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TheP4–structure of a graphG is a hypergraphH on the same vertex set such that four vertices form a hyperedge inH
whenever they induce aP4 in G. We present a constructive algorithm which tests in polynomial time whether a given
4–uniform hypergraph is theP4–structure of a claw–free graph and of (banner,chair,dart)–free graphs. The algorithm
relies on new structural results for (banner,chair,dart)–free graphs which are based on the concept ofp–connectedness.
As a byproduct, we obtain a polynomial time criterion for perfectness for a large class of graphs properly containing
claw–free graphs.

Keywords: Claw-free graphs, reconstruction problem,P4-structure,p-connected graphs, homogeneous set, perfect
graphs.

1 Introduction
Let H = (V,E) be a 4–uniform hypergraph with verticesV and hyperedgesE . We consider therecon-
struction problemwhich asks for a graphG = (V,E) whoseP4–structure is equal toH . More precisely,
is there a graphG such that four vertices fromG induce aP4 (that is, a chordless path on four vertices)
if and only if these four vertices induce a hyperedge inH ? If the answer is yes, how can we find such
a graphG? This problem has been settled for several classes of graphs including trees [7, 10], bipartite
graphs [2], block graphs [4], line graphs of bipartite graphs [15] and line graphs [1].

In this paper we shall provide a polynomial–time algorithm which solves the reconstruction problem
for claw–free graphs (that are the graphs containing no induced copy of aK1,3), and for BCD–free graphs
(that are the graphs containing no induced copy of abanner, achair, or adart) shown in Figure 1

Our algorithm relies on new structural properties of BCD–free graphs which are obtained by a thorough
study of theirP4–structure. The results are based on the concept ofp–connectedness of graphs, which has
proved in the past as an extremely powerful tool for the purpose of graph decomposition and for the
structural and algorithmic study of graphs with a simpleP4–structure (see e.g. the survey paper [3]).
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dartchairclaw banner

Fig. 1: Claw, banner, chair, and dart

The original motivation for the reconstruction problem stems from results concerning the perfectness of
graphs. The need for a succinct certificate of perfectness and the observation that odd cycles have unique
P4–structure inspired Chvátal to conjecture that a graph is perfect if and only if it has theP4–structure of
a perfect graph [8]. This conjecture has been proved by Reed and is known as the Semi–Strong Perfect
Graph Theorem [14].

As a byproduct, we will point out a consequence for the classC of graphs having theP4–structure of a
claw–free graph, the most interesting case of BCD–free graphs. First note that graphs belonging toC need
not be claw–free. In fact,C contains the complements of claw–free graphs (and thus is significantly larger
than the class of claw–free graphs). This follows from the observation that a graph and its complement
have the sameP4–structure. However,C contains also many graphs such that neither the graph nor its
complement are claw–free.

Since claw–free graphs are not perfect in general, graphs belonging toC need not be perfect. However,
the Semi–Strong Perfect Graph Theorem implies that the graphG ∈ C is perfect if and only if a claw–
free graphP4–isomorphic toG is perfect. Now, since the perfectness of claw–free graphs can be tested
efficiently [9], we obtain in this way a criterion for perfectness for graphs inC : GivenG∈ C , construct the
hypergraphH representing theP4–structure ofG, and then reconstruct a claw–free graphH havingH as
its P4–structure and use the algorithm in [9] for testing perfectness ofH, and thus for testing perfectness
of G.

However, a problem remains open: To describe the graphs belonging toC . That is, characterize graphs
P4–isomorphic to a claw–free graph. GraphsP4–isomorphic to a tree, a forest, a bipartite graph, a split
graph, respectively, are described in [5, 6, 13].

In the next section we recall the notions ofp–connected graphs and of homogeneous sets which are
important tools in our discussion. In Section 3 we study thep–connected components of BCD–free
graphs, which are of particular interest for the reconstruction problem. In Section 4 we develop the main
idea for the reconstruction ofp–connected BCD–free graphs. In Section 5 we present the algorithm
as a whole. The first step consists of the identification of special types of graphs. The second step is an
incremental procedure which tries to find some suitable starting graph and successively adds the remaining
vertices.

2 Basics
We assume familiarity with standard graph–theoretical notions as in [11]. In the following, aPk always
stands for aninduced pathon k vertices andk− 1 edges. Following [12], a graphG = (V,E) is p–
connectedif for every partition ofV into nonempty disjoint setsV1,V2 there exists aP4 containing vertices
from both sets in the partition. Such aP4 is termed ascrossingbetweenV1 andV2. The p–connected



Recognizing the P4–structure of claw–free graphs and a larger graph class 129

componentsof a graph are the maximal inducedp–connected subgraphs. Note that thep–connected com-
ponents are closed under complementation and are connected subgraphs of bothG andG. Furthermore,
it is easy to see that each graph has a unique partition into itsp–connected components.

A p–connected graph is calledseparableif its vertex setV can be partitioned into two nonempty disjoint
setsV1 andV2 in such a way that each crossingP4 has its midpoints inV1 and its endpoints inV2. This
partition is commonly written as(V1,V2) and called theseparationof G. It is obvious that the complement
of a separablep–connected graph is also separable. The separation(V1,V2) of G becomes(V2,V1) in G.

A subsetH of V with 1< |H|< |V| is calledhomogeneousif every vertex outsideH is either adjacent
to all vertices fromH or to none of them. A homogeneous setH is maximalif no other homogeneous set
properly containsH. The graphG∗ obtained from ap–connected graphG by shrinking every maximal
homogeneous set to one single vertex is called thecharacteristic graphof G. Clearly, G∗ is also p–
connected.

The notions ofp–connectedness and homogeneous set will be the basic tools for the study of theP4–
structure of BCD–free graphs. In [2], this approach has already turned out to be very useful for recognizing
theP4–structure of bipartite graphs.

3 The structure of BCD–free graphs
We start with an observation about homogeneous sets inp–connected BCD–free graphs. It turns out that
these sets are of a very simple structure.

Proposition 3.1 Every homogeneous set in a p–connected BC–free graph is a clique.

Proof. Let H be a homogeneous set in ap–connected graph. We consider aP4 which is crossing between
H andV −H. Clearly, thisP4 contains precisely one vertex fromH. If H contains two nonadjacent
vertices, then there is a chair (if theP4 has an end–point inH), or a banner (if theP4 has a mid–point in
H). This proves the claim. 2

For further properties of BCD–free graphs, we need the notion of aspider¶. This is a graph consisting
of a clique of size at least two (theinner vertices) and a stable set of equal size (theoutervertices) such
that every vertex of the clique has precisely one neighbor in the stable set (each such pair of vertices is a
leg). Furthermore, there is one additional vertex, called theheadof the spider, which is adjacent precisely
to the inner vertices (see Figure 2(a)).

