thab has a good partition into twBy-free graphsA andB. Then it is easy to see that, for all
veV,if xe {v,v} is adjacent t@j, thenx andci are in different parté\, B. We define a truth assigment
for NOT-ALL-EQUAL 3SAT as follows:

vis true if and only if the labelled vertexin G(v,V) belongs toA.

By Observatiorf]l, this assignment is well-defined. By Observdtion 2, it is clear that each@lhaseat
least one but not all true literals.

Conversely, suppose that there is a truth assigment satisfyomgAN L -EQUAL 3SAT. Then letA(v,V),
B(v,V) be a good partition oB(v, V) such thatA(v,v) contains the true vertex ifw, v} andB(v,V) contains
the false vertex of them. Such a good partition exists by Obsen/gtion 14; LBt be a good partition of
G(Gi) such thatA; contains the false literals vertices {nj1, Ciz, Ciz} andB; contains the true vertices of
them. Such a good partition exists by Observafion 2, and the fact that@vieag at least one but not all

true literals. Set
A=JAvvu |J A, B=JBMVVWU [J B.
veV 1<i<m veV 1<i<m
Clearly,V(G) = AUB. Now, eachA(v,V) and eachh; is aPs-free graph, and no edge exists between
two parts of theA(v,V)'s andA;’s, henceA is aPs-free subgraph oB. similarly, B is Py-free. ThusG is
Ps-bipartite.

To complete the proof, note that eaGlfv,v) and eachG(C;) admits a transitive orientation such that
the labelled vertices, v are sinks and the labelled verticgs, ¢i», Ci3 are sources. To obtain a transitive
orientation ofG, direct the edgesy, x € {v,v} andy € {ci1,Ci2,Ciz} with x =y in the given instance of
NOT-ALL-EQUAL 3SaT, fromy to x. O
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Theorem 1 Given a comparability graph G and an integepk2, it is NP-complete to decide whether G
is P4-free k-colorable.

Proof. The case&k = 2 is settled by Lemm@ 1. We shall make use of a construction for vertex-critical
P4;-free k-colorable graphs in[7] to reduce the cdse 2 to the cas&k > 3. LetH be a comparability
graph, and leG be the graph obtained from an indudegdby substituting three (arbitrary) vertices by the
graphH. ThenG is clearly a comparability graph, and it can easily be seenGhiatP;-free k-colorable

if and only if H is Ps-free (k— 1)-colorable. O

We shall remark that Browni[6] and Achlioptas [1] showed the NP-completen&skHEEK-COLOR-
ABILITY for fixedk > 3 by reducingk-COLORABILITY to P4-FREEK-COLORABILITY . Sincek-COLOR-
ABILITY can be decided in polynomial time when considering perfect graphsi{See [17]), Brown’s and
Achlioptas’s reduction cannot be used in proving NP-completenefs-BREE k-COLORABILITY for
perfect graphs.

Since a graph i$4-free k-colorable if and only if its complement i€;-FREE k-COLORABILITY is
NP-complete for cocomparability graphs as well. Graphs which are both comparability graphs and co-
comparability graphs are callggermutation graphs We do not know the complexity d%-FREE Co-
LORABILITY on permutation graphs.

Problem 1 Find a polynomial time algorithm for solving;H-REE k-COLORABILITY on permutation
graphs, or prove that the problem is NP-complete for the class of permutation graphs.

Notice that, using the construction mentioned in the proof of The@rem 1, one can show that for every fixed
k > 1 there areé’s-freek-colorable permutation graphs which are Rptfree (k — 1)-colorable.
We now are going to show thBj-FREEK-COLORABILITY is NP-complete fofCy4,Cs)-free graphs. As
a consequenc®,-FREEk-COLORABILITY is also NP-complete fds-free graphs. This is best possible
in the sense that the problem is trivial fiey-free graphs.

Lemma 2 Given a(Cy4,Cs)-free graph G, it is NP-complete to decide whether GiidbPartite.

