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Near–perfect non-crossing harmonic
matchings in randomly labeled points on a
circle

József Balogh1† and Boris Pittel1‡ and Gelasio Salazar2§
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Consider a setS of points in the plane in convex position, where each point has an integer label from{0, 1, . . . , n−1}.
This naturally induces a labeling of the edges: each edge(i, j) is assigned labeli + j, modulon. We propose the
algorithms for finding large non–crossingharmonic matchings or paths, i. e. the matchings or paths in which no
two edges have the same label. When the point labels are chosen uniformly at random, and independently of each
other, our matching algorithm with high probability (w.h.p.) delivers a nearly–perfect matching, a matching of size
n/2−O(n1/3 ln n).

Keywords: Graceful, harmonious labeling, noncrossing, harmonic graph, convex position, matching, algorithm,
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1 Introduction
We are motivated by the concepts of graceful labelings and harmonious graphs introduced by Graham
and Sloane [6] (see [5] for a comprehensive survey on these problems). Our interest is in the problem of
existence of the large substructures (subsets of edges or subgraphs) such that all the edges involved have
different labels. Typically, an edge label is a function of the labels of the endvertices, e.g. the absolute
value of their difference (graceful labelings), or their sum modulo somen (harmonious graphs).

For the point set in the plane it is natural to seek the large substructures (matchings, trees) that meet
certain geometric conditions. One popularnon–crossingcondition requires that no two edges in the sub-
structure cross each other. For a sample of diverse results in this area of combinatorial geometry we refer
the reader to see [1, 2, 7, 8, 9].

To describe the results of this paper, we need some terminology and notations. Following [3], letS
be a set of points in the plane in a convex position. Assume that each point has an integer label from
{0, . . . , n − 1}. If p, q are distinct points (also calledvertices) in S, then we let(p, q) denote the straight
segment (oredge) that hasp andq as its endvertices. This naturally induces a (complete)geometric graph
GS . In general, we letE(K) denote the set of edges of a graphK. A subsetE′ of E(GS) is non–crossing
if no two edges inE′ intersect in a point other that a common endvertex. A subgraphH of GS is non–
crossingif E(H) is non–crossing.

As for the edge labels, we use the sum rule; it assigns to each edge(p, q) a number equal to the sum
of labels ofp andq modulon. One such rule assigns to each edge the sum (modulon) of the labels of
its endpoints. In this geometric setting, the central problem is to find conditions for existence of large
non–crossing subgraphs whose edge labels are all distinct.

While the paper [3] dealt exclusively with the worst–case instances of the labeled setS, our goal is to
study the average (likely) case behavior under assumption that the labels of points inS are random. More
specifically, we assume that each of then points is labeled with an integer drawn uniformly at random
from {0, 1, 2, . . . , n− 1}, independently of all other labels.
How many edges are there typically in a maximum size harmonic non–crossing matching in GS?
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We have found a greedy matching algorithm (HMATCHING) that w.h.p. delivers a nearly perfect match-
ing, of sizen/2−O(n1/3 lnn), with the number of unmatched vertices of likely ordern1/3 lnn, at most.
Thus the maximum matching number w.h.p. isn/2−O(n1/3 lnn) at least. The matching process works
by going through the cyclically ordered sequence of vertices, starting from an arbitrary initial point. The
probability that the resulting matching is perfect is not too small, of orderΩ(n−1/3 ln−1 n) at least, i.
e. the expected number of the “lucky” starting points isΩ(n2/3 ln−1 n). We conjecture that the number
itself is likely to be that large as well, so that w.h.p. there exists a perfect matching! In Section 2 we
present HMATCHING, and in Section 3 we give the experimental results that allowed us to predict the
likely behavior of the algorithm. In Section 4 we provide a rigorous analysis which confirms—within the
logarithmic factors— the conjectured bounds. Despite appearance of the fractional powers1/3, 2/3, that
are also prevalent in the asymptotic behavior of the near-critical random graphG(n, m), Bollobás [4], we
do not see any connection between the two schemes.

How many vertices are there typically in a maximum size harmonic non–crossing tree or forest in GS?
We conjecture, that the answer is(1− εn)n, whereεn → 0.

2 HMATCHING: the algorithm
Recall that we are assuming that we have a collectionS of n points in convex position. No relevant
geometrical information is lost if we assume that all the points lie on a circle. Therefore, we may denote
the points asp0, p1, . . . , pn−1, according to the cyclic (counter-clockwise) order in which they appear
on the circle. Further each pointpi gets a labelA[i], and then labels are drawn independently from
the uniform distribution on{0, 1, . . . , n − 1}. Given the point labels, each edge(pi, pj) gets the label
A[i, j] :≡ A[i] + A[j](modn).

