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Let G be a graph with chromatic numberχ(G). A vertex colouring ofG is acyclic if each bichromatic subgraph is a
forest. Astar colouringof G is an acyclic colouring in which each bichromatic subgraph is a star forest. Letχa(G)
andχs(G) denote the acyclic and star chromatic numbers ofG. This paper investigates acyclic and star colourings of
subdivisions. LetG′ be the graph obtained fromG by subdividing each edge once. We prove that acyclic (respectively,
star) colourings ofG′ correspond to vertex partitions ofG in which each subgraph has small arboricity (chromatic
index). It follows thatχa(G′), χs(G′) and χ(G) are tied, in the sense that each is bounded by a function of the
other. Moreover the binding functions that we establish are all tight. Theoriented chromatic number−→χ (G) of an
(undirected) graphG is the maximum, taken over all orientationsD of G, of the minimum number of colours in a
vertex colouring ofD such that between any two colour classes, all edges have the same direction. We prove that
−→χ (G′) = χ(G) wheneverχ(G)≥ 9.

Keywords: graph, graph colouring, star colouring, star chromatic number, acyclic colouring, acyclic chromatic
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1 Introduction
Let G be a (finite, simple, undirected) graph with vertex setV(G) and edge setE(G). Let δ(G) and∆(G)
denote the minimum and maximum degrees ofG.

A vertex partitionof G is a set{G1,G2, . . . ,Gk} of induced subgraphs ofGsuch thatV(G) =
Sk

i=1V(Gi)
andV(Gi)∩V(G j)= /0 for all distincti and j. A vertex k-colouringof G is a vertex partition{G1,G2, . . . ,Gk}
in which E(Gi) = /0 for all i. A vertex inV(Gi) is said to becoloured i, and a vertexk-colouring can be
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viewed as a function that assigns one ofk colours to every vertex ofG such that adjacent vertices receive
distinct colours. Thechromatic numberχ(G) is the minimumk such thatG has a vertexk-colouring.

An edge partitionof G is a set{G1,G2, . . . ,Gk} of subgraphs ofG such thatE(G) =
Sk

i=1E(Gi) and
E(Gi)∩E(G j) = /0 for all distinct i and j. An edge k-colouringof G is an edge partition{G1,G2, . . . ,Gk}
of G in which eachGi is a matching. An edge inE(Gi) is said to becoloured i, and an edgek-colouring
can be viewed as a function that assigns one ofk colours to every edge ofG such that pairs of edges with
a common endpoint receive distinct colours. Thechromatic indexχ′(G) is the minimumk such thatG has
an edgek-colouring.

We will mainly be concerned with vertex colourings. Henceforth acolouringwill mean a vertex colour-
ing.

A colouring of G is acyclic if every cycle receives at least three colours; that is, every bichromatic
subgraph is a forest. Theacyclic chromatic numberχa(G) is the minimum number of colours in an
acyclic colouring ofG. An acyclic colouring is astar colouringif every 4-vertex path receives at least
three colours; that is, every bichromatic subgraph is a union of disjoint stars. Thestar chromatic number
χs(G) is the minimum number of colours in a star colouring ofG. By definition every graphG satisfies

χa(G) ≤ χs(G) . (1)

It is folklore thatχs(G) ≤ χa(G) · 2χa(G)−1 (see [27, 31]). Albertsonet al. [3] recently improved this
bound toχs(G) ≤ χa(G)(2χa(G)−1). A general result by Něseťril and Ossona de Mendez [44] states
that χs(G) (and henceχa(G)) is at most a quadratic function of the maximum chromatic number of a
minor of G. Other references on acyclic and star colourings include [1, 2, 4, 5, 11, 13, 16, 17, 18, 21, 25,
26, 27, 29, 33, 34, 35, 40].

A directed graph obtained from a graphG by giving each edge one of the two possible orientations is
called anorientationof G. The arc set of an orientationD is denoted byA(D). A colouring ofD is oriented
if between every pair of colour classes, all edges have the same direction. Theoriented chromatic number
−→χ (D) is the minimum number of colours in an oriented colouring ofD. A tournamentis an orientation of
a complete graph. Observe that−→χ (D)≤ k if and only if there is a homomorphismφ from D to ak-vertex
tournamentH; that is, for every arcvw∈ A(D), the imageφ(v)φ(w) ∈ A(H).