Proof. We shall reduce NT-ALL-EQUAL 4SaT to our problem (the NP-completeness obMNALL-
EQuAL 4SaT follows easily from that of MT-ALL-EQUAL 3SaT). Let C = {C41,Cy,...,Cn} be any
set of clause€ = (Ci1,Ci2,Ci3,Cia) given as input for MT-ALL-EQUAL 4SaT, where the literalik
(1<i<m,1<k<4)are taken from the set of variabls We may assume that,

for everyv € V, no clauseC; contains bottv andv. Q)

We now construct 4C4,Cs)-free graphG which has a partition into tw&,-free graphs if and only i”

is satisfiable. For each variablec V let G(v,v) be the graph shown in Figufg 2 (left). For each clause
Ci, let G(C;) be theP, shown in Figurd]2 (right). We create the graph= G(C) from the graph$5(v,v)
(veV) and the graph&(Ci) (1 <i < m) as follows: For eaclr € V and each K i <m, connect the
vertexx € {v,v} in G(v,V) with the vertexci in G(C;) by an edge if, and only if(is the literalcy in the
clauseC;. Clearly, the construction and assumptifin (1) guaranteektainnot contain an inducét}, or

Cs.

Now, we can show, similar to Lemnfia 1, tHats Ps-bipartite if and only ifC is satisfiable. )

Theorem 2 Given a(C4,Cs)-free graph G and an integerk 2, it is NP-complete to decide whether G is
P4-free k-colorable.
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Fig. 2: The graphs5(v,v) (left) andG(C;) (right)

Proof. The cas&k = 2 is settled by Lemmp 2. L&t> 3. LetH be a(C4,Cs)-free graph. Construct a graph
G as follows: Takek+ 2 disjoint copiess;, .. ., Gk.2 of H andk+ 2 new vertices, . . ., k.2, and connect
every pairv;,vj (1<i# j <k+2) by an edge and connect every vertexGnwith v; (1 <i <k+2) by
an edge. ClearlyG is also(C4,Cs)-free.

Suppose thatl is P,-freek-colorable. TherG is P4-free (k+ 1)-colorable by coloring the vertices's
with one new color.

Suppose, conversely, thatis P4-free (k+ 1)-colorable. The is P4-freek-colorable. If not, consider
two distinct verticesy,vj € {v1, ..., Viks2} with the same coloc in a Ps-free (k+ 1)-coloring of G. Since
H is notPs-freek-colorable, the coloec must appear in every copy 6f. Say, for somé # j, x € G; and
y € G; are colored by. But thenxvvjy is a monochromati®, in G, a contradiction. Thugil must be
P,;-freek-colorable, as claimed. O

SinceCy-free graphs ares-free, Theorenf]2 implies thé&-FREE k-COLORABILITY is NP-complete
for Ps-free graphs, and, by considering complementationPfefree graphs as well. This is best possible
in the sense thay-FREE k-COLORABILITY is trivial for P4-free graphs.

Also, Theoren{]2 implies thd®-FREE k-COLORABILITY is NP-complete fokCs,Cy)-free graphs as
well. Notice that graphs which are boffts,C,)-free and(Cs,Cy)-free, i.e., split graphs, arg-free
2-colorable.

3 Examples of P4-bipartite graphs

Ps-bipartite graphs generalize in a very natural way the well understood bipartite graphs, split graphs and
cographs. Below we are going to list other well structured (perfect) graph classes that Eg+itgnartite
graphs only. Se€[5] for a survey on these and related graph classes.

PROPER INTERVAL GRAPHS Interval graphs without induceld; 3 are called proper interval graphs.
In [2], it was shown that every proper interval graph can be partitioned intdPgafoee subgraphs. In

particular, proper interval graphs aeg-bipartite. Notice that, for everly, there exists an interval graph
that isPs-freek-colorable, but noPs-free (k— 1)-colorable.

DISTANCE-HEREDITARY AND PARITY GRAPHS Distance-hereditary graphs are those graphs in which

for all verticesu, v, all induced paths connectingandv have equal lengthi124]. Iri][9], Burlet and Uhry
introduced the bigger class of parity graphs; these graphs are defined by the condition that all induced
paths connecting andv have equal parity. Le® be a parity graph, and letbe a vertex inG. In [9,

Lemma 4] (see alsa_[35]) it was shown that, for eadhe setN' (v) of vertices at distance exaciljrom
vinduces &4-free subgraph is. Thus,|JN? (v) and|JN?*1(v) is aP4-free bipartition ofG. We thank
Stephan Olariu and Luitpold Babel for their hint to this fact on parity graphs.
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In order to give other well known classes that consisPgbipartite graphs only we need the term
of p-connectedness introduced by Jamison and Olariu [30]. A graph is galtednectedf, for every
partition of its vertex set into two nonempty, disjoint subsets, there is an indosith vertices in both
parts. Ap-componenbf a graph is a maximgb-connected subgraph of that graph. Clearly, a graph is a
Ps-bipartite graph if and only if each of ifs-components is &;-bipartite graph.

