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We study the structure ofi-ary search trees generated by the van der Corput sequences. The height of the tree is
calculated and a generating function approach shows that the distribution of the depths of the nodes is asymptotically
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1 Introduction

In the last years, the height of binary search trees generated by sequences which are uniformly distributed
modulo 1 has been studied. Devroyé [3] has shown for the Weyl sequémzéshat the height of the
tree with its firstN elements satisfies

12

H(N) ~ 5

logNloglogN
for almost alla € (0,1). The minimal height is attained for the golden mean= (v/5+ 1)/2,
H(N) ~ logN/loga, and the maximal height is almost as large as the theoretical maximum for binary
search trees. More precisely, for every sequépggn>1 which decreases monotonically from 1 to 0, we
have some such thaH (N) > cyN infinitely often (Devroye and Goudjil[5]).

For general uniformly distributed sequences modulo 1, Dekking and van der Wal [1] have shown

and that, for everg > 1/log 2, we have sequences wh{N) ~ clogN.
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Devroye and Neiningef [6] studied random suffix search trees, which are binary search trees generated
by the suffixess, = 0.B;,Bn1Bn. 2. . . of independent identically distributed randopary digitsB1, Ba, . ..
for someq > 2. For these trees, the expected value of the dep&y @ given by

Ed(Sv) = 2logN + O (log?logN) .

Note that the suffixes are uniformly distributed modulo 1 with probability 1.

For random binary search trees of sitgt was shown by several authors that the expected value of the
depth of a node is again 21db+ O (1) and we know from Mahmoud and Pittel [9] and Devroyke [2] that
the distribution of the depths is asymptotically normal with variance Rllog

A natural generalization of binary search treesrarary search trees, which are constructed by placing
the firstm— 1 keys in the root, sorted in increasing order from left to right, then guiding a subsequent key
to the/th subtree of the root, £ ¢ < m, if that key is greater than exactly— 1 of the root keys. In the
/th subtree, the newcomer is subjected recursively to the same procedure until a node with less than
keys is found.

Mahmoud and Pitte[ [10] showed that the distribution of the depthsé in randeary search trees is
asymptotically normal with mean val% logN and variance(;:iz—z}; logN. This and other limit
laws for various kinds of trees can also be found in Devroye [4].

In this article, we considam-ary search trees generated by particular uniformly distributed sequences
modulo 1, the van der Corput sequent@gn))n>1, where we omin = 0 for convenience. Let

n=S &(n)g
3

be the (uniquey-ary digital expansion with digits;(n) € {0,1,...,q— 1} for some integeq > 2. Then
the van der Corput sequence to the bagedefined by the radical-inverse function

n=7Y ¢gn)q =2
@y(n) J;) j(n)

Let d(n) denote the depth of the node containing title element of the sequence. Besides the height
H(N) = max,<nd(n), we will study the distribution ofi(n). To that end, we define a sequence of (dis-
crete) random variablegy by

P{Xy =k} = % with ank=|{n<N: d(n) =K}/,
i.e., Xy is the depth of a key randomly chosen among the ffirkeys inserted into the tree.

2 Results
Throughout the paper I&4 = [log, m| be the integer part of the logarithm to the bgssf m.

Theorem 1 The height of the tree is given by

1

N = M (@)

logyN+0(1), (1)
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where fy m(X) is determined by the sequence

nj+m-1  ifM+p =0

with no =0, njy1= { {%J —1 else.

H'—{ 0 ifx<qg-—n;j
=
i (g-n;

1 else

Let J, p be the lengths of the preperiod and the period ofi., 11p = y; for all j > J. Then we have
1 3P
hqA,M (X) = HJ7 (2)
PiT
The functions §w : [1,q) — [0, 1) are monotonically increasing functions.
Note thathg v = hgw for all M, M’ > 0.

Theorem 2 Expected value and variance of dre given by
1
EXy=— Y d(n)=plog;,N+ O(1) (3)
N2 4
1
VXN = EN(d(n)—ExN)Z:czmgqmou) (4)
n<

with constants p and given by[(1B) and (18). For m g™, m= 2 (binary search trees) and g 2 (the
binary van der Corput sequence), we have simple formulae for wand

m=q" u:ﬁ 0=0 )
~1)(q—2)(q?+39—6
1 (F —1 (2— %)
:2: = 2: 2 2
a VR TR )

For m+ g™, we have |€ (557, ) ando? > 0.

