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The chordality of a graph with at least one cycle is the length of the longest induced cycle in it. The odd (even)
chordality is defined to be the length of the longest induced odd (even) cycle in it. We show that co-circular-arc
graphs and co-circle graphs have even chordality at most 4. We also identify few other classes of graphs having
bounded (by a constant) chordality values.
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1 Introduction
The chordality of an undirected graphG, which is not acyclic, is defined as the length of the longest
induced cycle in it. The chordality of an acyclic graph is defined to be 0. We useCl (l ≥ 3) to denote a
cycle of lengthl . An induced cycle is called a hole. A hole is an odd hole if its length is odd and is an even
hole otherwise. Odd-chordality of a graph is the length of the longest odd hole in it. Even-chordality of a
graph is the length of the longest even hole in it. In the present paper we identify several classes of graphs
of bounded chordality. Our motivation is due to some recent interesting results connecting chordality with
other structural aspects of graphs. We list some of them below.

1. Bodlaender and Thilikos [3] show that if a graph has chordality at mostk and maximum degree at
most∆, then its treewidth is at most∆(∆−1)k−3. (For the definition of treewidth and for a brief
review of its applications, both theoretical and practical, see [2].)

2. In the same paper mentioned above, Bodlaender and Thilikos [3] prove some separator theorems
for graphs of low chordality.

3. In a recent work, Chandran and Ram [5] relate the chordality with the number of minimum cuts in
a graph (with positive edge weights). They show that if the chordality of a graph withn nodes is at
mostk, then the number of minimum cuts possible in that graph is at most(k+1)n

2 −k, irrespective
of the weight function as long as the weights are positive.
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4. Chandran and Subramanian [6] relate the second smallest eigen-valueµ of the Laplacian matrix of
the graph to its chordality. They show that if the chordality of ann node graph is at mostk and the
maximum degree is at most∆, thenµ≤ 8∆k−1

n

5. Chepoi and Dragan [4] show that for any connected graphG of chordality at mostk there exists a
treeT on the same vertex set such that|dG(u,v)−dT(u,v)| ≤ bk/2c+ α for any pair of verticesu
andv, whered(u,v) is the distance betweenu andv, andα is a constant (α = 1 if the chordality is
either 4 or 5 andα = 2 otherwise).

6. F. Dragan [9] proposes a very simple and efficient approach to solve theall pairs shortest pathand
all pairs almost shortest pathproblems on graphs of low chordality.

7. F. Gavril [12] presents an algorithm that finds a maximum weight induced path in a graph withn
vertices,m edges and of chordality at mostk in time O(mnk). In general the problem is known to
be NP-hard.

8. The Strong Perfect Graph Theorem recently proved by Chudnovsky, Robertson, Seymour and
Thomas [7], asserts that a graphG is perfect if and only if the odd chordality ofG and its com-
plement is at most 3.

Many well-known graph classes have bounded chordality. For instance, it follows directly from the
definition that chordal graphs (those having no holes of length 4 or more) have chordality at most 3,
and weakly chordal graphs (those having neither holes of length at least 5 nor their complements) have
chordality at most 4. Deimer proved in [8] that the chordality of ad-dimensional hypercube is at most
2d−1(1−1/(d2−5d+7)) for d≥ 7. It would be of interest to identify other classes of graphs of bounded
chordality.
Our main result is a proof of boundedness of even-chordality of co-circular-arc and co-circle graphs. In
addition, we also identify few other classes having bounded chordality values.
For each class, in addition to deriving bounds on their chordality values, we also provide examples to
show that these bounds are tight.
All graphs considered in this paper are finite, simple and undirected. For a graphG, we denote byV(G)
and E(G) its vertex set and edge set, and byG the complement ofG. As usual,Pn and Kn denote a
chordless path and a complete graph withn vertices, respectively. Also,G+ H stands for the disjoint
union of two graphsG andH. In particular,mG is the disjoint union ofm copies ofG. For a classC of
graphs, we use co-C to denote the class of complements of members ofC .

2 Co-circular-arc graphs and co-circle graphs
The main result of this section is the following theorem.

Theorem 2.1 For each graph that is the complement of either a circular-arc graph or a circle graph, its
even-chordality is at most 4 while there is no upper bound on its odd-chordality.

Below, we prove Theorem 2.1 by looking at each of the classes mentioned and providing justifications.