HMATCHING takes as the input an array(A[0], A[1], A[2], . . . , A[n − 1]) and its output is a (non–
crossing, harmonic) matching onS. At each step we have a current matching, both non–crossing and
harmonic , to which we add a new edge to get a larger matching that meets the same requirements.
Formally, we maintain the current matchingM as a collection of ordered pairs(i, j) with i < j, where
(i, j) represents(pi, pj). Clearly the edge setM satisfies the following conditions:

(a) if (i, j) and(i′, j′) are different pairs inM, then{i, j} ∩ {i′, j′} = ∅ (M is a matching);
(b) if (i, j) and (i′, j′) are different pairs inM, thenA[i] + A[j] 6≡ A[i′] + A[j′](modn) (M is

harmonic);
(c) if (i, j) and(i′, j′) are different pairs inM, with i < i′, then eitheri < j < i′ < j′ or i < i′ < j′ <

j (M is non–crossing).
The pseudocode for HMATCHING is the following.

Input : An array(A[0], A[1], . . . , A[n− 1]), such thatA[i] ∈ {0, 1, . . . , n− 1} for everyi.
Output : The size of a setM of pairs(i, j), with i < j, that satisfies (a), (b), and (c).
Procedure :

1 S = ∅; M = ∅; L = 0; k = 0
2 while k ≤ n− 1
3 do
4 if S 6= ∅
5 then if A[maxS] + A[k](modn) /∈ L
6 then M←M∪ {(max S, k)}
7 L← L ∪ {A[max S] + A[k](modn)}
8 S ← S \ {max S}
9 else S ← S ∪ {k}
10 elseS ← {k}
11 k ← k + 1
12 return |L|
The action of the algorithm is illustrated in Figure 1.
In this example,A[0] = 7, A[1] = 6, A[2] = 4, . . . , A[9] = 3. In the first step we exploreA[0] and

add0 to S. In the second step, we exploreA[1], and check ifA[0] + A[1] (mod10) is in L. Since it is
not, the edge(A[0], A[1]) is added toM, and sinceA[0] + A[1] = 7 + 6 ≡ 3 (mod10), L becomes
{3}, andS goes back to∅. In the third step we exploreA[2], and since there is no stack, we add2 to S
(so thatS becomes{2}, since it was empty) and move on to the fourth step, where we exploreA[3]; since
A[2] + A[3] = 4 + 9 ≡ 3 (mod10) is already inL, we must now setS = {2, 3}. In the fifth step we
exploreA[4] = 5. Since3 is the largest integer inS, we check ifA[3] + A[4] ≡ 4 (mod10) is in L. Since
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Fig. 1: Illustration of HMATCHING.

it is not, then we add(A[3], A[4]) toM, 4 to L, and remove3 from S. At the end, we obtain the matching
shown, which happens to be perfect.

3 Performance of HMATCHING: empirical results
There are two natural parameters to measure the performance of HMATCHING: (i) the expected size of the
matching obtained by running HMATCHING, and (ii) the probability that HMATCHING delivers a perfect
matching.
(i) We ran our algorithm106 times for each of the following values ofn: 5000, 10000, 15000, 20000 ,
25000, 30000, 35000, 40000, 45000, and50000. For each suchn, we computed the average of the106

experiments. UsingGnuplot c©, we plotted the results and obtained a curven1/3/1.46 that fitted the data
quite well. In view of our experiments, we conjecture that the expected number of vertices left unmatched
is Θ(n1/3), or in other words, the expected size of the matching isn/2−Θ(n1/3).
(ii) We ran106 experiments for eachn = 5000, 10000, . . . , 50000, and computed the proportion of ex-
periments for which HMATCHING yielded a perfect matching. The data fit the curven−1/3 so well that
we are led to the conjecture: the probability that HMATCHING delivers a perfect matching is of order
Θ(n−1/3). It is tempting to state an even stronger conjecture: the probability that the resulting matching
is perfect is asymptotic ton−1/3. In the next section we prove a slightly weaker result, namely that this
probability is betweenc1n

−1/3 ln−1 n andc2n
−1/3 lnn. We also show that the likely size of the terminal

matching is betweenn/2 − c3n
1/3 lnn andn/2 − c4n

1/3 ln−1 n, which again is within the logarithmic
factors from the conjectured formulan/2−Θ(n2/3). Consequently, on average, the number of the starting
points for which the algorithm finds a perfect matching is of an empirical orderΘ(n2/3), and of a provable
orderΩ(n2/3 ln−1 n). This suggests the following.

Conjecture 1 W.h.p. there is a perfect (non–crossing, harmonic) matching, and it can be found by running
HMATCHING n times, selecting each of then points as a starting point.

In our computer experiments, withn up to 105 and106 problem instances, we always found a perfect
matching by running the algorithm for sufficiently many starting points.