For our purposes it suffices to study the case where the graph contains a stable set with at least three
vertices (the recognition of theP4–structure of triangle–free graphs has been solved in [2]; this immedi-
ately implies an algorithm for graphs containing no stable set with three vertices). Thereby, the following
variants of spiders will play a special role. Aspider with a long legis a spider where one leg is replaced by
aP3 or aP4. In other words, we subdivide one end–edge by one or two vertices. Adouble–spiderconsists
of two spiders where certain pairs of outer vertices are identified (see Figure 2(b)). Finally, a3–sunis a
cycle consisting of six vertices and three chords which form a triangle.

Theorem 3.2 Let G be a p–connected BCD–free graph. Ifα(G)≥ 3 then precisely one of the following
statements holds:

¶ Graphs which are defined in a quite similar way and which are called thin and thick spiders play a crucial role in the theory of
p–connected graphs, see [3]
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(b) A double–spider

Fig. 2: Spiders and Double–Spiders

(i) G results from a 3–sun or from a headless spider with at least three legs, by replacing the vertices
by cliques;

(ii) G results from a spider with a long leg or from a double–spider, by replacing the vertices by cliques
(the heads of the spiders may be missing);

(iii ) G contains one of the graphs from Figure 3 as an induced subgraph.

Because of the long and technical proof, we will divide Theorem 3.2 into two Lemmas 3.3 and 3.4
below, according to whether the graph contains aP5 or not. Theorem 3.2 then follows from these lemmas
and Proposition 3.1.

Lemma 3.3 Let G be a p–connected BCD–free graph withα(G)≥ 3. If G is P5–free then G∗ is a headless
spider with at least three legs or a3–sun.

Proof. It easily follows from Proposition 3.1 thatα(G∗)≥ 3 (note that aP4 and a stable set inG contain
not more than one vertex from each homogeneous set). LetS denote a maximum stable set andK the
remaining vertices inG∗. Then|S| ≥ 3 holds.

We denote byB the bipartite subgraph ofG∗ containing only the edges betweenS and K. By the
maximality ofS, every vertexx of K has at least one neighbor inS. Hence

1≤ dS(x) for all x∈ K, (1)

with dS(x) denoting the number of neighbors ofx in S. On the other side, sinceG∗ is connected, every
vertexa of Smust have at least one neighbor inK, i.e.

dK(a)≥ 1 for all a∈ S. (2)

Case 1. B is disconnected.

First we show that
dS(x) = 1 for all x∈ K. (3)
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Fig. 3: The starting graphs for the reconstruction procedure

Otherwise letdS(x) ≥ 2 for a vertexx ∈ K anda,b be two neighbors ofx in S. We denote byBi the
component ofB containingx. Let c ∈ S be a vertex belonging to a different componentB j . A shortest
path betweenx andc in G∗ consists of at most four vertices, otherwise there would be someP5. On the
other side, such a path consists of at least four vertices, otherwisex would be adjacent to a vertex from
B j which implies a chair centered inx. Let xyzcbe a shortest path. Note thatz is nonadjacent to botha
andb (becausea,b andc belong to different components ofB), andy must be adjacent to precisely one of
a,b (otherwiseG∗ would have a chair or a dart). We can assume w.l.o.g. thatb andy are adjacent. Since
c∈ B j andy∈ Bi , these vertices must be nonadjacent. This provides a contradiction since nowaxyzcis a
P5 in G∗.

HenceB consists of at least three components, each containing precisely one vertex fromS. Consider
one of these components, sayBi , and leta be the vertex fromBi ∩S. We claim that, inG∗,

every vertexx∈ Bi ∩K has at least one neighbor outsideBi . (4)
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Otherwise letH contain all vertices fromBi without neighbors outsideBi . In particular,a belongs toH.
SinceG∗ contains no homogeneous sets there must be some vertex outsideH, sayz, which distinguishes
two vertices fromH. It is clear thatz belongs toBi and is adjacent toa and nonadjacent to another vertex
from H, sayx. Let y be a neighbor ofz outsideBi andc the neighbor ofy in S. Thenxazycis aP5 in G∗,
which is a contradiction.

Now we show that, inG∗,

every vertexx∈ Bi ∩K has a neighbor ineveryother componentB j . (5)

Otherwise letx be nonadjacent toB j . By (4) we know thatx has at least one neighbory outsideBi , say in
Bk. Let a andb be the neighbors ofx andy in Sand letc∈ B j ∩S. We consider a shortest path betweenb
andc. Clearly, this must be aP4, sayby′zc(wherey = y′ may be possible). Now a shortest path between
a andc in the graph induced by{a,b,c,x,y,y′,z} contains aP5. This is a contradiction.

Finally we prove that
dK(a) = 1 for all a∈ S. (6)

Otherwise letH contain all neighbors ofa. SinceH is not a homogeneous set, there must be a vertex
outsideH, sayz, which distinguishes two vertices fromH. Let x,x′ ∈ H such thatz is adjacent tox and
nonadjacent tox′. Suppose thatx,x′ ∈ Bi andz∈ B j . By (5) we know thatx′ must have a neighbory in Bk.
Denote byb andc the neighbors ofy andz in S. Note thaty andzmust be nonadjacent since otherwise we
obtain a chair centered iny. Now a shortest path betweenb andc in the graph induced by{a,b,c,x,x′,y,z}
contains aP5. This is again a contradiction.

Hence every component ofB consists of one vertex fromSand one vertex fromK. Now it follows from
(5) thatK is a clique and thereforeG∗ is a headless spider with at least three legs.

Case 2. B is connected.

First we show that
dS(x)≥ 2 for all x∈ K. (7)

Assume that there is a vertexx ∈ K with dS(x) = 1. We can assume that the neighbora ∈ S of x is
not adjacent to all vertices inK (otherwise exchangea andx, i.e. setS := (S−{a})∪ {x} andK :=
(K −{x})∪ {a}; note thatx is not adjacent to all vertices fromK since otherwise{a,x} would be a
homogeneous set; ifB should now be disconnected then we are in Case 1). We will separate the discussion
into two subcases, according to whether there is inB aP6 with x as an end–point. In each case we will get
a contradiction.

Case 2.1. B contains an induced P6 starting at x.
Let xaybzcbe such aP6 in B. Thenx,y,z∈ K anda,b,c∈ S. Now,

y andz are adjacent,

otherwiseaybzcwould be aP5 in G∗, and

x cannot be adjacent to bothy andz,

otherwiseb,c,x,y,z would induce a dart. Ifx is adjacent toz then there is a banner induced bya,c,x,y,z.
If x is nonadjacent to bothy andz thenxayzcis aP5. So we have

x is adjacent toy and nonadjacent toz.
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Now, as{a,x} is not homogeneous, there is a vertexv which distinguishesa andx. If v is adjacent toa
thenv cannot be adjacent to bothb andc. Otherwise there is a chair. Therefore,v is nonadjacent toz (else
xavzbor xavzcwould be aP5), and also nonadjacent toy (elsev,a,x,y,z would induce a dart). But then
vayzcis a P5 (if v is nonadjacent toc), or xavczis a P5 (otherwise). This contradiction shows thatv is
adjacent tox. Again,v cannot be adjacent to bothb andc (else there is a chair atv). Therefore,v cannot
be adjacent toy (elsev must be adjacent tob andz becauseG has no dart; but thenczvxais aP5 in G∗),
and hencev is nonadjacent toc (elsecvxybwould be aP5). Now, v,x,y,z,c induce a banner or aP5. This
final contradiction settles Case 2.1.