The main result concerns the distribution propertieXafWe prove asymptotic normality in the weak
sense and provide a local limit law.

Theorem 3 If m# g™, then we have, for evedy> 0,

%Hng N d(n) < EXy +XVXn 1} = e“z/zdt+0((logN)‘1/2+5) )

1 X
Vamn /m
uniformly for all real x as N— o and

H{n<N:d(n)=Kk}| = \/ZTTI%TXN (exp<_W) +0 ((|OgN)1/2+5)> 9)

uniformly for all nonnegative integers k as-N oo,
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The (easy) casen= gV is treated in SectioE] 3. The crucial part for all other cases is contained in
Sectior{ 4, where the structure of the tree is analyzed and its generating function is calculated| $ection 5
is devoted to the height of the tree, i.e., Theofém 1. Formulae for mean value and variance are derived
in Sectior] 6. The two parts of Theor¢rn 3 are proved in Secfipns [/Jand 8. These proofs are adapted from
Drmota and Gajdosik [7]. Finally, the values jpfand o for binary search trees and the binary van der
Corput sequence are calculated in Sedfion 9.

3 m=q

Form= g™, the root contains the elements,...,q™ — 1} and its keys are just the" — 1 possibili-
ties fory 5t cjq 172, ¢j € {0,...,q— 1} with (co,...,cm-1) # (0,...,0). Let us call prefix of thenth
key a prefix of the corresponding digit wogg(n)ex(n).... Then the/th subtree contains all keys with
prefix €9(¢)...em_1(¢) and in the root of theth subtree we have thg” — 1 keysz'}";olej(E)qf“ljL
yMatcigi~twith ¢j € {0,...,q— 1} and(cw,...,Cam-1) # (0,...,0). Thus, the depth of theth ele-
ment isk, i.e.,d(n) =k, if and only if g™ < n < q**IM. with L = [logqu N| = | (logyN)/M |, expected
value and variance are given by

2=

% gM-1 N

2
hl,n; (d(n) - ;n;dm))

1 /-1 M(gtM _ 1)\ 2 M(gtM _ 1)\ 2
:N<2(QM_”QW (kv S ) + 0= (o) )

k=0

_ 1@ -Ha@+1) (@M -1 1 1), 2dM /) gM-d
N (M —1)2 (M-1)2 \N N2 M -1 N

and the results fom = g™ are proved.

=2 (5 (g Dk (N gL ) =L daM T L N o)
n; RAPAS q q = = 11 '°% :

=0(1),

4 Generating function

Define the bivariate generating function of the tree by
B(zu)= Y bj(2u/

with
bj(2) = ¥ by, by =agu—agk={n: o <n<g*td(n) =k},
K30
i.e.,zcounts the depth of the elements anithe time of their insertion in the tree.

Lemma 1 We have
Q(z,u)

B(zu) = T(z,u)
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for some polynomials (2, u) and Rz u) determined by[ (13) and

_ G(zu)
B(zu) = T-Fzu

for some analytic functions (in the domaig B {(z,u) : |7 < 1+p,|u| < 1/g+ p} for somep > 0)

[ee] (o]

Flzu) = B Gz = Y Y gl
(zu) j;wk; jkZ'u (z,u) ijk;)gjk u

with fjx > 0, gjx > Ofor all j,k. Assume, w.l.o.gicd1—P(z,u),Q(zu)) = 1.

Proof. Form= gM, the considerations of the previous section give

M—1 o M-1rq_1glul
Bz = Y (@-1a'v +a'z'Bzu) = w
J:

Form > gV, the minimal key in the root igy(q™) = .0M1 = g"M~1. The leftmost subtree contains
therefore all keysp(n) < .0M1, i.e., those with prefix'd*1. As in the casen= g, this subtree has the
same shape as the whole tree, and its generating functinM 1$B(z u).

If m—1>2g™ andq > 2, then the second smallest key in the roapj2q™) = .0M2. In this case,
the second subtree contains all keys with preffd @except the keyoM1) and its generating function is
againzdM*1B(z u).