Graphs of low chordality 27

Co-circular-arc graphs: These are complements of circular-arc graphs. A circular-arc graph is the
intersection graph of the arcs on the circumference of a unit circle. Co-circular-arc graphs have even-
chordality at most 4 and this class has no bound on their odd-chordality since for eachk≥ 1, the induced
C2k+1 is co-circular-arc.
Before we see the proof of this result, we introduce a convention:
Direct each arc on the circumference of the unit circle according to the clockwise direction. Now each
arc on the circumference is specified by an ordered pair(b,e) whereb (respectivelye) denotes the angle
φ ∈ [0,2π) that the beginning point (respectively the ending point) of this directed arc makes with the
positive part of thex-axis. The angle increases in the clockwise direction. It is possible thatb > e.
Let G be a co-circular-arc graph. Letv→ A(v) = (bv,ev) be the mapping ofV(G) onto circular-arcs such
thatu,v∈V(G) are neighbors (inG) if and only if A(u) andA(v) have empty intersection. First, we prove
thatG has even-chordality at most 4.

Claim 1 We can assume, without loss of generality, that no arc A(u) properly contains any other arc
A(v).

Proof: To see this, consider any inducedCl , l ≥ 5, in G and consider any two distinct verticesa,b in
Cl . We can always find (sincel ≥ 5) two distinct verticesc,d on Cl such thata is a neighbor ofc but
not a neighbor ofd andb is a neighbor ofd but not a neighbor ofc. If, say, A(a) ⊂ A(b), it implies
A(d)∩A(b) 6= /0 andd is not a neighbor ofb. Similarly, we cannot haveA(b) ⊂ A(a). Hence, we can
assume that no arc properly contains any other arc. 2

Claim 2 For any induced path x− 0− 1− . . .− l in G with b0 = 0, b1 < bx, the endpoints of the arcs
{A(x),A(0), . . . ,A(l)} should appear according to the following increasing sequenceσl :

If l = 2k,
0,e2k,e2k−2,b2k−1,e2k−4,b2k−3, . . . ,e2,b3,e0,b1,

bx,e2k−1,b2k,e2k−3,b2k−2, . . . ,e3,b4,e1,b2,ex,2π

If l = 2k+1,
0,e2k,b2k+1,e2k−2,b2k−1, . . . ,e2,b3,e0,b1,

bx,e2k+1,e2k−1,b2k,e2k−3,b2k−2, . . . ,e3,b4,e1,b2,ex,2π

Proof: We prove this by induction onk where eitherl = 2k or l = 2k+1.
The base casesl = 0,1,2,3 corresponding tok = 0,1 can be easily verified to be true.
Assume that the claim is true for allk′ ≤ k wherek≥ 1.
We now prove it fork+1.
First, consider the induced pathx− 0− 1− . . .− 2k+ 2. The endpoints of{x,0,1, . . . ,2k+ 1} should
appear according toσ2k+1. Since 0 and 2k+2 are not neighbors inG, A(0) andA(2k+2) have non-empty
intersection. Hence eitherb2k+2 or e2k+2 (but not both) should lie between 0= b0 ande0.
If b2k+2 lies in (0,e0), thene2k+2 should come aftere0. This implies thatA(2k+ 1) andA(2k+ 2) have
non-empty intersection violating the assumption that 2k+1 and 2k+2 are neighbors inG.
Hence onlye2k+2 lies in A(0). In that case, the arc corresponding to the segment[0,e2k+2] lies within
A(2k+2). Also,e2k+2 should come beforee2k. To see this, suppose it comes aftere2k. It certainly cannot
come afterb2k+1 sinceA(2k+1) andA(2k+2) have empty intersection.
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Hencee2k+2 lies betweene2k andb2k+1. Henceb2k+2 comes afterb2k but beforee2k−1 and this is not
possible sinceb2k comes aftere2k−1 in σ2k+1.
Thus,e2k+2 should come beforee2k. Henceb2k+2 should come beforeb2k. Also, it should come before
e2k−1 to ensure that 2k−1 and 2k+2 are not neighbors. Also, it should come aftere2k+1 to ensure that
2k+1 and 2k+2 are neighbors.
Since the positions ofb2k+2 ande2k+2 are forced in this way, by placing these, we see that the endpoints
appear according toσ2k+2. This proves Claim 2 forl = 2k+2.
Similarly, one can prove Claim 2 forl = 2k+ 3 from l = 2k+ 2 by observing that(i) only b2k+3 is in
(0,e0), (ii) b2k+3 should lie betweene2k+2 ande2k, (iii ) e2k+3 should lie betweenbx ande2k+1. This
proves Claim 2. 2