Case 2.2. There is no induced P6 in B starting at x.
Among all neighbors ofa in K choose a vertexy with maximum|NS(y)|.

AssumeNS(y) = S, and consider two verticesb,c in S−{a}. Note thatxandyare nonadjacent otherwise
there is a chair. As{a,x} is not a homogeneous set, there is a vertexv which distinguishesa andx. Now,
v cannot be adjacent to bothb andc, otherwisea,b,c,v,x would induce a chair. Say,v is nonadjacent tob.
But thena,b,x,y,v induce a dart (ifv is adjacent toy), or a chair or banner (otherwise). Thus,NS(y) 6= S.

Let c be a vertex inS−NS(y), and consider aP4 = xazcin B (recall that there is no longer induced path
in B betweenx andc). By the choice ofy, there exists a vertexb in Sadjacent toy but nonadjacent toz.
We note that, inG∗,

y andz are adjacent,

otherwisebyazcwould be aP5, and

x is adjacent toy if and only if it is adjacent toz,

otherwise there is a dart. Now, consider a vertexv∈ K−N(a). Then

v cannot be adjacent to bothb andc,

otherwisexaybvcwould be aP6 in B starting atx.

Case 2.2.1. v is nonadjacent to b and adjacent to c
In this case,v cannot be adjacent to bothy andz, otherwisea,b,v,y,z would induce a dart. On the other
hand,v must be adjacent toy or z, otherwisebyzcvwould be aP5. If v is nonadjacent toz thenb,c,y,zand
v induce a banner. Thus we have

v is adjacent toz and nonadjacent toy.

Moreover,
v is nonadjacent tox,

otherwisex must be adjacent toy (elsebyaxvwould be aP5), hence also toz. But thenbyxvcis aP5. Now,
sinceG∗ has no homogeneous set, there is a vertexw which distinguishesv andc.

Assume first thatw is adjacent toc. Then

w is nonadjacent toz,

otherwisew must be adjacent toy (elsey,z,c,v,w would induce a dart), and toa (elseaywcvwould be a
P5), and tob (elsebywcvwould be aP5). But thena,b,c,w andv induce a chair. Moreover,

w is nonadjacent toa,



134 Luitpold Babel and Andreas Brandstädt and Van Bang Le

otherwisew is nonadjacent tob (elsea,b,c,w andv would induce a chair). But thenb,c,y,zandw induce
aP5 or a banner. Therefore,

w is nonadjacent toy,

otherwiseaywcvwould be aP5: But thenaybwcis aP5 (if w is adjacent tob, or byzcwis aP5 (otherwise).
Thus, we must have

w is nonadjacent toc and adjacent tov.

Then
w is nonadjacent toz,

otherwisew must be adjacent toa andy (elsea,c,v,z,w or y,c,v,z,w would induce a dart), and tob (else
bywvcwould be aP5). But thena,b,c,v andw induce a chair. And

w is nonadjacent toy,

otherwisew must be adjacent tob (elseb,y,z,v,w induce a banner), and toa (elsebwvzawould induce a
P5). But thena,b,c,v andw induce a chair.

Now, byzvwis a P5 (if w is nonadjacent tob), or ybwvcis a P5 (otherwise). This final contradiction
settles Case 2.2.1. By symmetry, the case wherev is adjacent tob and nonadjacent toc cannot occur.

Case 2.2.2. v is nonadjacent to both b and c
Let d be a neighbor ofv in S. If d is adjacent to bothy andz thend,a,y,z,c induce a dart. Ifd is adjacent
to precisely one ofy,z thend,y,z,b,c induce a chair. Thus,

d is nonadjacent toy andz.

Consider aP4 = xawd in B. We have seen thatw∈ K−{y,z}. Moreover,

w is nonadjacent tob andc,

otherwisexaybwdor xazcwdis aP6 in B starting atx, and

w is adjacent toy andz,

otherwisebyawdor czawdwould be aP5 in G∗. Now we are in the Case 2.2.1 by replacingc by d andz
by w. Case 2.2.2 is settled, and (7) is completely proved.

Now we show that

no two vertices fromK have the same neighborhood inS. (8)

Let H denote the set of all vertices fromK which have the same neighbors inS. If |H| ≥ 2 then, sinceH
is not a homogeneous set, there must exist a vertexz outsideH which distinguishes two verticesx andy
from H, sayz is adjacent tox and nonadjacent toy. If z is nonadjacent to two vertices inNS(x) = NS(y)
then there is a banner or a dart. Thus,z is nonadjacent to at most one vertex inNS(x). If z is nonadjacent
to the vertexa∈ NS(x) then|NS(x)| = |NS(y)| = 2, otherwise two vertices inNS(x)−{a} together with
x,z,a would induce a dart. By (7),z is adjacent to a further vertexc∈ S−NS(x). But thenaybzcis aP5

whereb is the vertex inNS(x)−{a}. Thus,z must be adjacent to all vertices inNS(x). Sincez /∈ H, there
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must be a vertex inS−NS(x) adjacent toz. This vertex together withz,x and two vertices inNS(x) induce
a dart. This contradiction proves (8).

Next we prove that

every two vertices fromK have a common neighbor inS. (9)

Assume the contrary and letx,y∈K with disjoint neighborhoods inS. Considera,b∈NS(x), c,d∈NS(y).
SinceG∗ contains no chair,x andy are nonadjacent. SinceG∗ contains noP5, a shortest path betweenx
andy consists of three or four vertices. Assume first thatxzyis a shortest path. Thenzmust be adjacent to
exactly one vertex from{a,b}, sayb (otherwise there is a chair or a dart), and to exactly one vertex from
{c,d}, sayc (by the same reason). But nowaxzydis aP5. Hence a shortest path is of the formxzz′y. If z
or z′ belongs toS, sayz, thenz′ must be adjacent toa or b (else there is a chair). But then there is a banner.
Thus,z andz′ both belong toK. Now, if a is adjacent toz′ thenz′ must be adjacent toc andd (otherwise
xaz′yc or xaz′yd would be aP5). But thenx,a,z′,c andd induce a chair. Hencea,b are nonadjacent toz′,
and so,z must be adjacent to botha andb (otherwiseaxzz′y or bxzz′y would be aP5). But thena,b,x,z
andz′ induce a dart. This contradiction proves (9).