The other possibility for the second smallest key 2) is @(q™~1) = .0M~11. Then the second
subtree contains all keys with prefi%‘&atisfying(pq(n) > .0M1. Forq = 2, this is the same tree as in the
latter case and its generating functiorzi$'+1B(z u). Forq > 2, this means (if we omit the prefixD
since it does not change the structure) that we start avith2 and consider just thosewith go(n) > 1.
Call this treeT;. In general, lefl;, 0<i < g— 1, be the tree generated by the van der Corput sequence
starting withn = i 4- 1 and omitting then's with digit go(n) < i, i.e., just take the keygy(n) > .i =i/q.
Denote its generating function B (z,u). Then the second subtree contribure’ B;(u,z) to B(z u).
Furthermore note thaj is the whole tree anBp(z,u) = B(z u).

The other subtrees have a similar structure4#fg™ < m—1 orey (n) = q— 1, then the contribution to
the generating function M+1B(z u). In the other cases, the tree is of tyRg (n) and the contribution
is ZUMBy,, (n) (2. U).

We have thus, fom < (q— 1)gM,

B(z u) = Bo(z,u) =Mi)l(t1— D' + (m—g")uM + (m—g")zd"**Bo(z u)
]=
+(m—em(m)a")zU"Be,, m) (2, U) + ((em (M) + 1) —m)zu" By, (m) -1(2,0)
and, forey(m) =q—1,
M-1

Bo(zu) = zo (9=t + (m—gM)uM + (2m— ")zl Bo(z u) + (M —m)zud"By-2(z )
j=
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The sequence constitutigis (i+1,i+2,...,9—1,9+i,q+i+1,...,29—1,29+1,...). Denote its
mth element byn and seM; = [log, mj Note that thee(q — i)g¥th element of the sequencedd<+1+i
(c < g). Hence we havéM; = Llogq 4] € {M,M + 1} andey, (m) = | -7 i | = L )j for Mj > 0,
em, (M) = m =m+i for M; =0.

The generating function & is, for M; > 0 andey, (M) < q—1,

Mi—1

Bi(zu) = ZO( —i/a)@-1)d'u —i/g+m—(1-i/q)g")uM + (m—(1-i/q)g")zd" +Bo(z u)
j=

+(m—ew, (M) (1= i/a)a™)zd™ By, (m) (2 W) + ((em, (M) +1) (1~ i/q)a"™ —m)zd" By, (i) -1(z ),
(10)

Bi(zu) = ,;; (L-i/a)(@—1)g'u’ —i/g+(m—(1—i/q)g")u (11)
+(2m—(1-i/q)a" "zl 1Bo(z,u) + (1 —i/q)g" ** —m)zd" By _2(z )
and finally forM; = 0,
Bi(zu) =m—1+(m-1)zuB(z u) + 2Bm-1(z u). (12)

HenceBi(z,u) = Z?;SZP”' (u) + Qi(u) for some polynomial&; (u) andQ;(u), i.e.,

Bo(z,u) Bo(z,u) Qo(u)
L=
BQ*Z(Za U) BQ*Z(Z’ U) QQ*Z(U)
with A(u) = (R (u))o<i,j<g—2 andB(z,u) = Bp(z u) is given by
Qo( ) Qo(u)
B(z,u) = (1,0,...,0)(Iqg-1 — zA(u)) * Z)Zk A(u)® ; (13)
Qq 2(u Qq-2(u)

wherelq_; denotes thég— 1)-dimensional identity matrix, and the first equation determi?(gsu), Q(z u).
The functionsF (z,u), G(z u) are obtained by recurrently replacing gz u)’s, i > 0, in the equation
for Bo(z u) by their expressions given ip (10)—{12),

q-2

BO(27 U) = QO(U) + lng)i (U)Bi (Za U)

—2 —2
= Qo(U) + ZRo(U)Bo(z U) +ﬁZzFbi<u> (Q«u) +RolUBo(z )+ 3 Py (1B (2 u)) -
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ForM >0, we have;?:_fP.j (1/g) < 1foralli > 0. Thus(1+p) ?:_fP.j (1/g+p) <1foralli>0and
somep > 0. Then, for(z,u) € Dy, the coefficients 0B;(z u) tend to 0 in the above expressionB{z, u)
and we obtain