P4-REDUCIBLE AND P4-SPARSE GRAPHS Py-reducible graphs are those graphs in which each vertex
belongs to at most one induc®y [?6]. In [20], Hoang introduced the bigger class®fsparse graphs;
these are defined by the condition that each set of at most five vertices induces at m@st brveas
shown in [29] that everyp-component of &;-sparse graph is a split graph. Since split graphsPare
bipartite, allP;-sparse graphs aR-bipartite.

P4-EXTENDIBLE AND P4-LITE GRAPHS Ps-extendible graphs128] are those graphs in which gach
component has at most five vertic&:-lite graphs|[2i7] are those graphs in which every induced subgraph
with at most six vertices either has at most ths or is a (special) split graph. It was shown lin [3] that
every p-component of &;-lite graph is a split graph or has at most six vertices. Notice that all graphs
with at most six vertices aré;-bipartite, hencé,-lite andP4-extendible graphs arfé-bipartite.

COGRAPH CONTRACTIONS In [25] Hujter and Tuza introduced the graphs caltedjraph contrac-

tions These are graphs obtained from a cograph by contracting some pairwise disjoint stable sets and
then making the ‘contracted vertices’ pairwise adjacent. It was shownlin [32] that a graph is a cograph
contraction if and only if it admits a clique meeting ed®tin a midpint and eacRs in both endpoints of

thePs. In particular, cograph contractions d@gbipartite graphs.

Notice that the complements of the graphs mentioned above arBjal8partite graphs.

4 Which P4-bipartite graphs are perfect?

Let G be a graph whose vertices are colored red and white (each vertex receives only one célor). A
abcdof G is said to be of type

(or RRRR) ifa,b,c,d are red,

(or WRRR) ifais white andb, c,d are red,
(or RWRR) ifa, c,d are red and is white,
(or RRWW) if a,b are red and,d are white,

1

2

3

4

5 (or RWRW) if a,c are red andb,d are white,
6 (or RWWR) ifa,d are red andb, c are white,
7 (or WRRW) if a,d are white and, c are red,
8 (or RWWW) if ais red andb, c,d are white,

9 (or WRWW) if a,c,d are white and is red,

10 (or WWWW) if a,b,c,d are white.
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Clearly, G is P4-bipartite if and only if its vertices can be colored red and white in such a way thaf no
is of type 1 or 10. We also writ& = (RW, E) for P4-bipartite graphs = (V, E) with partitionV = RUW
such thaG[R] andG|W] areP,-free subgraphs if.

For non-empty subs&C {2 3,...,9}, we call a graplG a S-graphif the vertices ofG can be colored
red and white such that eveBy of G is of typet € S ThusS-graphs ard>s-bipartite. Bipartite graphs
(respectively, complements of bipartite graphs) are, for instafidegraphs (respectivelyf4}-graphs).

Many classes of perfed¥-bipartite graphs have been described in terms of typaaf In [21],
Hoang proved that “oddPs-bipartite graphs” are perfect; here tRg-bipartite graphG = (RW,E) is
odd if every P, of G has odd number of vertices R (hence inW). Thus, oddPs-bipartite graphs are
exactly the{2,3,8,9}-graphs. Chétal, Lenhart and SbihiTl3, Theorem 2], and independently Gurvich
[T9] extended oddPs-bipartite graphs to a larger class of perf€gtbipartite graphs; they proved that
all {2,3,4,5,8,9}-graphs are perfect. These results and more related resultsl in‘[12, 13] motivate the
following question:

What are the maximal subse®sC {2,3,...,9} with the property that al&-graphs
are perfect?

We shall point out that the complete answer to this question already follows by the resiitsfin [12, 13].

Theorem 3 Let S be a maximal subset{#, 3,...,9} such that all S-graphs are perfect. Then S is exactly
one of the follwing sets:1S= {4,5,6,7},S = {2,3,4,5,8,9},% = {3,4,5,6,8}, and S = {2,4,5,7,9}.
Proof. First, color the odd hol€y in the way RRWRRWRRW. Then eveBy of this Cy is of type 3 or

7, and evenP, of the complement of thi€g is of type 2 or 6. Second, color the odd h@gin the way
WWRWWRWWR. Then every, of thisCg is of type 6 or 9, and everly, of the complement of thi€g

is of type 7 or 8. Therefore, as odd holes and odd antiholes are imperfect,

none of{3,7},{2,6},{6,9} and{7,8} is a subset o8.