Finally, we claim that
dS(x) = 2 for all x∈ K. (10)

AssumedS(x) ≥ 3 for somex∈ K. As G∗ is p–connected, there is some vertexy∈ K−{x}. Moreover,
by (8) and (9),NS(x)∩NS(y) 6= /0, and at least one ofNS(x)−NS(y), NS(y)−NS(x) is nonempty. Thus, if
|NS(x)∩NS(y)| ≥ 2 then there is a banner (ifx andy are nonadjacent) or a dart (otherwise). If|NS(x)∩
NS(y)| = 1 then bothNS(x)−NS(y) andNS(y)−NS(x) are nonempty where the first one contains, by
assumption, at least two vertices. But then there is a chair. This proves (10).

Now let a,b,c∈ Sandx,y∈ K such thatx is adjacent toa,b andy is adjacent tob,c. It is clear thatx
andy must be adjacent, otherwise there is aP5. Note that there must be further vertices inG∗, otherwise
G∗ is not p–connected. It follows from (8) and (9) that there are either verticeszi , 1≤ i ≤ k, each being
adjacent tob and some vertexdi ∈ S, or precisely one vertexz which is adjacent toa andc. Now both
{x,y,z1, . . . ,zk} and{x,y,z} must induce a clique, otherwise there is again aP5. In the first caseG∗ is not
p–connected since there is noP4 containingb. In the second case we obtain a 3–sun. 2

Lemma 3.4 Let G be a p–connected BCD–free graph. If G contains an induced P5 then precisely one of
the following statements holds.

(i) G∗ is a spider with a long leg, or a double–spider;

(ii) G contains one of the graphs from Figure 3.

We will make use of the following observation in proving Lemma 3.4.

Observation 3.5 Let m≥ 5 be a fixed integer. Let H be a BCD–free graph having no homogeneous set.
Let P= v1v2 · · ·vm be an arbitrary induced path in H. Then precisely one of the following statements
holds.

(i) H contains one of the graphs from A1,A2,A3,A4,A7,A8,A9 and A11 from Figure 3;
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(ii) For any vertex v outside P and any2≤ k≤ m−1, {v,vk} is not a homogeneous set in the graph
H[P+ v] induced by P∪{v}. Moreover, if H has no Pm+1 then{v,vk} is not a homogeneous set in
H[P+v] for all k.

Proof. (of Observation 3.5) Assume that (i) is false. Suppose there is somek such that{v,vk} is a
homogeneous set inH[P+v]. Then, sinceH has no homogeneous set, there is a vertexw outsideH[P+v]
which distinguishesv andvk. We may assume thatw is adjacent tovk and nonadjacent tov.

First, consider the casek = 1 , i.e. v is adjacent tov2 and nonadjacent to allv j , j ≥ 3. Thenv must be
adjacent tov1 otherwisev,v1,v2,v3,v4 would induce a chair. Now,w cannot be adjacent tov3 otherwise
there is aPm+1 starting atv (if w is nonadjacent to anyv j , j ≥ 4), or a chair (ifw is adjacent to av j for
some j ≥ 5), or anA1 or A4 induced byv1, . . . ,v5 andw (if w is adjacent tov4 and nonadjacent tov5).
Therefore,w is nonadjacent tov2 otherwise there is a dart, and sow is also nonadjacent tov4 otherwise
v,v1, . . . ,v4 andw would induce anA2. SinceH does not contain aPm+1, there is a smallestj, 5≤ j ≤m,
such thatw is adjacent tov j . Then j = 5 otherwise there is anA7 or A9 or A11. Now, if m≥ 6 then there is
a chair (ifw is nonadjacent tov6) or anA8 (otherwise). Thereforem= 5. But thenvv1wv5v4v3 is aPm+1.
This final contradiction shows that{v,v1} cannot be a homogeneous set inH[P+ v]. By symmetry, the
casek = m is also settled.

Consider the casek = 2. Note thatv andv2 are adjacent otherwise there is a banner. AsH has no dart,
w must be adjacent to at least one ofv1 andv3. Assume first thatwv1 andwv3 both are edges ofH. Then
w must be adjacent tov4 otherwise there is a banner, and nonadjacent tov5 by the same reason. But then
v1, . . . ,v5 andw induce anA1. Next, assume thatw is adjacent tov1 but nonadjacent tov3. Thenw is
nonadjacent tov4 otherwise there is a chair (ifw is nonadjacent tov5) or anA3 (if w is adjacent tov5).
But thenw,v1,v,v3,v4 andv2 induce anA1. Finally, assume thatw is nonadjacent tov1 but adjacent tov3.
Thenw is adjacent tov4 otherwise there is a dart. But thenv,v2,w,v4,v5 andv3 (if w is adjacent tov5), or
v1, . . . ,v5 andw (otherwise) induce anA1. The casek = 2, and by symmetry, also the casek = m−1 is
settled. Now, consider the case 3≤ k≤m−2. Again,v andvk are adjacent otherwise there is a banner.
w must be adjacent to at least one ofvk−1 andvk+1 otherwise there is a dart, saywvk−1 ∈ E(H). Thenw
must be adjacent tovk−2 otherwise there is a dart. By the same reason,w is nonadjacent tovk+2, hencew
is also nonadjacent tovk+1 otherwise there is a banner. But thenw,vk−1,v,vk+1,vk+2 andvk induce anA1.
This contradiction completes the proof of the Observation. 2

Proof. (of Lemma 3.4) Assume (ii) is false. We will prove that (i) holds. Note that the assumption
implies thatG∗ also does not contain a graph from Figure 3 becauseG∗ is (isomorphic to) an induced
subgraph ofG.

Let P = v1v2 · · ·vm be a longest induced path inG∗. By the assumption, 5≤m≤ 7. If G∗ = P thenG∗

is a spider with a long leg (ifm 6= 7), or a double–spider (ifm= 7), and we are done. SupposeG∗ 6= P.
Then, sinceG∗ is connected, there exists a vertex inG∗−P adjacent to a vertex inP. We first note that,
for every vertexv outsideP,

if NP(v) 6= /0 then 2≤ |NP(v)| ≤ 3. (11)

OtherwiseG∗ would have aPm+1 or a chair (if|NP(v)|= 1), or anA1, A3,A4, A5 (if |NP(v)|= 4), or a dart
or a chair (if |NP(v)| ≥ 5). Next, assume|NP(v)| = 2. ThenNP(v) 6= {v1,v2} andNP(v) 6= {vm−1,vm}.
Otherwise{v,v1}, respectively,{v,vm} would be a homogeneous set in the graph induced byP∪{v},
contradicting Observation 3.5. Moreover, ifNP(v) = {v1,vm} thenm= 5 otherwiseG∗ would have anA7

or anA9. Furthermore, ifNP(v) 6= {v1,vm} then the two vertices fromNP(v) must be adjacent otherwise
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G∗ would have a banner. IfNP(v) = {vk,vk+1} thenk = 2 or k = m−2, otherwiseG∗ would have anA6.
In summary, we have:

If |NP(v)|= 2 thenNP(v) = {v2,v3} or {vm−2,vm−1}, orm= 5 andNP(v) = {v1,v5}. (12)

We now consider verticesvwith |NP(v)|= 3. First,NP(v) cannot form a subpathvk−1vkvk+1 of Potherwise
{v,vk} would be a homogeneous set in the graph induced byP∪{v}, contradicting Observation 3.5. Thus,
we have:

If |NP(v)|= 3 thenm 6= 5 andNP(v) = {v1,v5,v6}, orm= 6 andNP(v) = {v1,v2,v6},
or m= 7 andNP(v) = {v2,v3,v7}.