The oriented chromatic numberof an (undirected) graphG, denoted by−→χ (G), is the maximum of
−→χ (D), taken over all orientationsD of G. Oriented chromatic number is bounded by acyclic chromatic
number. In particular, Raspaud and Sopena [48] proved that−→χ (G) ≤ χa(G) ·2χa(G)−1. Other reference
on oriented chromatic number include [12, 14, 15, 28, 32, 34, 45, 46, 47, 48, 50, 51, 52].

A subdivisionof a graphG is a graph obtained fromG by replacing each edge by an internally disjoint
path of at least one edge. The vertices of a subdivision ofG corresponding to vertices ofG are said to be
original vertices. The remaining vertices are calleddivisionvertices. The subdivision ofG obtained by
replacing each edgevwby a 3-vertex path(v,x,w) is denoted byG′. Clearlyχ(G′)≤ 2 for every graphG.

1.1 Results

The star / acyclic / oriented chromatic numbers ofG′ are the main topics of this paper. Our results on
these topics are respectively presented in Sections 3, 4, and 5. We show that star (respectively, acyclic)
colourings ofG′ correspond to vertex partitions ofG in which each subgraph has small chromatic index
(arboricity). It follows thatχs(G′), χa(G′) and χ(G) are tied, in the sense that each is bounded by a
function of the other. Moreover the binding functions that we establish are all tight. We start in Section 2
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with a general discussion of ‘partitionable’ parameters that may be of independent interest. In Section 5
we prove that−→χ (G′) is strongly tied toχ(G). In particular,−→χ (G′) = χ(G) wheneverχ(G)≥ 9. Finally in
Section 6, we study the acyclic and star chromatic numbers of subdivisions in which each edge is replaced
by a path of at least four vertices. We prove that such subdivisions have bounded star / acyclic / oriented
chromatic numbers. A theme of this paper is that questions about graph colourings and partitions can be
expressed in terms of colourings of subdivisions. Another example is that the total chromatic number of
G equals the chromatic number of the square ofG′.

2 Partitionable Parameters
The following result by Lov́asz [38], which will be used in Section 3, says that the maximum degree is a
‘partitionable’ parameter; see [8, 9, 19, 22, 30, 36, 42] for related work.

Lemma 1 ([38]). Let G be a graph. Let d1,d2, . . . ,dk be non-negative integers such that∑k
i=1di = ∆(G)−

k+1. Then G has a vertex partition{G1,G2, . . . ,Gk} in which∆(Gi)≤ di for all i.

A graph ischordal if it contains no induced cycle on at least four vertices. Thetreewidthtw(G) is the
minimumk such that the graphG is a subgraph of a chordal graph with no(k+2)-clique. The following
result by Dinget al. [23] says that treewidth is partitionable.

Lemma 2 ([23]). Let d1,d2, . . . ,dk be non-negative‡ integers such that∑k
i=1di = d− k+ 1. Then every

graph G with treewidthtw(G)≤ d has a vertex partition{G1,G2, . . . ,Gk} in which each Gi has treewidth
tw(Gi)≤ di .

Thedegeneracyof G is defined to be

d(G) = max
H⊆G

δ(H) .

A graph with degeneracy at mostd is d-degenerate. The following result due to Mih́ok [39] says that
degeneracy is partitionable. We include the proof (which was discovered independently) for completeness.

Theorem 1 ([39]). Let d1,d2, . . . ,dk be non-negative integers such that∑k
i=1di = d− k+ 1. Then every

d-degenerate graph G has a vertex partition{G1,G2, . . . ,Gk} in which each Gi is di-degenerate.

Proof. We proceed by induction on|V(G)|. The result is trivial if|V(G)| = 1. By definition,G has a
vertexv of degree at mostd, andG\ v is alsod-degenerate. By induction,G\ v has a vertex partition
{G1,G2, . . . ,Gk} in which eachGi is di-degenerate. There is somei such thatGi contains at mostdi

neighbours ofv, as otherwisev has degree at least∑k
i=1(di + 1) = d + 1. Let H be the subgraph of

G induced byV(Gi)∪ {v}. It follows that H is alsodi-degenerate (see [37, 41] for example). Thus
{G1, . . . ,Gi−1,H,Gi+1, . . . ,Gk} is the desired vertex partition ofG.

It is easily seen that Theorem 1 is best possible for the complete graphKn with n≡ 0 (mod k(k+1)),
anddi = d j for all 1≤ i < j ≤ k.