Now consider any induced cycleCs of even lengths≥ 6 in G. Without loss of generality, by rotating the
unit circle around its centre, we can assume that(i) there exists a vertex 0 onCs with b0 = 0, (ii) if 1 and
x are the neighbors of 0 inG, thenb1 < bx. Thus, we can assume thatCs = (x,0,1, . . . ,2k,x) wherek≥ 2.
Now x−0−1− . . .− (2k−1) is an induced path and hence, by Claim 2, the corresponding endpoints
should appear according toσ2k−1 as given below.

0,e2k−2,b2k−1,e2k−4,b2k−3, . . . ,e2,b3,e0,b1,

bx,e2k−1,e2k−3,b2k−2,e2k−5,b2k−4, . . . ,e3,b4,e1,b2,ex,2π

Since 2k is a neighbor of bothx and 2k−1, we should haveA(2k)∩ (A(x)∪A(2k−1)) = /0. But, this
implies thatA(2k)∩A(1) = /0 sinceA(1) ⊂ (A(x)∪A(2k− 1)) as can be seen fromσ2k−1. This is not
possible since 1 and 2k are not neighbors and henceA(1) andA(2k) should have non-empty intersection.
This shows that even-chordality of co-circular-arc graphs is at most 4.
This bound is tight because of the following example. Consider the set of arcs

A(0) = (0,π/2), A(1) = (3π/4,5π/4), A(x) = (π,3π/2), A(2) = (7π/4,π/4)

InducedC4 is the complement of the intersection graph of these arcs.
Surprisingly, there is no bound on the odd-chordality of co-circular-arc graphs and for everyk≥ 0, induced
C2k+3 is co-circular arc. To see this, note thatC2k+3 is the same as the induced pathx−0−1− . . .−2k+1
except that we want, in addition,x and 2k+ 1 to be neighbors. This can be made co-circular-arc by
picking values for(bx,ex),(b0 = 0,e0), . . . ,(b2k+1,e2k+1) so that, after sorting, these values appear as in
the following sequence (which is obtained fromσ2k+1 by movinge2k+1 to a position betweenb1 andbx):

0,e2k,b2k+1,e2k−2,b2k−1, . . . ,e2,b3,e0,b1,

e2k+1,bx,e2k−1,b2k,e2k−3,b2k−2, . . . ,e3,b4,e1,b2,ex,2π

One can pick values so as to appear like this. This shows that each odd hole is a co-circular-arc graph.
Note that each hole (odd or even) is also a circular-arc graph.

Co-circle graphs: These are complements of circle graphs. A circle graph is the intersection graph
of the chords of a unit circle. A chord of a circle is a straight-line segment joining two points on the
circumference of the circle. Here, we assume that any two chords either have empty intersection or
intersect at an internal point (not at the endpoints of the chords). As in the case of co-circular-arc graphs,
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co-circle graphs also have even-chordality at most 4 with no bound on their odd-chordality since for each
k≥ 1, the inducedC2k+1 is a co-circle graph.
We use the following convention for representing the chords of a circle:
Each chord of the circle is specified by an ordered pair(b,e) whereb andedenote the angleφ∈ [0,2π) that
the two endpoints of the chord make with thex-axis with the convention thatb < e. The angle increases
in the clockwise direction.
Let G be a co-circle graph. Letv → A(v) = (bv,ev) be the mapping ofV(G) onto chords of a unit
circle such thatu,v ∈ V(G) are neighbors (inG) if and only if A(u) andA(v) have empty intersection.
In other words,u andv are neighbors if and only ifeither bu < bv < ev < eu or bv < bu < eu < ev or
bu < eu < bv < ev or bv < ev < bu < eu. Equivalently,u andv arenot neighbors if and only ifeither
bu < bv < eu < ev or bv < bu < ev < eu.