(13)

OtherwiseG∗ would have anA2, A4 or a banner. For convenience, we will use the following notion: For
I ⊆ {1, . . . ,m} let MI denote the set of all verticesv in G∗ such thatNP(v) = {vi | i ∈ I}. We also write
M126 instead ofM{1,2,6}, etc. With this notion, we have:

M23,Mm−2;m−1,M126,M156 andM237 induce cliques. (14)

OtherwiseG∗ would have a dart. We now discuss three subcases according to the possiblities ofm.

Case 1. m= 5
That is,G has noP6. Assume that there is a vertexv with NP(v) = {v1,v5}. ThenP∪{v} induces aC6

C and by applying Observation 3.5 for theP5’s onC it follows thatG∗ = C. Thus,G∗ is a double–spider.
Hence we may assume thatM15 = /0. Then, (11), (12) and (13) yields:

If NP(v) 6= /0 thenNP(v) = {v2,v3}, or NP(v) = {v3,v4}.

SinceG∗ has noA5 and noP6,

if M23 6= /0 thenM34 = /0, and vice versa.

By symmetry, we may assume thatM23 6= /0. Now, we are going to show thatG∗ is a spider with a long
leg. By (14),

at most one vertex inM23 has no neighbor inG∗− (P∪M23),

otherwise these vertices would form a homogeneous set inG∗. Moreover,

every vertex inM23 has at most one neighbor inG∗− (P∪M23),

for, if x∈M23 has two neighborsx′,x′′ in G∗− (P∪M23) then{x,x′′} would be a homogeneous set of the
graph induced by theP5 = x′xv3v4v5 andx′′, contradicting Observation 3.5. Furthermore,

no two vertices inM23 have a common neighbor inG∗− (P∪M23),

For, if x1,x2 ∈M23 are adjacent toy∈ G∗− (P∪M23) then{x1,x2} would be a homogeneous set of the
graph induced by theP5 = yx1v3v4v5 andx2, contradicting Observation 3.5.

Let N be the set of vertices inG∗− (P∪M23) adjacent to a vertex inM23. SinceG∗ has noP6, the facts
above show thatV(G∗) = V(P)∪M23∪N, and no two vertices inN are adjacent. That is,G∗ is a spider
with a long leg. Case 1 is settled.
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Case 2. m= 6
In this case,G∗ is P7–free. By (11), every vertex outsideP has exactly 0, 2 or 3 neighbors inP, and by
(12),

if |NP(v)|= 2 thenNP(v) = {v2,v3} or NP(v) = {v4,v5}.

By (13),
if |NP(v)|= 3 thenNP(v) = {v1,v5,v6} or NP(v) = {v1,v2,v6}.

SinceG∗ has noA10 and noA4, we have:

If M23 6= /0 thenM45 = /0 and vice versa. (15)

Furthermore,
if M126 6= /0 thenM156 = /0 and vice versa. (16)

For, if there existsv∈M126 andv′ ∈M156 thenv andv′ are adjacent otherwiseG∗ would have aA4 induced
by v1,v2,v3,v6,v andv′. But then{v,v1} is a homogeneous set in the graph induced by theP5 = v5v′v1v2v3

andv, contradicting Observation 3.5. This shows (16). Next we have

if M23 6= /0 thenM126 = /0 and vice versa. (17)

For, if there existsv ∈ M23 and w ∈ M126 then G∗ would have aP7 = vv3v4v5v6wv1 (if v and w are
nonadjacent) or a dart (otherwise). The facts (15), (16) and (17), and the symmetry allow us to assume
thatM45 = /0 andM126 = /0. Now,

no vertex inM156 has a neighbor inG∗− (P∪M156), (18)

otherwiseG∗ would have a chair. By (14) and (18),

|M156| ≤ 1,

otherwiseM156 would be a homogeneous set inG∗. Furthermore,

if |M156|= 1 then no vertex inM23 has a neighbor inG∗− (P∪M23),

because, ifv∈M23 has a neighborv′ ∈G∗− (P∪M23) then, by (18),v′ /∈M156 and is nonadjacent to the
vertexw of M156. But thenG∗ has aP7 = v′vv3v4v5wv1. Thus,

if |M156|= 1 then|M23| ≤ 1,

otherwiseM23 would be a homogeneous set inG∗. It follows that if |M156| = 1 thenV(G∗) = V(P)∪
M23∪M156 and henceG∗ is a double–spider.

If |M156|= 0 then, as in the casem= 5, by using Observation 3.5, one can see that

every vertex inM23 has at most one neighbor inG∗− (P∪M23), and no two vertices
in M23 have a common neighbor inG∗− (P∪M23).

SinceM23 induces a clique,

at most one vertex inM23 has no neighbor inG∗− (P∪M23),
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otherwise these vertices would form a homogeneous set inG∗.
Let N be the set of all vertices inG∗− (P∪M23) adjacent to a vertex inM23. As in the casem= 5, one

can see that no two vertices inN are adjacent, andV(G∗) = V(P)∪M23∪N. That isG∗ is a spider with a
long leg. Case 2 is settled.

Case 3. m= 7
In this case we have, for every vertexv outsideP such thatNP(v) 6= /0,

if |NP(v)| = 2 thenNP(v) = {v2,v3} or NP(v) = {v5,v6}, and if |NP(v)| = 3 then
NP(v) = {v1,v5,v6} or NP(v) = {v2,v3,v7}.

Recall that, by (14), the setsM23,M56,M156, andM237 induce cliques. We now are going to show thatG∗

is a double–spider.
First, we have

M56∪M156 andM23∪M237 induce clique

(elseG∗ would have a dart), and

no vertex fromM56∪M156 is adjacent to every vertex fromM23∪M237

(elseG∗ would have anA10 or a chair). Next,

no vertex fromM156 has a neighbor inG∗− (P∪M56∪M156)

(elseG∗ would have a chair), hence

|M156| ≤ 1

(elseM156 would be a homogeneous set inG∗). By symmetry, we also have

|M237| ≤ 1, and the vertex ofM237 (if any) has no neighbor inG∗− (P∪M23).

Now, as in the casem= 5, we can see thatG∗ is a double–spider, whereM23∪M237∪{v2,v3} is the set
of inner vertices of one spider andM56∪M156∪{v5,v6} is the set of inner vertices of the other spider.2

4 The reconstruction technique
In this section assume thatH is connected. We want to find ap–connected BCD–free graphG such that
the P4–structure ofG is equal toH . In the following we study the most interesting case whereG has
stability number at least three and is none of the special graphs from Theorem 3.2 (i)–(ii).