For planar graphs, which are 5-degenerate, stronger results than Theorem 1 are possible. The 4-
colour theorem [49] states that every planar graph has a vertex partition into four 0-degenerate subgraphs.
Strengthening the 5-colour theorem, Thomassen [53] proved that every planar graph has a vertex partition

‡ Ding et al. [23] state Lemma 2 for positive integersd1,d2, . . . ,dk. It is easily seen that the proof is still valid if somedi = 0. A
graph has treewidth 0 if and only if it has no edges.



40 David R. Wood

into a 2-degenerate subgraph and a 1-degenerate subgraph (a forest), and Thomassen [54] proved that
every planar graph has a vertex partition into a 3-degenerate subgraph and a 0-degenerate subgraph.

Thearboricity a(G) is the minimumk such that the graphG has an edge partition{G1,G2, . . . ,Gk} in
which eachGi is a forest. Nash-Williams [43] proved that

a(G) = max
H⊆G

⌈
|E(H)|

|V(H)|−1

⌉
. (2)

It is well known that (see [56] for example)

a(G) ≤ d(G) ≤ 2a(G)−1 , (3)

and
χ(G) ≤ d(G)+1 ≤ 2a(G) . (4)

To what extent arboricity is a partitionable parameter will be important in Section 4. Theorem 1 and
(3) imply:

Corollary 1. Let G be a graph with degeneracyd(G) ≤ d (which is implied if G has arboricitya(G) ≤
1
2(d+1)). Let d1,d2, . . . ,dk be non-negative integers such that∑k

i=1di = d−k+1. Then G has a vertex
partition {G1,G2, . . . ,Gk} in which each Gi has arboricitya(Gi)≤ di .

Corollary 2. Let G be a graph with arboricitya(G)≤ d. Let d1,d2, . . . ,dk be non-negative integers such
that ∑k

i=1di = 2d− k. Then G has a vertex partition{G1,G2, . . . ,Gk} in which each Gi has arboricity
a(Gi)≤ di .

3 Star Colourings of G′

In this section we study the star chromatic number ofG′. First we give a simple upper bound onχs(G′)
in terms ofχ(G).

Lemma 3. For every graph G,χs(G′)≤max{χ(G),3}.

Proof. Consider a colouring ofG with χ(G) colours. Define a colouring ofG′ in which each original
vertex inherits its colour fromG. If χ(G) ≤ 2 then let all the division vertices receive one new colour.
Otherwise (ifχ(G)≥ 3), for each division vertex, choose one of theχ(G) colours different from the two
colours assigned to its two neighbours. A 4-vertex path inG′ contains a trichromatic path(v,x,w), where
x is the division vertex of the edgevw. ThusG′ has a star colouring with max{χ(G),3} colours.

In Lemma 3, the original vertices ofG′ inherit their colour from a colouring ofG. At the other extreme,
the original vertices ofG′ are monochromatic.

Lemma 4. For every graph G, the minimum number of colours in a star colouring of G′ in which the
original vertices are monochromatic isχ′(G)+1.

Proof. Given an edge colouring ofG, transfer the colour from each edge to the corresponding division
vertex, and colour all of the original vertices with a new colour. LetP= (v,x,w,y) be a 4-vertex path ofG′.
Without loss of generality,x is the division vertex of the edgevw, andy is the division vertex of some edge
wu. In the edge colouring,vwandwu receive distinct colours. Hencex andy receive distinct colours, and
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P is not bichromatic. ThusG′ has a star colouring withχ′(G)+ 1 colours in which the original vertices
are monochromatic.

Consider a star colouring ofG′ with k colours in which the original vertices are monochromatic. No
division vertex can receive this colour, otherwise it is not a colouring. For all pairs of edges ofG with
an endpoint in common, the corresponding division vertices receive distinct colours, as otherwise there
is a bichromatic 5-vertex path inG′. Transferring the colour from each division vertex ofG′ to the
corresponding edge ofG, we obtain an edge(k−1)-colouring ofG.

Theorem 2. For every graph G, the star chromatic number of G′ satisfies:√
χ(G) ≤ χs(G′) ≤ max{χ(G),3} .

Proof. The upper bound is Lemma 3. Letφ be a stark-colouring ofG′, wherek = χs(G′). Let H be
the spanning subgraph ofG with edge setE(H) = {vw∈ E(G) : φ(v) = φ(w)}. Then every connected
component ofH is monochromatic underφ. By Lemma 4,χ′(H)≤ k−1. Hence∆(H)≤ k−1, and thus
χ(H)≤ k by Brooks’ Theorem [20]. Letϕ be a vertexk-colouring ofH. Now colour each vertexv∈V(G)
by the pair(φ(v),ϕ(v)). Consider an edgevw∈ E(G). If vw∈ E(H) thenϕ(v) 6= ϕ(w). If vw 6∈ E(H)
thenφ(v) 6= φ(w). Thus we have ak2-colouring ofG, andχ(G)≤ χs(G)2.