Bo(z u) = G(z,u) + F(z,u)Bo(z u) = f(FZ(‘Z’)u)

ForM =0, we haveziq;l2 Rj(1/g) <1 onlyfori >q—m andzﬁ;lzp.j (U) =R itm-1(u) =1 else. This
means that we replad®(z u) by Q;(u) + zR i+ m-1(u)Bitm-1(z,u) at most[q’m’l] consecutive times

m-1
before we haves &2, (1/q) < 1. Hence choosing such thai(1+ p)/ =T | > 2R (1/q+p) <1 for
alli > q— mgives the same result as for > 0.

For the same reasoris(z u) andG(z u) are analytic inrD,. The fj andgj are nonnegative because
the coefficients of);(u) andR; (u) are positive. O

5 Height

For everyk > 0, we look for the minimaljj such thabj # 0. Since allQ;(u) have a constant term, this
is, by ), the minimal exponent afin the first row ofA(u)¥. The/th element of this row is the sum of
Pos, (U)Ps;s, (U) ... Py, (u) over all sequences, ..., s with = ¢.

Recall from the last section that tlih row of A(u) consists of terms with exponeM; and (in the
majority of the cases\M; + 1 with M; € {M,M + 1}. Fori <i’, we have eitheM; < M; or M; = My,
em (M) < &m, (My). Thus the minimal exponent afin the first row ofA(u)k can be found by recursively
choosing the minimad; such thafy, (u) has a termuMo, the minimals, such thaPss,(u) has a termMs:
and so on. Hencg1 = &u, (M) — 1 for alli > 0 if we setsy = 0. Furthermoren; = s andp; = Mg — M.

The minimalj such thabj # 0 is therefore

k-1 m
My, +Mp, + - +My, , =kM+ Z)M = k(M+hq.M (q“")) +0(1)
i=
and the height foN = gi** — 1 with this  is

H(g'"™ —1) = maxd(n) =k )

=— <  __10(1).
n<qj+l M+th(qu) ( )

Clearly, H(N) is monotonically increasing and thyg (1) is proved. It is easy to see that, fra0,
My, + -+ Mp,_, does not decreasealﬂ increases and thus tihgy's are monotonically increasing.

6 Expected value and variance

For m= gV, expected value and variance have been calculated in SE(};tion 3. Thus we can restrict to
m< gM™. The first step is to obtain proper information abby(z).

Proposition 1 For m+# gV, we have some > 0 such that, as j- »,
bj(2) = C(2)a(z)! + 0 (g~ (14)

uniformly in |zl < 14 p for somep > 0, where dz) is the (algebraic) function satisfying(f) = q,
P(z,1/9(2)) = 1 and (2) is an analytic function inz] < 1+ p with C(1) =q— 1.
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Proof. First we study the poles &(z u) with |z <1, |u| < 1/g. One pole iSz,u) = (1,1/q) because of

_ _giui = 94—
B(1,u) J.Zo(q Dglu 1 qu
HenceP(1,1/q) = 1 and there exists an algebraic functigfz) with P(z,1/q(z)) = 1 andq(1) = q.
Clearly,q(z) is a solution ofF (z,1/q(z)) = 1 for |z] < 1+ p too.

F(zu) = 1 has no solutions witlg| < 1 or|u] < 1/g since allfjk are nonnegative. For a solution W|th
|zl = 1 andju| = 1/q, we need®(uq)’ = 1 for all j,k with fjx > 0. We havefy 11 > 0 because ai# g“
and thusz(uq)"’“rl =1. Now, let/ > 1 be minimal such thqlg = 0. Then we have1)-1, > 0 and
thuszf(uq) (M+1)-1 — 1, Together wittz(ug)M** = 1, this implies ¥(uq) = 1, hencau= 1/qandz=1
Hence(z,u) = (1, 1/q is the only pole oB(z u) with |z <1, |u] <1/q.