A vertexv is said to have apartner in a P4, sayX, if v together with three vertices fromX induces a
P4. By checking all possible adjacencies between a vertex and aP4 in a BC–free graph (see Figure 4)
one easily realizes that there are four configurations where a vertex has precisely one partner (namely in
cases (iv), (v), (vii) and (viii)), and one configuration where it has more than one partner (in case (vi)).
We say thatv has a partner in a graph if this graph contains aP4 which has a partner forv. The following
statement will be crucial for the reconstruction ofp–connected BCD–free graphs, but we formulate it here
in a slightly more general way.
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Fig. 4: All adjacencies between a vertex and a P4 in a BC–free graph

Lemma 4.1 Let G be a graph in which every homogeneous set induces a P4–free graph, and let G′ be a
p–connected proper induced subgraph in G. If G′ is not separable then there exists a vertex v outside G′

such that v has a partner in G′. In particular, G′∪{v} is p–connected.

Proof. SinceG′ contains aP4 (as it isp–connected), it cannot be a homogeneous set ofG. Hence there
exists a vertexv outsideG′ adjacent to some vertex and nonadjacent to some vertex inG′. In particular,
the setsS1 = NG′(v), S2 = G′−S1 are nonempty. AsG′ is p–connected, there is aP4 crossingS1 andS2.
As G′ is nonseparable, there is aP4 P crossingS1 andS2 such that if two mid–points ofP are inS1 then
one of the end–points ofP is also inS1. Now, the graph induced byP andv has aP4 containingv. That is,
P is a partner inG′ for v. 2

Now we show that, in a BC–free graph, the adjacencies of a vertex to aP4 can be determined in a unique
way from the partial knowledge of the adjacencies and theP4–structure. LetX be aP4 andv a vertex from
outsideX. We shall say that

• X is of type 0if v has no partner inX (see cases (i), (ii) and (iii) of Figure 4);

• X is of type 1if v has one partner inX and the three vertices fromX which induce aP4 with v induce
aP3 (see cases (iv) and (v) of Figure 4);

• X is of type 2if v has one partner inX and the three vertices fromX which induce aP4 with v induce
aP3 (see cases (vii) and (viii) of Figure 4);

• X is of type 3if v has more than one partner inX (see case (vi) of Figure 4).
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More precisely, we prove the following:

Lemma 4.2 Let X be a P4 in a BC–free graph and v a vertex outside X. If the adjacencies of v with respect
to three vertices from X are known, then the adjacency to the fourth vertex from X can be determined from
the P4–structure of X∪{v}.

Proof. Let {w,x,y,z} be the vertex set ofX and assume that the adjacencies ofv to x, y andz are known.
We have to find out whetherv andw are adjacent or not.

Clearly, the type ofX can be determined from theP4–structure ofX∪{v}. Assume first thatX is of
type 0. Ifv has no neighbors in{x,y,z} thenv must be nonadjacent tow (this corresponds to case (i)). If
v has one neighbor in{x,y,z} thenv must be adjacent tow (this is case (ii)). Ifv has two neighbors in
{x,y,z} thenv is nonadjacent tow (again case (ii)). Finally, ifv has three neighbors in{x,y,z} thenv is
adjacent tow (this is case (iii)).

Assume now thatX is of type 1. Thenv has at most two neighbors in{x,y,z}. If v has no neighbor
in {x,y,z} thenv must be adjacent tow (see case (iv)). Ifv has two neighbors in{x,y,z} thenv must be
nonadjacent tow (see case (v)). Ifv has one neighbor in{x,y,z} then we have to distinguish two cases: If
X has edgeswx, xy andyz, i.e.w is an endpoint ofX, thenv is adjacent tow if and only if v is adjacent to
x. If X has edgesxw, wyandyz, i.e.w is a midpoint ofX, thenv is adjacent tow if and only if v is adjacent
to x and{v,w,y,z} induces aP4.

If X is of type 2 thenv has two or three neighbors in{x,y,z}. In the first case,v must be adjacent tow,
in the second casev must be nonadjacent tow (see cases (vii) and (viii)).

Finally, if X is of type 3 thenv has one or two neighbors in{x,y,z}. In the first case,v must be adjacent
to w, in the second casev must be nonadjacent tow (see case (vi)). 2

Note that the previous two lemmas do not hold for arbitrary graphs.
Now we sketch the principle of the reconstruction procedure. First we try to find somestarting graph

G′, whereG′ is a BCD–free graph realization of a subhypergraphH ′ of H . This graph should have the
property that the adjacencies of all vertices outsideG′ with respect toG′ can be determined in a unique
way from theP4–structure. Furthermore,G′ should not be separable. The details how to find such a graph
are spelled out later. Then we repeatedly extend the starting graphG′ by a vertex which has a partner
in the current subgraph. IfG′ is not separable then, by Proposition 3.1 and Lemma 4.1, such a vertex
always exists (otherwise there is no realization ofH as a BCD–free graph). Moreover, by Lemma 4.2, the
adjacencies of a newly added vertex with respect to all the previously added vertices can be determined in
a unique way (otherwise, again, there is no realization ofH as a BCD–free graph).

More precisely, letv1, . . . ,vk be a numbering of the vertices fromG−G′ such that eachvi induces a
P4 with some three vertices fromG′ ∪{v1, . . . ,vi−1}. We want to find out the neighbors ofv j in G′ ∪
{v1, . . . ,v j−1}. For that purpose we first determine the neighbors ofv j in G′ (which is possible by the
above assumption). Now assume inductively that all neighbors ofv j in G′ ∪{v1, . . . ,vi−1} are already
known (with 1≤ i < j). We consider aP4, say{a,b,c,vi}, with three verticesa,b,c∈G′∪{v1, . . . ,vi−1}.
By Lemma 4.2, it can be determined from theP4–structure whetherv j is adjacent tovi or not.

It remains to find some suitable starting graph. The choice of the starting graph is crucial. Not every
graph is suitable in the sense that the adjacencies of the vertices outside are uniquely determined by the
P4–structure. We consider the collection of graphs depicted in Figure 3. Note that these graphs arep–
connected, have stability number at least three and none of them is separable. Furthermore, as shown in
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Theorem 3.2, at least one of them occurs as an induced subgraph inG. We now prove that all these graphs
have the desired property.

Lemma 4.3 Let G′ be any of the graphs from Figure 3 and let v be a vertex from outside G′. Then, in
a BCD–free graph, the adjacencies of v with respect to G′ can be determined in a unique way from the
P4–structure of G′∪{v}.

Proof. Consider first aP5 in an arbitrary of the graphsAi from Figure 3. Once the adjacencies ofv to such
aP5 are known, we can proceed similarly as this has been proposed above. We extend theP5 successively
to the whole subgraphAi by adding a vertex which has a partner in the current subgraph and determine
whetherv is adjacent to this vertex or not. In this way we obtain all adjacencies ofv with respect toAi .