Now, it is straightforward to show th&must be contained in one of the s&i$$, S3, or S.

Finally, all S-graphs are perfeci[12], af,-graphs are perfeci[13, Theorem 2] (see aiso [19]), all
Ss-graphs and alf;-graphs are perfect{l3, Theorem 6]. O

We now turn to the recognition problem fBj§-bipartite graphs addressed in Theoffgm 3. Given a graph
G, we consider the system of linear equations

WH+X+Yy+2z=2 (W, x,y,zinduce aP; in G).

Itis easy to see th@& is aS;-graph if and only if this system of linear equations hag &8olution. Thus,
Si-graphs can be recognized in polynomial time. AlSggraphs can be recognized in polynomial time;
the task reduces to the 28 problem as follows.

For eachP; wxyzin G, let (xVy) A (WV 2) be a Boolean formula.

The 231 formula forG is the product of such all formulas corresponding toRiein G. Now, if Gis a
Ss-graph with aPs-free coloringV (G) = RUW, then the truth assigment= true< v € W satisfies our
2SaT formula. If, conversely, our 2& formula is satisfied, thew := {v:vis true},R:= {v: vis fals¢g
is aP4-free 2-coloring ofG such that every, of G is of typet € S3. Since a graph is &-graph if and
only if its complement is &s-graph,S;-graphs can be recognized in polynomial time, too.

The recognition problem d&-graphs remains open; see alsd [10].
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Problem 2 Given a graph G. Can you find in polynomial time affee 2-coloring of G such that every
P, of G is of type t€ S, or prove that such a coloring does not exist?

We remark that it can be shown that Problgm 2 is NP-compledgis replaced bys, U {6}, or replaced
by S U{7}.

5 Py4-bipartite graphs and the SPGC

The results in[[21[71.3719] mentioned in previous section will be implied by the truth of the following
Conjecture 1 The SPGC is true forfbipatite graphs.

Conjecture[Jl has been proved for some particular cases. The following theorem is a consequence of
previously known results (see algal[23]). It proves Conjediure Pfdree graphs with one color class
being a stable set or a clique.

Theorem 4 Let G have a stable sébr a clique) T such that T meets every & G. If G has no odd hole
(respectively, no odd antihglgthen G is perfect. O

Also, in [23], Conjecturg|1 is proved fd¥-bipartite graphs with one color class inducingPa, C4,Cy)-
free graph and meeting evely in certain way as follows:

Theorem 5 Let G have a subset T V(G) such that
(i) T induces a threshold graph,
(i) T meets everyHin an endpoint, or meets every i a midpoint.

If G is Berge, then G is perfect. O

TherorenTi suggests the following weaker conjecturéjdvipartite graphs with one color class consist-
ing of vertex-disjoint cliques.

Conjecture 2 The SPGC is true forbipatite graphs with onedfree color class.

The main result of this section is the following theorem which is related to Thergrem 5 and proves Con-
jecture[® for the case when tRg-free color class meets tigs in a certain way.

Theorem 6 Let G have a subset T V(G) such that
(i) T induces a Rfree graph,
(i) T meets everyHn an endpoint, or meets every i a midpoint.

If G is Berge, then G is perfect.

The proof of Theorerf 6 relies on several known resultBgfiee graphs and minimal imperfect graphs.
First, Seinsche138] proved that

aP4-free graph or its complement is disconnected. (2

Two verticesx,y aretwinsif, for all other vertices, zis adjacent tocif and only if zis adjacent ty. The
next property oPy-free graphs is well known and can be derived frgm (2).

EveryP;-free graph with at least two vertices has a pair of twins. 3)
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A graph isminimal imperfectf it is not perfect but each of its proper induced subgraphs is. The well
known Perfect Graph Theorem due to sz implies that

the complement of a minimal imperfect graph is also minimal imperfect. 4)

Two (nonadjacent) verticesandy form aneven-pairif every induced path connectingto y has even
length. Meyniel [34] showed that

no minimal imperfect graph has an even-pair. (5)

In particular, no minimal imperfect graph hadveo-pair which is a pair of vertices,y such that every
induced path connectingto y has exactly two edges.