Furthermore(l 1/q) is a simple zero of + F(z u) and 1— P(z,u). Hence we have sonjgp > 0 such
that we have no zeros witll <1+, |u] < 1/g+ p except(z,1/q(z)). Then

Qzu) Qzvy 1 <Q(Z,1/CI(Z))
1-P(zu)  (1-q@uwP(zu) 1-0q@)u\P(z1/42)

for some algebraic functioR(z u) and analytic function€(z),R(z u) in |z| < 1+p, |u| < 1/q+p.
By Cauchy’s formula, we get

L (1-q@uRE u>) -

) . 1 Q(Z, Ll) du . 1 j (1-v)j
bj(2) = 21t / ~ 1-P(zu) uitt =C(2q tom Rz J+1 =C(2)a@)’ + O(q )
lu=3+5 |ul= %ﬁ%
with somev > 0. This completes the proof of the proposition. O

Now, we build the generating function af for generaN with theb; ().

Lemma 2 If we set L= [log,N]| and d0) = 0, then

Z a2 Lflb i o(N)— 1Zd (3L .1 8s(N)G* I~ Ledf 1)+ )+O(IogN (1+Z (IogN))) (15)
K2 = ' s )
J; : (=]+1 c=
Proof. We have
{0,1,2,....N—1}
L L
:{O,...,eL(N)qL—1}U{s|_(N)qL,...,sL(N)qL—s—sL_l(N)qL*l—1}U---U{Zss(N)qS,..., es(N)g® — 1}
S= S=|
L &(N)-1 L
= ( &Wmﬂw¥+qu¥—ﬂ>
/=0 c¢=0 s=(+1
L-1 g(N)-1

rCr

s=(+1

L oeaMN)-1/ | ‘ _ _
= U ( es(N)®+cof +{q',...,g "1 - 1}>U

(=0 c=0
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The elements ;. 1 &s(N)g®+cof +nwith g <n< g+ andj < ¢ is located in a subtree under the
node containing. Its depth is therefore that of plus some additional depth depending on the shape of
the subtree (see the proof of Lemfija 1), which can be boundelditly ,  , es(N)o® ) +cof ) +2

The depth of the remaining (L) terms can be estimated by the height of the teed,). O

Now, we can calculate the mean value

E d 74 1L7lb’1 1le S (N)O(L—£)+0
W= ( kZOaNk )Zl_N] j( )é J+l % J (= J+l€ ) ( )+ ()
'S i@ Dd O E S e S @-ngiol-n+om =1IY o
N;«Se ; (@—1)a" g )+N,:1€e( )Jg_l(Q— )@ O(L—£)+0(1) = +0(1).
Thus [3) is proved and we have, sirffe&z, u(z)) = 1 for u(z) = 1/q(2)
oF . oF o Ezu)
E(z,u(z))—i—u(Z)E(Lu(z))—o, e, u(z)=-— m
P (E D I A CEL I VYD Y B L (16)
q u(1) %%E(l, 1/q)  YkemXi-1ifk/al’

whereF can be replaced by.
For the variance, we have to be more careful. First we distinguish the elements by their place inside the
node and the type of the node, in order to obtain

d(n+g'*fi) = d(n) + de(f)

for all nwith j = |log, n| at a position of typ® € © = {1,...,m—1} x {0,...,q— 2} and some functions
dg with dg(fi) = O (logfi). With

Jk =|{ne{d,...,q""1 =1} : d(n) =k, the position o is of typed}|,
we have
2)q(2)! +0 (o)

()
for some analytic function8g(2z) (in |z| < 1+ p) because of

®(zu) b9 = Ge Gelzu)_

(27 u)
for some analytic function&g(z, u) (in D). This allows to refing (15) to
(N)—

Z an = LE:) i (z)2%( S5 ras(Ne I Hed 7Y | (IogN (1+ zO('OgN)» a7
k>0 j=00=]+

Cc=l
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and the variance is
d2
VXy = ( ZaNka> +EXn — (EXn)?

k=0 z=1

1L1 g

]1// j—2 Jl/
N%uﬂ czo eaa(ce )ia' 10" (1) +Co(1)j (j — 1)a~2(qf (1)) + 2Ch(1) jai 2/ (1)