Claim 3 For any induced path x−0−1− . . .− l in G with b0 = 0, b1 < bx, the endpoints of the chords
{A(x),A(0), . . . ,A(l)} should appear according to the following increasing sequenceτl :
If l = 2k,

0,b2k,b2k−2,b2k−1,b2k−4,b2k−3, . . . ,b2,b3,e0,

b1,bx,e2k−1,e2k,e2k−3,e2k−2, . . . ,e3,e4,e1,e2,ex,2π

If l = 2k+1,
0,b2k,b2k+1,b2k−2,b2k−1, . . . ,b2,b3,e0,

b1,bx,e2k+1,e2k−1,e2k,e2k−3,e2k−2, . . . ,e3,e4,e1,e2,ex,2π

Proof: We prove this by induction onk where eitherl = 2k or l = 2k+1.
The base casesl = 0,1,2,3 corresponding tok = 0,1 can be easily verified to be true.
Assume that the claim is true for allk′ ≤ k wherek≥ 1. We now prove it fork+1.
First, consider the induced pathx− 0− 1− . . .− 2k+ 2. The endpoints of{x,0,1, . . . ,2k+ 1} should
appear according toτ2k+1.
Since 0 and 2k+2 are not neighbors inG, A(0) andA(2k+2) have non-empty intersection. Henceb2k+2

should lie between 0= b0 ande0.
Also, it should come beforeb2k.
Suppose not. Then, since 2k and 2k+ 2 are not neighbors,e2k+2 should come aftere2k. Now, if b2k+2

comes afterb2k+1 it implies the corresponding chords have non-empty intersection violating the fact that
2k+1 and 2k+2 are neighbors inG.
If b2k+2 comes beforeb2k+1 then the chords corresponding to 2k+2 and 2k−1 have empty intersection
violating the fact that 2k+2 and 2k−1 are not neighbors inG.
Henceb2k+2 should come beforeb2k. This implies thate2k+2 should lie betweene2k+1 ande2k−1. Since
the positions ofb2k+2 ande2k+2 are forced in this way, by placing these, we see that the endpoints appear
according toτ2k+2. This proves Claim 3 forl = 2k+2.
Similarly, one can prove Claim 3 forl = 2k+ 3 from l = 2k+ 2 by observing that(i) b2k+3 should lie
betweenb2k+2 andb2k, (ii) e2k+3 should lie betweenbx ande2k+1. This proves Claim 3. 2

Now consider any induced cycleCs of even lengths≥ 6 in G. Without loss of generality, by rotating the
unit circle around its centre, we can assume that(i) there exists a vertex 0 onCs with b0 = 0, (ii) if 1
andx are the neighbors of 0 inG, thenb1 < bx. Thus, we can assume thatCs = (x,0,1, . . . , l ,x) where
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l = s−2≥ 4 is even. Letl −1 = 2k+1 for somek≥ 1. Nowx−0−1− . . .− (l −1) is an induced path
and hence, by Claim 3, the corresponding endpoints should appear according toτl−1.
Sincel = 2k+2 and 0 are not neighbors we should have 0< b2k+2 < e0 < e2k+2. Now eithere2k+2 < bx

or ex < e2k+2, since otherwise 2k+ 2 andx would not be neighbors whereas they should be. But, we
cannot haveex < e2k+2 as this would imply 1 and 2k+2 are not neighbors. Hence, we havee2k+2 < bx.
Again, since 1 and 2k+2 are not neighbors andb2k+2 < b1, we should haveb1 < e2k+2 < bx. Now, since
e2k+2 < e2k+1 and 2k+1 is a neighbor of 2k+2 in G, we must haveb2k+1 < b2k+2. But this would imply
thatb2k < b2k+2 < e2k+2 < e2k violating 2k and 2k+ 1 not being neighbors inG. This shows that there
can be no inducedCs in G with s−3 = l −1≥ 3 being odd. In other words, the even-chordality ofG is at
most 4.
This bound is tight because of the following example. Consider the set of chords

A(0) = (0,π/2), A(1) = (π,3π/2), A(x) = (5π/4,7π/4), A(2) = (π/4,3π/4)

InducedC4 is the complement of the intersection graph of these chords.
Like in the case of co-circular-arc graphs, there is no bound on the odd-chordality of co-circle graphs
and for everyk ≥ 0, inducedC2k+3 is co-circle. This can be seen by picking values for(bx,ex),(b0 =
0,e0), . . . ,(b2k+1,e2k+1) so that, after sorting, these values appear as in the following sequence (which is
obtained fromτ2k+1 by movinge2k+1 to a position betweenb1 andbx):

0,b2k,b2k+1,b2k−2,b2k−1, . . . ,b2,b3,e0,

b1,e2k+1,bx,e2k−1,e2k,e2k−3,e2k−2, . . . ,e3,e4,e1,e2,ex,2π

The complement of the circle graph corresponding to this set of chords is an inducedC2k+3. This shows
that each odd hole is a co-circle graph. Also, each hole (odd or even) is a circle graph.