We now take an approach that is somewhere between the extremes of Lemmata 3 and 4.

Lemma 5. Let G be a graph, and let k≥ 1 and d≥ 0 be integers. Suppose that G has a vertex partition
{G1,G2, . . . ,Gk} in whichχ′(Gi)≤ d for all 1≤ i ≤ k. Thenχs(G′)≤max{k+1,d+2}.

Proof. Let m= max{k,d + 1} and[m] = {0,1, . . . ,m−1}. For each vertexv∈ V(Gi), let φ(v) = i−1.
Thusφ(v) ∈ [m]. For 1≤ i ≤ k, let λi be an edged-colouring ofGi , where 1≤ λi(vw) ≤ d. Consider
an edgevw of G whose division vertex inG′ is x. First suppose thatφ(v) = φ(w) = i. Let φ(x) = (i +
λi(vw)) modm. Sincei ∈ [m] andm> d≥ λi(vw)≥ 1, φ(x)∈ [m]\{i}. If φ(v) 6= φ(w), then letφ(x) = m.
In both cases,x is coloured differently from both of its neighbours. Henceφ is a colouring ofG′. Suppose
thatφ is not a star colouring. That is, there is a pathP = (v,x,w,y) in G′, andφ(v) = φ(w) 6= φ(x) = φ(y).
Without loss of generality,x is the division vertex of the edgevw, andy is the division vertex of some
edgewu. First suppose thatφ(v) = φ(w) = φ(u). Thenvwandwuare in someGi . Hence the edge colours
of vw andwu are distinct, andφ(x) 6= φ(y), a contradiction. Ifφ(v) = φ(w) 6= φ(u) thenφ(x) ≤ m− 1
and φ(y) = m, a contradiction. Thereforeφ is a star colouring ofG′ with m+ 1 = max{k+ 1,d + 2}
colours.

Converse to Lemma 5, we have the following.

Lemma 6. For every graph G, ifχs(G′)≤ k then G has a vertex partition{G1,G2, . . . ,Gk} in which each
Gi has chromatic indexχ′(Gi)≤ k−1.

Proof. Let φ be a stark-colouring ofG′. Let{G1,G2, . . . ,Gk} be the vertex partition ofG, whereV(Gi) =
{v∈V(G) : φ(v) = i}. By Lemma 4,χ′(Gi)≤ k−1 for all i.

Theorem 3. For every graph G,χs(G′)≤
√

∆(G)+3.
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Proof. Let ∆ = ∆(G) andk = d
√

∆e. Let d1,d2, . . . ,dk ∈ {b(∆− k+ 1)/kc,d(∆− k+ 1)/ke} such that
∑k

i=1di = ∆− k+ 1. By Lemma 1,G has a vertex partition{G1,G2, . . . ,Gk} in which ∆(Gi) ≤ di ≤
d(∆− k+ 1)/ke ≤ ∆/k ≤

√
∆ for all i. By Vizing’s Theorem [55],χ′(Gi) ≤

√
∆ + 1. By Lemma 5,

χs(G′)≤max{d
√

∆e+1,
√

∆+3} ≤
√

∆+3.

The following example shows that, up to the additive constant, the lower bound in Theorem 2 and the
upper bound in Theorem 3 are tight.

Example 1. For all n≥ 1,
√

n≤ χs(K′
n)≤

√
n−1+3.

We now prove that the upper bound in Theorem 2 is tight. LetK(n1,n2, . . . ,nk) denote the complete
k-partite graph withni vertices in thei-th colour class.

Example 2. For all k≥ 3 and n≥ k−1, the complete k-partite graph G= K(n,n, . . . ,n) satisfiesχs(G′) =
k (= χ(G)).

Proof. That χs(G′) ≤ k follows from Lemma 3. Suppose on the contrary, thatχs(G′) ≤ k− 1. By
Lemma 6,G has a vertex partition{G1,G2, . . . ,Gk−1} in whichχ′(Gi)≤ k−2 for all i, which implies that
∆(Gi)≤ k−2. For some 1≤ i ≤ k−1, |V(Gi)| ≥ |V(G)|/(k−1) = kn/(k−1). For some 1≤ j ≤ k, the
number of vertices inV(Gi) that are in thej-th colour class ofG is at most|V(Gi)|/k. Let v be such a ver-
tex. Vertices in distinct colour classes ofG are adjacent. Thusv is adjacent to at least|V(Gi)|− |V(Gi)|/k
vertices inGi . That is, ∆(Gi) ≥ (k− 1)|V(Gi)|/k ≥ n. Thus we obtain the desired contradiction for
n≥ k−1.