A cutsetSof G is called astar-cutsetrespectively, atable-cutsetrespectively, @omplete multipartite-
cutsetif G[§ has a universal vertex, respectively, has no edge, respectively, is a complete multipartite
graph (a complete multipartite graph is one whose vertex set can be partitioned into staBle setS,
such that, foi # j, every vertex irf§ is adjacent to every vertex ). Chvatal [T1] showed that

no minimal imperfect graph has a star-cutset. (6)
In particular,

no minimal imperfect graph has a clique-cutset, @)
and

in a minimal imperfect graph, no vertex dominates another vertex. (8)

Here, the vertexx dominateghe vertexy if N(y) C N(x) Ux. The next property of minimal imperfect
graphs was found by Tucker]39] saying that

no minimal imperfect graph has a stable-cutset, unless it is is an odd hole. 9)
Finally, Cornigjols and Reed[15] showed that
no minimal imperfect graph has a complete multipartite-cutset. (10)

Proof of Theorenfl6 Suppose thal meets every, in an endpoint. Color the verices T with color
red and vertices outside with color white. TherG has onlyPss of types 3, 4, 5, 6, or 8. In particulds,
is anSs-graph, hence perfect (see Theoigm 3).

Let us consider the case wh&émneets every, in a midpoint, and assume thats a minimal imperfect
Berge graph. Further, we may assume that

G—T is disconnected.

Otherwise, by [(2)G — T is disconnected and sb would be a stable-cutset or a complete multipartite-
cutset ofG, contradicting[(4) and{9) of (IL0). In particular, BY (7),

T consists ofn > 2 vertex-disjoint cliques.
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For convenience, we callR, bad if its both midpoints are outsid€. By our hypothesis, n®&; in G is
bad.

Casel. G-T hastwo adjacent twinsx.
In this case, we claim that

X,y form an even-pair irG.

To see this, consider an induced p&tk: xx; - - - %y, k> 2, in G connectingk andy. As x,y are twins in
G —T, x¢ must belong tar. Furthermore,

P has no edge iG[T].

For if P has an edge iG[T], then, since5[T] is a complete multipartite graph amge T, this edge must
bexixz, andP is thePy xx1x2y. But thenxyyxx is a badP, in G, a contradiction.

P has no edge iG—T.

Otherwise, let be minimal such thaxxi.1 is an edge irG—T. Note thati > 1. Setxg :=x. Then
Xi—1 € T andx_» € G—T. But thenx_1X11X_2X; is a badP, in G, a contradiction.
Thus,P has even number of edges, as claimed. This contradlicts (4)Jand (5), and Case 1 is settled.

CAse2. G-T has no adjacent twins.
Write G[T] = CLUCy U - - UCy, with vertex-disjoint clique€,Cy, ...,Cy. Recall tham > 2.

Observation 3 For all cliques C=Cj, 1 <i <m, and all component H of G T, if N(C) NH = 0, then
H C N(C).

Proof of Observatioi)3 Assume the contrary, and Iett be a component d& — T and letC be a clique
of T such thaN(C)NH # 0 andH — N(C) # 0. Letx € N(C)NH having a neighboy in H —N(C), and
letv € C be a neighbor ox.

By (8), there exists a vertexadjacent toy but not tox. ze N(C) NH, otherwisezyxvwould be a bad
P4. The same argument shows tia@&ndz have the same neighbors@ Moereover,

forallue T —C, if uis adjacent tg, thenu is adjacent to botl andz. (12)
(Elseuyxvor uyzvwould be a badPy), and
forallue T, uis adjacent tx if and only if u is adjacent t@. (12)

This is clear foru € C. Supposau € T —C is adjacent tax but not toz, then (IL) implies that is
nonadjacent ty and souxyzis a badP,, a contradiction. The case whens adjacent t@ but notx can
be settled in a similar manner. Thug;](12) holds.

We now show thak, z form a two-pair. LetP = xxX2--- Xz be a chordless path connectingndz,
and assume th&t> 2. By (I2),x1 € H, hencex; is adjacent ty (becauseH is Py-free). x; also belongs
toH, otherwise, by[[11)x, andy are nonadjacent and, by {12} andz are nonadjacent. But theax;yz
is a badPy.

Thus,xg, X2 € H. But thenxgxoxa X (or zxexi x if k= 2) is a badP,. This contradiction proves Observation
B.o
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By (§) andm> 2, G—T has a nontrivial componeht. By (@), H has twinsx,y which are nonadjacent
by the hypothesis in this case. Write

N =N (X) =Nn(y), R=H-N—{xy}.