3 Other classes
Each class of this section, as well as the two classes studied above, has the property that for every graphG
in it, it contains all induced subgraphs ofG. Such classes are calledhereditary. Many classes of theoretical
and practical importance are hereditary, which includes, among others, planar, bipartite, split, threshold,
perfect, interval, comparability, line graphs, forests, graphs of bounded vertex degree, etc. Many of those
classes that are not hereditary have natural hereditary extensions: for instance, for the non-hereditary
class of trees such an extension is the class of forests, and for the class of cubic graphs such an extension
consists of all graphs of vertex degree at most three. Our interest in hereditary classes is based on the fact
that these and only these classes admit a uniform description in terms of forbidden induced subgraphs.
More formally, given a set of graphsM, let us denote byFree(M) the class of graphs containing no
induced subgraphs isomorphic to graphs inM. Then the following theorem holds.

Theorem 3.1 The class of graphs X is hereditary if and only if X= Free(M) for a set M. Moreover, the
minimal set M with this property is unique.

Proof: Obviously, for any setM the classFree(M) is hereditary. Conversely, letX be a hereditary class,
andM the set of all minimal (with respect to the relation ”to be an induced subgraph”) graphs which are
not in X. ClearlyX ⊆ Free(M). On the other hand, every graph which is not inX contains an induced
subgraph fromM. Therefore,Free(M) ⊆ X. To prove the second part of the theorem, we will show that
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M ⊆ N for any setN such thatX = Free(N). To this end, letG be a graph inM. By definition ofM, G
does not belong toX, and hence,G must contain an induced subgraphH ∈ N. By the same definition,
every proper induced subgraph ofG belongs toX, from which we conclude thatG = H, i.e. G∈ N. 2

For many classes the induced subgraph characterization is known. For instance, according to the fa-
mous theorem of K̈onig [21], the class of bipartite graphs coincides withFree(C3,C5,C7, . . .). Therefore,
odd-chordality of bipartite graphs is 0, while even-chordality is unbounded. For the larger class ofcompa-
rability (or transitively orientable) graphsthe induced subgraph characterization has been found by Gallai
[11] (see also [10] and [26]). From this characterization it follows that odd-chordality of comparability
graphs is at most 3 and even-chordality is unbounded. On the other hand, the same characterization shows
that chordality of the complement of a comparability graph is at most 4.
In general, the problem of finding induced subgraph characterization for a hereditary class might be very
difficult, as the example ofperfect graphsshows. However, for the purpose of our study, we do not need
to know the complete list of minimal forbidden induced subgraphs. Indeed, with the above notation we
can say that graphs in a classX have chordality at mostk if X ⊆ Free(Ck+1,Ck+2,Ck+3, . . .). Consider,
for instance, the class ofasteroidal triple-free(AT-free for short) graphs, which extends co-comparability
graphs. In a graph, an asteroidal triple is a set of three pairwise non-adjacent vertices, any two of which are
joined by a path avoiding the closed neigbhorhood of the third. Clearly any cycle with at least 6 vertices
contains an asteroidal triple. Therefore, AT-free graphs constitute a subclass ofFree(C6,C7,C8, . . .), or
equivalently, chordality of AT-free graphs is at most 5, although the complete list of minimal forbidden
graphs for this class is unknown (to our knowledge).
Below we propose a very simple sufficient condition for a class of graphs to have bounded chordality. The
condition is based on the following helpful lemma.

Lemma 3.1 Free(M1)⊆ Free(M2) if and only if every graph in M2 contains a graph in M1 as an induced
subgraph.

Proof: Suppose first that a graphH ∈ M2 does not contain induced subgraphs in the setM1. Then
H ∈ Free(M1)−Free(M2), which proves necessity. Conversely, any graphG ∈ Free(M1)−Free(M2)
must contain an induced subgraph inM2, and this graph cannot contain induced subgraphs belonging to
M1 (since otherwiseG 6∈ Free(M1)). This proves sufficiency. 2

The following corollary is straightforward.