4 Acyclic Colourings of G′

In this section we study the acyclic chromatic number ofG′. The results are analogous to those for the
star chromatic number in Section 3, with arboricity playing the same role as chromatic index. We start
with an analogue of Lemma 4.

Lemma 7. For every graph G, the minimum number of colours in an acyclic colouring of G′ in which the
original vertices are monochromatic isa(G)+1.

Proof. Suppose we have an acyclic(k+1)-colouring ofG′ in which the original vertices are monochro-
matic. Then no division vertex receives the same colour as the original vertices. The edge partition ofG
defined with respect to the colour of the corresponding division vertex consists ofk acyclic subgraphs, and
a(G)≤ k. Conversely, given an edge partition{G1,G2, . . . ,Gk} of G into forests, leti be the colour of each
division vertex of an edge inGi , and colour each original vertex 0. We obtain an acyclic(k+1)-colouring
of G′ in which the original vertices are monochromatic.

Lemma 8. Let d≥ 0 and k≥ 1 be integers. If a graph G has a vertex partition{G1,G2, . . . ,Gk} in which
each Gi has arboricitya(Gi)≤ d, then G′ has acyclic chromatic numberχa(G′)≤max{k,d+1,3}.

Proof. For each vertexv∈V(Gi), let φ(v) = i−1. Letm= max{k,d+1,3} and[m] = {0,1, . . . ,m−1}.
Thusφ(v) ∈ [m]. For 1≤ i ≤ k, let {Gi,1,Gi,2, . . . ,Gi,d} be an edge partition ofGi into forests. Consider
an edgevw of G whose division vertex inG′ is x. First suppose thatφ(v) = φ(w) = i. Let φ(x) =
(i + j) modm, wherevw∈ E(Gi, j). Sincei ∈ [m] andm> d≥ j ≥ 1, φ(x) ∈ [m]\{i}. Now suppose that
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φ(v) 6= φ(w). Chooseφ(x) ∈ [m] \ {φ(v),φ(w)}. Sincem≥ 3 there is such a colour. In both cases,x is
coloured differently from both of its neighbours. Henceφ is a colouring ofG′.

Suppose on the contrary that underφ, there is a bichromatic cycleC in G′. Then for somet, C =
(v0,x0,v1,x1, . . . ,vt−1,xt−1), where eachvα is an original vertex, eachxα is the division vertex ofvαvα+1

(modulot), andφ(vα) = φ(vβ) andφ(xα) = φ(xβ) for all α andβ. Thus by the definition ofφ, for some
1≤ i ≤ k, every vertexvα ∈V(Gi), which implies that for some 1≤ j ≤ d, every edgevαvα+1∈Ei

j . Hence
Gi, j contains a cycle, a contradiction. Thusφ is an acyclicm-colouring ofG′.

Theorem 4. Let G be a graph and k≥ 2 be an integer. Thenχa(G′) ≤ k if and only if G has a vertex
partition {G1,G2, . . . ,Gk} in which each Gi has arboricitya(Gi)≤ k−1.

Proof. (⇐) This is Lemma 8 withd = k−1.
(⇒) Consider the vertex partition ofG defined by an acyclick-colouring of G′ (restricted toG). By
Lemma 7, each subgraph has arboricity at mostk−1.

Theorem 5. For every graph G with degeneracyd(G) ≤ d (which is implied if G has arboricitya(G) ≤
1
2(d+1)), χa(G′)≤max{

√
d+1,3}.

Proof. Let k = d
√

de. Letd1,d2, . . . ,dk ∈ {b(d−k+1)/kc,d(d−k+1)/ke} such that∑k
i=1di = d−k+1.

By Corollary 1,G has a vertex partition{G1,G2, . . . ,Gk} in whicha(Gi)≤ di ≤ d(d−k+1)/ke ≤ d/k≤√
d for all i. By Lemma 8,χa(G′)≤max{d

√
de,

√
d+1,3}= max{

√
d+1,3}.

Theorem 6. For every graph G, ifχa(G′)≤ k thenχ(G)≤ 2k(k−1).