2o g W ss<N>qS-J-1+cqf-i-1))+Lq'(” - Coldia! (D)

s=(+1 q N

=

(é<1>qu—1q’<1>+zcg<1>qf+zo Jaids z es(N S—f—1+cqf—f—1))+oa>

s=(+1

+0(1) = L(q//él) +u—u2> +0(1)

N ,0E8
(1) | (@)
2
q q
Thus [4) is proved with

+L

q(1)
q

/(1) d/ U@ d [ Fzu@)
02=q(+u—u2=(— tu= )
q dz\ u(2) /| dz\ u2 % (zu(2) 1
(022,2: +“/gzaFu)“%E (5 +”azau +u/“%u§) Eun %
= LoF
( au) z=1
_ W (LR 0P OF o 0°F  OF
- u%—ﬁ (p 2 Momut oz TV Har +uau (18)
gqu 22 fjk (k(k—l) . L. .
= — —2jk+j(j—1u+]j
aj(l 1/Q) ZA kzl q’ H

- 11/q Zﬂk 1q1< D"+ <1_u>(k u1)> ll/q %iqk W

The last equatlon holds because of
_OF oF
Z/\Z fie(k—nj) = 5-(1,1/0) —ng-(1,1/9) =0

) showsu € (M+1’ 7) for m= g since we havé&M < j < k(M + 1) for all j,k with fx > 0 and
we have somg, ksuch thakM < j and some, k such thatj < k(M + 1) (see the proof of Propositi¢n 1).
Furthermore, fom+# g™, j/kis not equal for allj, k with fi > 0 which impliesa? > 0.

7 Global limit law

Now, we prove the asymptotic normality Bf,. Observe that its characteristic function is

LS audt =B,
N 2
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Proposition 2 Suppose e g™ and set i = E Xy, 04 = VXy. Then for evenp > 0, we have uniformly
for [t| < (logN)/2-3

oitmn /oy 1 z ane/on — e /2 o ((Iog N)*1/2+5) ) (19)

k>0

Proof. We have
q(eit) _ qépt702t2/2+0(t3) (20)

and, by using Propositiqr 1,
bj(€") = (q— 1)gelm-07/2)g0(t+1t%) 4 o (q(lfv)j)
in an open (real) neighbourhoodtof 0. By Lemm4 2, we obtain

L &(N)-1

%aNke"‘t Z}b (e > o= L 0 (logN)
{=]+1 c=
< j ojut—jo?t2/2 0(t+jt3 = O(L3t L—L%
= Y (@Dl 5 g (N)e?) 40 (o)
j=L—|L3| (=]+1

for (small)d > 0. Now observe thaty = pL+ O (1) and Yoy = 1/(0v/L)(14 O (L™1)). Hence

EetOn—tn)/on — e—ltuN/oN z aNkelkt/oN
k>0

L 0 L— LD/
a2 &(N)(9"—q ) it (1W/oV) O(L—0)+2O(L—0)/L gO(tL~ Y2443~ 1/2)+O<q_|_26/3>

(=L—|L%/3]+1 N

_ 7t2/2eo(tL25/3*1/2+t2L25/3*1+t3L*1/2) ) (q7L26/3>

which implies[(19) directly foft| < (logN)®/3. For|t| > (IogN)®/3, we have

e 12/200(PLY2) _ o 2(1/210(tL712)) el _ <(|ogN)—1/2+6)

for somec > 0, which again implieq (19). O
We can now prove the first part of Theorgin 3. Set

An(t) = —t%/2 _ g dt(n—HN)/ON

Then, by Esseen’s inequalifyi[8, p. 32], we have

%HngN: d(n) < EXy+XVXy} = W/ t2/2dt+o< +/
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ChoosingT = (logN)¥2-% we directly obtain from Propositid:r] 2 and by applying the estimate
. 1 .
efltpN/crNi aNke|kt/0N =140 t2
N k; (t*)

for |t| < (logN)~* that
An(t)
t

5

for everyd > 0. Hence[(B) follows.

’dt -0 ((IogN)’l/”é(log IogN))

8 Local limit law

For the local limit law, we have to study tlh%, which have the same asymptotic behavior assiheWe
use Propositiop]|1 and saddle point approximations.