SinceH is connectedN is nonempty.

Observation 4 For all vertices ve T, if v is adjacent to x or y but not both, then v is adjacent to all
vertices in N.

Proof of Observatiof4 Otherwise, there would be a b&g.<
By (B), there exists a vertexX adjacent tax but nonadjacent tg, and a vertex/ adjacent toy but
nonadjacent ta. Asx,y are twins inG— T, X' andy’ belong toT.

Observation 5 Such verticesand y can be chosen in different cliqueg C;.

Proof of Observatiofi]5 Assume that there are verticad in a cliqueC of T such that is adjacent to
X but not toy, andb is adjacent tgy but not tox. AsC is not a clique-cutset db (see [I7)), some vertex
of H has a neighbor in another clig@@® # C of T. By Observation]3x has a neighboc € C'. ¢ cannot
be adjacent tg, otherwisecxabycwould be aCs, contradicting the minimality o&s. Now, Observatiofi 5
follows by settingCi =C', Cj =C, X = ¢, andy =b.<&

From now on, lek’ € C;, y € C;j with i # j. By Observatiorj]4x’ andy are adjacent to all vertices in
N.

Observation 6 For all C € {Cy,Cs,...,Cn}, C# G or C #Cj, and for all ze N, Nc(x) € Nc(2) and
Ne(y) € Ne(2).

Proof of Observatiof6 If there is a vertex € Nc(x) — Nc(2), then, by Observatiofj 4,must be adjacent
toy. But thenvyzx (if C # Cj) or vxzy (if C # Cj) is a badPs. Thus,Nc(x) C Nc(z). By symmetry,
Ne(y) € Ne(2). ©

Observation 7 N cannot have a vertex that is adjacent to all vertices in N z*.

Proof of Observatiofi] 7 Such a vertexx* would dominatex (contradicting [(8)): Ifvis a neighbor ok in
T, andv € C for a cliqueC € {C1,Cy,...,Cn}, then, a<C; andC; are different cliquesC # C; or C #C;,
hence, by Observatidih 8 must be adjacent t&'. ¢

By Observatioifi]7, there exist two nonadjacent vertige® in N. We are going to show that,z, form
a two-pair. This contradiction t¢](5) settles Case 2.

Consider an induced path= ztity- - -tz in G, and assume th&t> 2. Then

t1 must belong toN.

For, ift; € R, thent;zixz would be a badpy; if t; € C, sayC # Cj, thent;z:x2 (if t; is not adjacent ta)
ortixzy (if t1 is adjacent t) is a badP,, a contradiction. The casee C; is similar. Now,

t> must belong tar,

otherwise,z;titots would be a badPy (settyq := 2). Thus,t; € C for a cliqueC of T, sayC # C;.
Moreover,

t2 is adjacent tox andy,
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otherwisef,zxz or tazoyz (if to andz are adjacent), dbtixz or tortyz (if t; andz, are nonadjacent)
would be a badPs, a contradiction.

But thentoxzy' is a badPs. The casé; € C; is similar. Thus, there is no induced path of lengtl2
connecting« andy, and sax, y form a two-pair. The proof of Theorefh 6 is complete. O

The class of perfect graphs described in Theofem 6 contaif-&iée graphs, split graphs, cograph
contractions, complements of cograph contractions, strofgbtable graphs, complements of strongly
P;-stable graphs [([23]), bipartite graphs, and complements of bipartite graphs. In particular, this new
class is not contained in BIR[L1]), not in the class of strict-quasi parity graphs{[34]). We do not know
whether there is a perfect graph described in Thediem 6 that is not quasi-parity ([34]). Also, we shall
remark that these new perfdej-bipartite graphs do not belong to any class of the class&afaphs,
i=1,...,4, described in Theoref 3. This can be seen as followsGllat the graph obtained from the
Cs by subdividing the three edges not belonging to a triangle @has nine vertices). The@ satisfies
the conditions of Theoremm 6 with consisting of the two disjoint triangles, bGtis not anS-graph, for
anyi=1,...,4.

To conclude the paper, we remark that Fonlupt (§8e [22]) conjectures that no minimal imperfect Berge
graph contains a cutset that inducd¥dree graph. Clearly, Conjectufg 2 is implied by Fonlupt's conjec-
ture together with[{2) and{]L0).
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