Corollary 3.1 Let X= Free(M) be a hereditary class of graphs. If M contains a graph G every connected
component of which is a path, then chordality of graphs in X is bounded. Specifically, if k is the number
of connected components of G and nj is the number of vertices in the j-th component, then graphs in X

have chordality at most
k
∑
j=1

n j +k−1.

Now let us illustrate this simple statement with a number of examples.

1. (co-Kn)-free graphs. The complement of aKn is the graph withn isolated vertices. Therefore, by
Corollary 3.1, chordality of (co-Kn)-free graphs does not exceed 2n−1. Moreover, in the entire class of
co-Kn-free graphs this bound is tight, sinceC2n−1 contains no complement ofKn as an induced subgraph.
However, for some specific subclasses of co-Kn-free graphs the bound can be further improved. Below
we consider several such subclasses.
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1.1. Co-bipartite graphs.Co-bipartite graphs constitute a subclass of (co-K3)-free graphs and therefore,
from the above general formula we conclude that their chordality cannot be more than 5. Furthermore,
C5 = C5 is not a bipartite graph and hence chordality of co-bipartite graphs is at most 4. This bound
is tight, sinceC4 is a co-bipartite graph. With further restriction to complements of 2K2-free bipartite
graphs (also known in the literature as difference graphs [19] or chain graphs [27]) we obtain a subclass
of co-bipartite graphs of chordality at most 3 (the bound is tight).

1.2. Complements of graphs of vertex degree at mostd. Clearly, a graphG with maximum vertex
degree at mostd is Kd+2-free. Therefore, the chordality ofG is at most 2d + 3. An improvement on
this bound can be obtained by noticing that the complement of the graphPd+1 + K1 (the disjoint union
of Pd+1 andK1) contains a vertex of degreed + 1 and hencePd+1 + K1 is forbidden in the class under
consideration. Therefore, by Corollary 3.1, chordality of complements of graphs of vertex degree at most
d is bounded above byd+ 3. The bound is tight, since the complement ofCd+3 contains no vertices of
degree greater thand.

1.3. Complements of graphs of degeneracy at mostk. The degeneracy of a graphG is the maximum
value (over all induced subgraphsH of G) of δ(H) whereδ(H) is the minimum degree ofH. Obviously,
graphs of degeneracy at mostk areKk+2-free. Let us show that their complements have chordality at
mostk+3. To this end, consider an induced cycleCl of lengthl ≥ k+4. All vertices ofCl have degree
l − 3≥ k+ 1. Therefore, cyclesCl of length l ≥ k+ 4 are forbidden for the class of complements of
graphs of degeneracy at mostk. The bound is tight, since an antihole onk+3 vertices is a regular graph
with degree (and hence degeneracy) exactlyk and its complement is an inducedCk+3. Some examples
of graphs of bounded degeneracy are those of bounded genusg, whose degeneracy and chordality are
bounded below.

1.4. Complements of graphs of genus at mostg. It is well-known that graphs of genus at mostg have at
most 3n−6+6g edges. Using this, we claim that degeneracy of such graphs is at most

√
12g+3+ 9√

12g+3
.

To show this, consider a graphG of genusg and letH = G[X] be any induced subgraph achieving the
degeneracyk of G. That is,δ(G[X]) = k.

Case1: If |X| ≤
√

12g+3, thenk≤
√

12g+3.

Case2: If |X|>
√

12g+3, then sinceH is also a genus-g graph,

k = δ(H)≤ 6+
12g√

12g+3
≤ 6+

√
12g−3+

9√
12g+3

In any case, the degeneracy ofG is at most
√

12g+3+ 9√
12g+3

.

Therefore, the chordality ofG is at most
√

12g+ 6+ 9√
12g+3

. For g ≥ 3, the bound on chordality of
complements of genus-g graphs is tight up to an additive error of 3. To see this, consider an antihole
H on m= k+ 3 vertices wherek≥ 1 is an integer. This is the same as a complete graph onm vertices
minus a hole on thesem vertices. It is well-known that a complete graph onm vertices has genus exactly
(m−3)(m−4)/12. It follows that the genusg of the antiholeH is at most

(m−3)(m−4)
12

=
k2−k

12
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Hence
√

12g≤ k−1+ ε for some positiveε < 1. Also, usingg≥ 3,√
12g+6+

9√
12g+3

≤ k+5+ ε+
9√

12g+3
≤ k+6+ ε.