Denote the vertices of theP5 in the natural order bya,b,c,d,e. Let furtherX andY be theP4s induced
by {a,b,c,d} resp.{b,c,d,e} andv be a vertex from outside. Assume first thatX is of type 0. IfY is also
of type 0 thenv must be nonadjacent to theP5 (note that in a dart–free graph a vertex cannot be adjacent
to all vertices of aP5). If Y is of type 1 thenv must induce aP4 together withc,d,e. In this casev is
either adjacent tob,c or to e only. If Y is of type 2 thenv must induce aP4 with b,d,e. This means that
v is either adjacent toa,b,c,d or to b,c,e. We can find out the correct alternative by checking whether
{a,v,d,e} induces aP4 or not. ClearlyY cannot be of type 3.

Assume now thatX is of type 1 andv induces aP4 with a,b,c (in the following we omit the symmetric
cases which only exchange the role ofX andY). If Y is also of type 1 thenv is adjacent toa ande. If Y
is of type 2 thenv is adjacent toc,d,e. AgainY cannot be of type 3. IfX is of type 1 andv induces aP4

with b,c,d thenY can only be of type 1 or 3. IfY is of type 1 thenv is either adjacent toa,b or to d,e. If
Y is of type 3 thenv is adjacent toa,b,e.

Assume thatX is of type 2 andv induces aP4 with a,b,d. If Y is of type 2 and{b,v,d,e} induces aP4

thenv is adjacent tob,c,d. On the other side, ifY is of type 2 and{b,c,v,e} induces aP4 thenv is adjacent
to a,c,d,e. Assume thatX is of type 2 andv induces aP4 with a,c,d. If Y is of type 2 and{b,v,e,d}
forms aP4 thenv is adjacent toa,b,c,e. If {c,b,v,e} forms aP4 thenv is adjacent toa,b,d,e. Clearly, in
both casesY cannot be of type 3. Finally, the case where bothX andY are of type 3 cannot occur.

We have shown that the neighbors ofv with respect to theP5 can be determined from theP4–structure
with the exception of three cases, namely where

(i) v is adjacent either tob,c or toe

(ii) v is adjacent either toa or toc,d

(iii) v is adjacent either toa,b or tod,e.

We can find out the correct alternatives by considering also the remaining vertices of the subgraphAi .
Consider the graphA1 and let f be the sixth vertex which is adjacent toa,b,c,d. In order to decide (i)

note that in both of the two possible casesv must be nonadjacent tof . If {v,b, f ,d} induces aP4 thenv is
adjacent tob,c, otherwise toe. For (ii) note that in the first casev must be nonadjacent tof , in the second
casev must be adjacent tof . If {v,a, f ,d} induces aP4 thenv is adjacent toa, otherwise toc,d. In (iii)
we obtain that in the first casev may be adjacent tof or not, in the second casev must be nonadjacent to
f . If {v,a, f ,c} induces aP4 thenv is adjacent toa,b. If this is not the case and if{v, f ,d,e} forms aP4

thenv is adjacent toa,b, f , otherwise tod,e.
In A2 the sixth vertexf is adjacent toa,b,e. For (i) note that in the first casev must be nonadjacent tof ,

in the second casev must be adjacent tof . If {v,b, f ,e} induces aP4 thenv is adjacent tob,c, otherwise to
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e. For (ii) verify that in both casesv must be nonadjacent tof . If {v,a, f ,e} induces aP4 thenv is adjacent
to a, otherwise toc,d. In (iii) we obtain that in the first casev must be adjacent tof , in the second casev
may be adjacent tof or not. If {c,b, f ,v} induces aP4 thenv is adjacent tod,e, f . If this is not the case
and if{b, f ,e,v} forms aP4 thenv is adjacent tod,e, otherwise toa,b.

In A3 the sixth vertexf is adjacent toa,b,d,e. For (i) we see that in both casesv must be nonadjacent
to f . If {v,b, f ,d} induces aP4 thenv is adjacent tob,c, otherwise toe. For (ii) again in both casesv must
be nonadjacent tof . If {v,a, f ,e} induces aP4 thenv is adjacent toa, otherwise toc,d. In (iii) we obtain
that in both casesv must be adjacent tof . Now, if {v, f ,d,c} is aP4 thenv is adjacent toa,b, otherwise
to d,e.

Finally, in A4 the sixth vertexf is adjacent toa,c,d. In order to decide (i) note that in both of the two
possible casesv must be nonadjacent tof . Clearly, if {v,b,a, f} induces aP4 thenv is adjacent tob,c,
otherwise toe. For (ii) note that in both casesv must be adjacent tof . If {v, f ,d,e} induces aP4 thenv is
adjacent toa, otherwise toc,d. In (iii) we obtain that in the first casev may be adjacent tof or not, in the
second casev must be nonadjacent tof . If {v, f ,d,e} is aP4 thenv is adjacent toa,b, f . If this is not the
case and if{v,a, f ,c} is aP4 thenv is adjacent toa,b, otherwise tod,e.

For the remaining graphs we have to use a slightly more involved argumentation (recall that we only
want to find out the adjacencies ofv with respect to aP5). Consider the graphA5 and let f andg be the
vertices which are adjacent tob,c resp.c,d. For (i) we obtain that, in the first case,v must be adjacent
to f whereas the adjacency tog is open. In the second casev is adjacent to at most one off andg. If
{v, f ,c,g} induces aP4 then the second case is the correct one. If{v, f ,g,d} induces aP4 then we are
in the first case. If neither of the twoP4s exists then we are in the second case if and only if{v,e,d,g}
induces aP4. The decision of (ii) follows by a symmetry argument. In (iii),v is adjacent to at most one of
f andg. If {v,g,d,e} induces aP4 then the first case is the correct one. If{e,v,g,c} induces aP4 then the
second case is correct. If neither of the twoP4s exists then we are in the first case if and only if{v,b,c,g}
induces aP4.

In A6 let f be the vertex which is adjacent toe andg the vertex which is adjacent toc,d. In the first
case of (i) the vertexv is adjacent to at most one off ,g. In the second casev must be adjacent tof
and may also be adjacent tog. If {b,c,g,v} induces aP4 then we are in the second case. Otherwise, if
{v,g,d,e} does not induce aP4 then we are in the first case. Finally, if{b,c,g,v} does not induce aP4

and{v,g,d,e} induces aP4 then we are in the first case if and only if{b,v,g,d} induces aP4. For (ii) note
that in the second casev must be adjacent tog. If {b,c,v, f} induces aP4 then we are in the second case.
If {b,a,v, f} induces aP4 then we are in the first case. If bothP4s do not exist then the second case is the
correct one if and only if{v,d,e, f} induces aP4. In (iii), if {v,g,d,e} induces aP4 then we are in the first
case. Assume now that{v,d,g,e} is noP4. If {v,b,c,g} does not induce aP4 then we are in the second
case. If{v,g,d,e} is not aP4 and{v,b,c,g} is aP4 then the second case is the correct one if and only if
{c,g,v,e} induces aP4.