Proposition 3 We have

- (ol 258 00

uniformly for all j,k > 0.
Proof. We use Cauchy’s formula
T ikt
by = Zn[nbj(é Je Kt dit.

Sinceq(z) is an algebraic function witlg(e') < q for 0 < t < 2rrandC(e") is bounded, we have, by
Propostio [L, some > 0 and some > 0 such that

oy€) = 0 (o)

for T < |t| < 1, which implies

[ aldt=0 (o) = 0 ().

It remains to evaluate

1

o 1 o
|:7/ bi (€h)e K dt 7/ bi(e)e M dt = I, +1
21 Jiyj<j-8 i) " on jd<t|<t i(€) 1

with 0< & < %. From ), it follows that there exists a constant 0 such thatq(e')| < e for [t <T.
Hence

<t [T et a0 () o (e ) o (1) ~o(d)



The distribution of m-ary search trees generated by van der Corput sequences 421

Finally,

= E[/‘;‘<J, (q_l)qJelt(”lfk)fjo-ZtZ/Z (1+O(t+ ]t3)) dt—Q—O(q(l*V)J)

i/ G- pget m/deO(/ (Q—l)qjeioztz/Zdt>
o It|>j-2
+o</ _ 6(q—l)qiejoztz/z(t+jt|\'3)o|t)+o(q(1V),-)
tl<j-
(a-D)d’ (k— j? .
:WeXp " 2jo2 +0(d'/)

and Propositiof]3 is proved. O
Propositioff B and (17) are used to prdve (9). We have

e zoé I+1 CZO Ezrb] k—do(Ss s 18s(N)Gs I +cof ) +O(L)
(g 1qJ (k—O(L—E)_j“)2> .
) i +0(q'/j
ZM TH1 czb 2n102 ( 2j0? (/)

since theb?k have the same as asymptotics aslifpgwith constants which sum up tp- 1.
If L—[L®%] < j<Landk—pn = O(vLlogL), thenO(L—¢) = O(L?),

(k—p)?  (k=0(L=0—jw* _ (k)= (k=i +O(L9))"  (k—p)’ (% 2)
20§, 2jo? - 2jo? 2 jo2 a2

-0 (Léfl/zlog L) +0 (L571(|09 L)Z)

and

_ N (k= HN)2> 5-1/2 N
aNk = exp| ———5— (1+O(L IogL>)+O( )
/2"01%1 < 20§, L

If [k— | > +/LlogL, then we have, fok — |L®| < j <L,

- logL)? -
bj =0 (qJL_l/zeXp<—( 4902) )) =o(d'L™)

and thusank = O(N/L). This completes the proof of Theorérh 3.
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9 Binary search trees and the binary van der Corput sequence

For binary search treem(= 2), we have
u) = 1+4zuBy(z,u)+2zBi(zu)

BO(Zu
B]_(Z,) - 1+ZUB)(27U)+ZBZ(27U)
Bg-3(z u) 1+2zUBy(z,u) +zBy-2(z u)
Bg—2(zu) = 142zuB(zu)
and thus
Bo(zU) =1+2+Z+--+ A 4 u(z4+ 224+ 872+ 28 HBo(z ),
P(zu)=F(zu) = (z+Z +---+ 2428 Y.
Hence
2 =z+2+4 - +2824 241
and (1) 1 11
u= T 2aras s @2+ 20-1) - @ (3+1).
q q
q
atl);

With
q'(2) =2+ 6+ -+ (a-3)(a-2)+2a-2)(a-1) = (a-1)(a-2) (

> 9 5 (@-1)(@-2)(F+3q-6)
o =g +H—p = 127

For the binary van der Corput sequenge=(2), we have

we get

M-1
Bo(z u) = Zo 20wl + (m—2"uM 4 (2m— 2M+ 1) zdM 1By (z, u) + (21 — m)zUMBy(z ),
J=

thus
P(z,u) = F(z,u) = (2m—2M+1zeMH 4 QM+ _m)zM.

Using [16) and[(T8), we get

2m-2M+1 oM+1_
2M+1 + oM o 1
MM M4 gy -1

H= Mpemv
oM+1 + oM

2m— 2M+1 2M+1 -m
o —u( (1= o+ 4 - )

“H{ T
m _ _m
() em) e mm )=y
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