Proof. Let φ be an acyclick-colouring ofG′. Let H be the spanning subgraph ofG with edge setE(H) =
{vw∈ E(G) : φ(v) = φ(w)}. Then every connected component ofH is monochromatic underφ. By
Lemma 7,H has arboricity at mostk−1. By (4),H has a vertex 2(k−1)-colouringϕ. Now colour each
vertexv∈V(G) by the pair(φ(v),ϕ(v)). Consider an edgevw∈ E(G). If vw∈ E(H) thenϕ(v) 6= ϕ(w).
If vw 6∈ E(H) thenφ(v) 6= φ(w). Thus we have a 2k(k−1)-colouring ofG.

Lemma 3 and Theorem 6 and (1) imply thatχa(G′) is tied toχ(G).

Corollary 3. For every graph G, the acyclic chromatic number of G′ satisfies:√
1
2χ(G) < χa(G′) ≤ max{χ(G),3} .

The following example shows that the lower bound in Corollary 3 is tight up to an additive constant.

Example 3. For all n,
√

n/2 < χa(K′
n) <

√
n/2+ 5

2

Proof. The lower bound follows from Corollary 3. Now we prove the upper bound. Observe thata(Kn) =
dn/2e by (2). Let k = d

√
n/2e. Let {G1,G2, . . . ,Gk} be a vertex partition ofKn, in which |V(Gi)| ∈

{bn/kc,dn/ke} for all i. By the above observation,

a(Gi)≤
⌈

1
2dn/ke

⌉
≤

⌈
1
2dn/

√
n/2e

⌉
=

⌈
1
2d
√

2ne
⌉

<
⌈

1
2(
√

2n+1)
⌉

=
⌈√

n/2+ 1
2

⌉
.
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By Lemma 8,K′
n has acyclic chromatic number

χa(K′
n)≤max

{
d
√

n/2e,d
√

n/2+ 1
2e+1,3

}
<

√
n/2+ 5

2 .

We now prove that the above upper bound in Corollary 3 is tight.

Example 4. For all k≥ 3 and n> n(k), the complete k-partite graph G= K(n,n, . . . ,n) satisfiesχa(G′) =
k (= χ(G)).

Proof. That χa(G′) ≤ k follows from Corollary 3. Suppose on the contrary, thatχa(G′) ≤ k− 1. By
Theorem 4,G has a vertex partition{G1,G2, . . . ,Gk−1} in which eachGi has arboricitya(Gi) ≤ k−2.
For some 1≤ i ≤ k− 1, |V(Gi)| ≥ |V(G)|/(k− 1) = kn/(k− 1). It is easily seen that any complete
k-partite graphH on m vertices has arboricity at least the arboricity of the completek-partite graph
K(1,1, . . . ,1,m− (k−1)). This graph has(k−1)(m− (k−1)) edges. By (2),

a(H) ≥ (k−1)(m− (k−1))
m−1

= k−1− (k−1)(k−2)
m−1

.

Applying this observation withH = Gi andm≥ kn/(k−1), we have

a(Gi) ≥ k−1− (k−1)(k−2)
kn/(k−1)−1

.

Sincea(Gi) ≤ k− 2, it follows that we obtain a contradiction forn > n(k) = ((k− 1)2(k− 2) + (k−
1))/k.

5 Oriented Colourings of G′

We now relate the oriented chromatic number ofG′ to the chromatic number ofG.

Theorem 7. For every graph G, the oriented chromatic number of G′ satisfies

χ(G)≤−→χ (G′)≤


7 if χ(G)≤ 7

9 if χ(G) = 8

χ(G) if χ(G)≥ 9 .

Proof. First we prove the lower bound (which is well known). LetD′ be an orientation ofG′ in which
each division vertex has one incoming arc and one outgoing arc. Consider an edgevw∈ E(G) whose
division vertex inG′ is x. In any oriented colouring ofD′, v andw receive distinct colours, as otherwise
the arcsvxandxw (or xvandwx) are in opposite directions between the same pair of colour classes. Thus
an oriented colouring ofD′ contains a colouring ofG. Hence−→χ (D′) ≥ χ(G), which implies thatG′ has
oriented chromatic number−→χ (G′)≥ χ(G).