In A8 let f be adjacent toeandg adjacent toa,b andh adjacent toe, f ,g. For (i) note that in the second
casev must be adjacent tof andh. If {v,g,b,c} is a P4 then we are in the second case. Otherwise, if
{v,h,g,a} is not aP4 then we are in the first case. Otherwise, if{v,h,g,b} is a P4 then we are in the
second case. For (ii) note that, in both cases, ifv is adjacent toh then it is also adjacent tog. If {v,a,g,h}
induces aP4 then we are in the first case. Otherwise, if{v,g,b,c} is not aP4 then we are in the second
case. Finally, if{a,v,h,e} or {v,g,h,e} is aP4 then the first case is the correct one. In the first case of (iii)
vertexv must be adjacent tog. If {v,d,e, f} or {v,d,e,h} is aP4 then we are in the first case. Otherwise,
if {v,g,h, f} or {v,g,h,e} is not aP4 then we are in the second case. Otherwise, the second case is true if
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and only if{c,d,v, f} induces aP4.
In A10 let f be the vertex adjacent toe, g the vertex adjacent tob,c andh the vertex adjacent tod,e. In

the first case of (i) the vertexv must be adjacent tog, in the second casev must be adjacent tof . In both
casesv has at most one further neighbor. If{v,d,e, f} or {v,h,e, f} induce aP4 then we are in the first
case. Otherwise, if{v,c,d,h} does not induce aP4 then we are in the second case. If{v,c,d,h} induces
a P4 then the second case is correct if and only if{d,h,v, f} is aP4. In (ii), if {v,g,c,d} is aP4 then we
are in the first case. Otherwise, if{v,a,b,g} is not aP4 then we are in the second case. If{v,g,c,d} is not
a P4 and{v,a,b,g} is aP4 then the second case is the correct alternative if and only if{b,g,v,d} is aP4.
Finally, (iii) can be decided by a symmetry argument from (i).

In A11 let f be adjacent toeandg adjacent tof andh adjacent tog. For (i) note that in the second case
v must be adjacent tof . If one of{d,c,v, f}, {d,c,v,g} or {d,c,v,h} induces aP4 then we are in the first
case. If one of{d,e,v,g} or {d,e,v,h} induces aP4 then we are in the second case. If none of theP4s
exists then we are in the second case if and only if{v, f ,g,h} induces aP4. In (ii), if one of {b,a,v, f},
{b,a,v,g} or {b,a,v,h} induces aP4 then we are in the first case. If one of{b,c,v, f}, {b,c,v,g} or
{b,c,v,h} induces aP4 then we are in the second case. If none of theP4s exists then the second case is
correct if and only if{v,d,e, f} induces aP4. In (iii), if one of {c,b,v, f}, {c,b,v,g} or {c,b,v,h} induces
aP4 then we are in the first case. If one of{c,d,v, f}, {c,d,v,g} or {c,d,v,h} induces aP4 then we are in
the second case. If no one of theP4s exists then the second case is correct if and only if{v,e, f ,g} induces
aP4.

ForA7 andA9 case (i) is analogous to case (i) of anA1. The decision of case (ii) follows by a symmetry
argument from (i). Case (iii) is again completely analogous to case (iii) of anA11. 2

5 The algorithm
If H is not connected then we consider the connected components ofH separately and, for each com-
ponent, we try to find ap–connected BCD–free graph with the correspondingP4–structure. If all these
BCD–free graphs exist then their disjoint union (or their disjoint sum) is a realization ofH . Hence we
can assume thatH is connected.

The algorithm for the reconstruction of BCD–free graphs consists of three parts. In the first part, we
check whether there is a graph with stability number less than three whoseP4–structure is equal toH .
This is done using a method described in [2]. Then we consider the types of graphs which appear in
Theorem 3.2 (i)–(ii). If there is such aspecialgraph withP4–structure equal toH then we are done (the
recognition of theP4–structure of these special graphs is easy and left to the reader; for details see also
[1]). Otherwise, we have to apply the technique described in the previous section.

Note that for a 3–sun or a headless spider with at least three legs (and with the allowed replacements of
vertices by cliques) a vertex–by–vertex extension in the sense of Lemma 4.1 is not possible, since all the
p–connected induced subgraphs are separable. Moreover, ifH is theP4–structure of one of these graphs
or of one of the graphs from Theorem 3.2 (ii) then the underlying graph is in general not unique (i.e., there
are different realizations). IfG is a graph from Theorem 3.2 (ii) andG′ is ap–connected induced subgraph
of G (take as a simple example aP5, P6 or P7) then the adjacencies of vertices outsideG′ with respect toG′

may not be uniquely determined. For these reasons the reconstruction technique of the previous section
cannot be applied to the graphs from Theorem 3.2 (i) and (ii).

In order to find a starting graph for the reconstruction procedure we examine all subsetsH ′ ⊆ H of
six, seven and eight vertices and check whetherH ′ is theP4–structure of one of the graphsA1, . . . ,A11.
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Note that, ifH ′ is theP4–structure of a graphAi , then the realization might not be unique: e.g., ifH ′ is
theP4–structure of anA10 then there are two possible realizations since the two midpoints of theP6 are
not uniquely determined. Moreover,H ′ may be theP4–structure of different graphsAi : e.g. the graphs
A3 andA4 have the sameP4–structure; the graphA5 has the sameP4–structure as a pathP7, etc. Henceall
realizations must be considered as possible starting graphs (and can be found by a “brute force” approach,
in a similar way as described in [2]). Note, however, that the number of possible starting graphs remains
polynomial in the size ofH .

Here is an informal description of the algorithm as a whole.

Algorithm Check–P4–structure

Input: A connected 4–uniform hypergraphH
Output: A BCD–free graphG with P4–structureH

or the answer “No” if no such graph exists

1. Check whetherH is theP4–structure of a graphG with α(G)≤ 2.
If such a graphG exists then outputG and STOP.

2. Check whetherH is theP4–structure of a special graphG.
If such a graphG exists then outputG and STOP.

3. For all subhypergraphsH ′ ⊆H with 6≤ |H ′| ≤ 8 do:
For i = 1 to 11 do:

If H ′ is theP4–structure of the graphAi then:
Start the reconstruction procedure for each realization ofH ′.
If it produces a graphG then check whetherG is BCD–free and
H is theP4–structure ofG. If yes then outputG and STOP.

4. Output “No”.

It is easy to see that the algorithm can be performed in time polynomial in the size of the hypergraph
H . Therefore we have shown:

Theorem 5.1 The P4–structure of BCD–free graphs can be recognized in polynomial time. 2

Corollary 5.2 The P4–structure of claw–free graphs can be recognized in polynomial time.

Proof. Claw–free graphs are BCD–free. In Step 3 of the algorithm, instead of checkingG for being
BCD–free one has just to checkG for being claw–free. 2
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