This shows the tightness up to 3. Forg = 1,2, the bound is tight up to an additive error of 4.

1.5. Complements of graphs of bounded arboricity.The arboricity of a graphG is the minimum number
of edge-disjoint acyclic spanning subgraphs the union of which isG. According to Nash-Williams formula
[23], the arboricity ofG coincides with maxE(H)/(V(H)−1), where maximum is taken over all induced
subgraphsH of G. Therefore, graphs of bounded arboricity areKn-free for some value ofn, and thus
complements of graphs of bounded arboricity have bounded chordality.

1.6. Complements of graphs in minor-closed classes.Graphs in minor-closed classes (i.e. those con-
taining no graph in a certain family as a minor) have at mostcn edges [22], wheren is the number
of vertices andc is a constant associated with the class. Therefore, graphs in minor-closed classes have
bounded arboricity and thus their complements are of bounded chordality. One of the most famous minor-
closed classes is the class of planar graphs. Below we provide a tight bound for chordality of co-planar
graphs.

1.7 Co-planar graphs. It is known that planar graphs have bounded degeneracy, genus, arboricity and
they areK5-free. Together with the above discussion this immediately leads to the conclusion that chordal-
ity of co-planar graphs is bounded. In order to derive a tight bound, let us first observe that co-planar
graphs are 2P3-free, since the complement of 2P3 contains aK3,3 as a subgraph. Therefore, by Corol-
lary 3.1, chordality of co-planar graphs cannot be more than 7. To improve the bound, consider a cycle
C7 with verticesa,b,c,d,e, f ,g listed along the cycle. The complement of the cycle contains an edge sub-
graphH, which is homeomorphic toK3,3 (H can be obtained by deleting the edgesa f,bd,eg,ce). Hence
chordality of co-planar graphs is at most 6, and this bound is tight since the complement of an inducedC6

is planar.

2. Co-line graphs. The induced subgraph characterization of line graphs can be found, for instance, in
[20]. One of the forbidden graphs for this class is the complement toP2+P3. Therefore, by Corollary 3.1,
chordality of co-line graphs is at most 6. The bound is tight, since the complement ofC6 is a line graph
(it does not contain forbidden graphs).

3. Co-chordal graphsare 2K2-free and hence, by Corollary 3.1, their chordality is at most 5. Moreover,
sinceC5 = C5 is not a chordal graph, we conclude that chordality of co-chordal graphs is at most 4. The
bound is tight, since 2K2 =C4 is a chordal graph. Thus, we see that chordality is bounded both for chordal
graphs and their complements, which is no wonder, since both classes are subclasses of weakly chordal
graphs. By definition, a graphG is weakly chordal ifG ∈ Free(C5,C5,C6,C6,C7,C7, . . .). In addition
to chordal graphs and their complements, the class of weakly chordal graphs contain many interesting
subclasses, such as chordal bipartite [14], distance-hereditary [1], matroidal [24], tolerance graphs [18],
etc. Therefore, all these graph classes and their complements have chordality at most 4.

4 Conclusions
In this paper we studied chordality of graphs in various classes. The main result is a proof of boundedness
of even-chordality of co-circular-arc and co-circle graphs. There are many other important families of
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graphs for which the problem of determining chordality is open. In this section we discuss two of them.
Both families are defined via an intersection model, both have numerous applications, and both generalize
some known classes of graphs of low chordality, just as circular-arc and circle graphs. The first family
is the class of circular permutation graphs [25]. Similarly to circle graphs, this is a generalization of per-
mutation graphs. Chordality of permutation graphs, as well as their complements, is at most 4, since this
class is the intersection of comparability and co-comparability graphs. The other family was introduced
in [17] under the namek-EPT graphs. This is a generalization of edge intersection graphs of paths in
a tree (1-EPT graphs) [15] and vertex intersection graphs of paths in a tree (VPT graphs) [16]. Every
VPT graph is chordal, since chordal graphs are exactly the vertex intersection graphs of subtrees of a tree
[13]. Therefore, chordality is bounded both for VPT graphs and their complements. The class of 1-EPT
graphs is an extension of VPT graphs. Chordality of 1-EPT graphs is unbounded, while co-chordality (i.e.
chordality of their complements) is at most 6 [15].k-EPT graphs constitute a further generalization of
both classes, and therefore, provide a new direction for future research.
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