Now for the upper bound. A tournamentH is k-existentially closedif for everyk-element set of vertices
S⊆V(H) and for every (possibly empty)T ⊆S, there is a vertexz∈V(H)\(S∪T) such thatvz∈A(H) for
every vertexv∈ S\T, andzw∈ A(H) for every vertexw∈ T. Almost every sufficiently large tournament
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is n-existentially closed (see [7, 10, 24]). Note that a tournamentH is 2-existentially closed if and only if
for every pair of verticesv,w∈V(H), there exists four other verticesa,b,c,d ∈V(H) such that

va,wa, bv,bw, vc,cw, dv,wd∈ A(H) . (5)

Bonato and Cameron [10] proved that there is a 2-existentially closed tournament onn vertices if and
only if n≥ 7 andn 6= 8. Moreover, they provided explicit examples for all suchn. These examples are
based on the so-calledPaleytournament, which for primen≡ 3 (mod 4), has vertex set{0,1, . . . ,n−1},
and i j is an arc wheneverj − i is a quadratic residue modulop. Note that Ananchuen [6] also proved
that a sufficiently large Paley tournament isk-existentially closed, and Ochem [47] recently used Paley
tournaments in results about oriented colourings.

Let n be the claimed upper bound on−→χ (G′). Thenn≥ 7 andn 6= 8. Thus there is a 2-existentially
closed tournamentH on n vertices. LetD′ be an orientation ofG′. Note thatn≥ χ(G). Fix a vertex
n-colouring ofG. Let φ be a function from the original vertices ofG′ to V(H), such thatφ(v) = φ(w) if
and only ifv andw receive the same colour in the colouring ofG. Consider a division vertexx of an edge
vw∈ E(G). By (5), there are four other verticesa,b,c,d ∈V(H) such that

φ(v)a,φ(w)a, bφ(v),bφ(w), φ(v)c,cφ(w), dφ(v),φ(w)d ∈ A(H) .

Define

φ(x) =


a if vx,wx∈ A(D′)
b if xv,xw∈ A(D′)
c if vx,xw∈ A(D′)
d if xv,wx∈ A(D′) .

Clearlyφ is a homomorphism fromD′ to H. Thus−→χ (G′)≤ n.

6 Large Subdivisions
In this section we consider colourings of subdivisions other thanG′. First we consider acyclic colourings.

Lemma 9. Let X be a subdivision of a graph G in which every edge of G is replaced in X by a path with
at least four vertices; that is, every edge is subdivided at least twice. Thenχa(X)≤ 3.

Proof. Let φ(v) = 2 for every original vertexv of X. Let D be an arbitrary orientation ofG. Consider an
arcvw∈ A(D) that is replaced by a path(v,x0,x1, . . . ,xk,w) in X (for somek≥ 1). Let φ(xi) = i mod 2.
Every cycle ofX contains a 3-vertex path(v,x0,x1), which is coloured(2,0,1). Thusφ is an acyclic
3-colouring ofX.

Now we consider star colourings of subdivisions other thanG′.

Lemma 10. Let X be a subdivision of a graph G such that for every edge vw of G, for some k≥ 4 with
k 6= 6, vw is replaced by a k-vertex path in X. Thenχs(X)≤ 3.

Proof. Colour each original vertexφ(v) = 2. Consider an edgevw of G that is replaced by thek-vertex
pathP = (v,x0,x1, . . . ,xk−3,w) in X.
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Case 1. k ≡ 0 (mod 3) and k 6= 6: Let φ(xi) = i mod 3 for all i, 0≤ i ≤ k− 6. Let φ(xk−5) = 2,
φ(xk−4) = 1, andφ(xk−3) = 0. HenceP is coloured(2,012,012, . . . ,012,0,210,2).

Case 2.k≡ 1 (mod 3): Let φ(xi) = i mod 3 for alli, 0≤ i ≤ k−5. Letφ(xk−4) = 1 andφ(xk−3) = 0.
HenceP is coloured(2,012,012, . . . ,012,10,2).

Case 3.k ≡ 2 (mod 3): Let φ(xi) = i mod 3 for all i, 0≤ i ≤ k− 4. Let φ(xk−3) = 0. HenceP is
coloured(2,012,012, . . . ,012,01,0,2).

If Q is a 4-vertex path inX with at least two original vertices thenQ = (v,x0,x1,w), whereQ replaced
an edgevwof G, and by Case 2 withk = 4, Q is coloured(2,1,0,2), and is thus not bichromatic.

If the edgevw of G is replaced by the path(v,x0,x1, . . . ,xk−3,w), then the subpaths(v,x0,x1) and
(w,xk−3,xk−2) are trichromatic. (This is not the case ifk = 6.) Thus a 4-vertex path containing exactly
one original vertex is not bichromatic.

The case-analysis above shows that there is no bichromatic 4-vertex path with no original vertex. Thus
there is no bichromatic 4-vertex path inX. Thereforeχs(X)≤ 3.

Lemma 11. Let X be a subdivision of a graph G in which every edge of G is replaced in X by a path with
at least four vertices; that is, every edge is subdivided at least twice. Thenχs(X)≤ 4.

Proof. In the proof of Lemma 10, the only obstruction toX having a star colouring with three colours is
an edgevwof G that is replaced inX by a 6-vertex pathP = (v,x0,x1,x2,x3,w). In this case we introduce
a fourth colour, andP can be coloured(2,0,1,3,0,2).

Let G′′ be the subdivision of a graphG with every edgevw of G replaced by a 4-vertex path with
endpointsv andw; that is, every edge is subdivided twice. Ak-cycle inG becomes a 3k-cycle inG′′. Thus
G is bipartite if and only ifG′′ is bipartite. IfG contains an odd cycle, thenχ(G′′) = χs(G′′) = χa(G′′) = 3.
This provides an infinite family of graphs for which the chromatic number, star chromatic number and
acyclic chromatic number coincide.

Finally we consider oriented colourings of subdivisions other thanG′.

Lemma 12. Let X be a subdivision of a graph G in which every edge of G is replaced in X by a path with
at least four vertices; that is, every edge is subdivided at least twice. Then−→χ (X)≤ 5.

Proof. Let H be the tournament withV(H) = {0,1,2,3,4}, wherei j ∈ A(H) if and only if ( j − i) mod
5 ∈ {1,2}. Let D be an orientation ofX. We will construct a homomorphismφ from D to H. First
defineφ(v) = 0 for every original vertexv of X. Consider the path(v = d0,d1,d2, . . . ,dt−1,w = dt) in
X corresponding to an edgevw∈ E(G). Thent ≥ 3. For 1≤ i ≤ t, definexi = 1 if di−1di ∈ A(D), and
definexi = −1 if didi−1 ∈ A(D). By Lemma 13 below, there existy1,y2, . . . ,yt such thatyi ∈ {1,2} and
∑t

i=1xiyi ≡ 0 (mod 5). For 1≤ i ≤ t−1, setφ(di) = (∑i
j=1x jy j) mod 5.

Consider 1≤ i ≤ t. We haveφ(di)− φ(di−1) ∈ {1,2} wheneverxi = 1; that is, whendi−1di ∈ A(D).
Similarly φ(di)−φ(di−1)∈ {−1,−2}wheneverxi =−1; that is, whendidi−1∈A(D). By the definition of
H, φ(di−1)φ(di) ∈ A(H) for all 1≤ i ≤ t. Henceφ is a homomorphism fromD to H, and−→χ (X)≤ 5.

Lemma 13. For all integers t≥ 3 and x1,x2, . . . ,xt ∈ {1,−1}, there exist y1,y2, . . . ,yt such that yi ∈ {1,2}
and∑t

i=1xiyi ≡ 0 (mod 5).
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Proof. Initially set everyyi = 1. If ∑t
i=1xiyi ≡ 0 (mod 5), then we are done.

Now suppose that∑t
i=1xiyi ≡ 1 (mod 5). If there existsxi = −1, then setyi = 2, and we are done.

Otherwise everyxi = 1. Thust ≡ 1 (mod 5) andt ≥ 6. Sety1 = y2 = y3 = y4 = 2, and we are done.
Now suppose that∑t

i=1xiyi ≡2 (mod 5). If there existsxi = x j =−1 for somei 6= j, then setyi = y j = 2,
and we are done. If there existsi such thatxi = −1 andx j = 1 for all j 6= i, thent−2≡ 2 (mod 5) and
t ≥ 4; sety j = yk = y` = 2 for some distinctj,k, ` 6= i, and we are done. Otherwise everyxi = 1. Thus
t ≡ 2 (mod 5) andt ≥ 7. Sety1 = y2 = y3 = 2, and we are done.

The cases when∑t
i=1xiyi ≡ 3 (mod 5) and∑t

i=1xiyi ≡ 4 (mod 5) are symmetric.
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PAUD, AND ÉRIC SOPENA. Acyclic list 7-coloring of planar graphs.J. Graph Theory, 40(2):83–90,
2002.

[14] OLEG V. BORODIN, ALEXANDR V. KOSTOCHKA, JAROSLAV NEŠETŘIL , ANDRÉ RASPAUD, AND
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[44] JAROSLAV NEŠETŘIL AND PATRICE OSSONA DEMENDEZ. Colorings and homomorphisms of mi-
nor closed classes. In BORISARONOV, SAUGATA BASU, JÁNOS PACH, AND M ICHA SHARIR, eds.,
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