4 Analysis of HMATCHING

4.1 The matching algorithm as a Markov Chain.
Consider the generic,k-th, step of the matching algorithm. Before this step the verticesp1, . . . , pk−1 have
been explored, and some of them have been matched. LetM be the current (non-crossing, harmonious)
matching andS be the current set (stack) of all unmatch ed points whose labels have been explored.
Then2|M| + |S| = k − 1. Suppose first thatS 6= ∅. Assume inductively that there are no triples
(pa, pb, pc), a < b < c, such that(pa, pc) ∈ M and pb ∈ S. This condition means that no edge
(pa, pb), such thatpa ∈ S andb > b∗ = max{c : pc ∈ S}, crosses an edge fromM. In particular,
we can and do add toM the edge(pb∗ , pk) if the label of this edge is not inL, the label set of the
edges inM, i. e. if A[b∗] + A[k](modn) /∈ L. The last condition restricts the valueA[k] to a subset
of {0, . . . , n − 1} of cardinalityn − |L| = n − |M|. SinceA[k] is uniform on{0, . . . , n − 1}, and
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independent onA[0], . . . , A[k − 1], the (conditional) probability that(pb∗ , pk) is added toM in thek–th
iteration step is1−|L|/n = 1−|M|/n. In this caseM+{(pb∗ , pk)} andS \{pb∗} are the next matching
set and the next stack respectively. Alternatively, with the probability|M|/n the matching set remains
the same, but the stack grows toS ∪ {pk}. If S = ∅, then the matching setM remains the same, and
the nextS is {pk}. In all cases the new matchingM and the new stackS meet the same non-crossing
condition as the previousM andS. Clearly the sequence{Mk, Sk}k≤n, (M0 = ∅, S0 = ∅), is a Markov
chain. The chain terminates once2|Mk| + |Sk| reachesn, that is when there are no unexplored points
left. Remarkably, the transition probabilities and the termination rule depend only on|Mk|. So there is a
reduction of{Mk, Sk} to a much simpler Markov chain{mk, sk} on the set of pairs(m, s), m = |M|,
s = |S|, with termination condition2mk + sk = n.
Here is the formal definition of the reduced Markov chain.
Markov Process 1 (MP1) Each state is a pair (m, s), where m and s are nonnegative integers, and
2m + s < n, where n is a fixed integer given in advance. The initial state is (0, 0). The transition rules
are :

If s = 0, then the next state is
(m, s + 1) = (m, 1).

If s > 0, then the next state is

(m + 1, s− 1), with probability 1−m/n,

(m, s + 1), with probability m/n.

4.2 The likely size of the terminal matching.
According to our reduction, to study the size of the terminal matching is the same as to studyZn, the
terminal value ofm in the Markov chain MP1 .

Theorem 2 1. Given a > 0, set α = 2
√

a(1 + a).

Pr(Zn > n/2− αn1/3 lnn) = 1−O(n−a). (1)

2.
Pr(Zn ≤ n/2− n1/3 ln−2 n) = 1−O(ln−1 n). (2)

3. Let Pn = Pr(Zn = n/2), n even, and Pn = Pr(Zn = (n − 1)/2), n odd. Then, for some constants
α, β > 0,

αn−1/3 ln−1/2 n ≤ Pn ≤ βn−1/3 lnn. (3)

For the proof we need the following statements.

Proposition 3 Define the random variableXp,t as the time it takes for the(p, 1 − p)–random walk to
reach the zero state from the statet. Then, for allr > 0,

Pr(Xp,t ≥ r) ≤ 1
(2p)t(4p(1− p))−r/2

.

Proposition 4 For each event ≥ 0, let Rp(t) denote the probability of being at0 at the time stept in the
(p, q)–random walk on{0, 1, 2, . . .} with the repellent0 state. Then

R1/2(t) ∼ c1t
−1/2, and

Rp(t) < 3(1− 2p) + (πt)−1/2, if p < 1/2.

Lemma 5 Leta > 0. With probability1−O(n−a), there existsk such that

mk ∈ (n/2− (1 + a)n2/3 lnn, n/2− 0.5(1 + a)n2/3 lnn), sk = 0,

with Θ(n2/3 lnn) points remaining to be explored.
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Proof of Lemma 5.Givenm < n/2, let Tm = min{k : mk = m} and setTm = n, if no suchk exists.
IntroduceHm = sTm

, the stack size at this moment. By the definition of MP1, for j < k andsj > 0, the
conditional probability of the transition(mj , sj)→ (mj+1, sj+1) = (mj , sj +1), which leads to increase
of the stack by1, is m/n at most. And the alternative transition leads to the stack sizesj − 1. Forsj = 0,
we havesj+1 = 1. These observations imply thatHm is stochastically dominated byWm, the maximum
of the simple asymmetric random walk{ξj}j≤n on{0, 1, 2, . . .}, defined as follows:ξ0 = 0,

Pr(ξj+1 = ξj + 1 | ξj) = p := m/n, (ξj ≥ 1),
Pr(ξj+1 = ξj − 1 | ξj) = q := 1−m/n, (ξj ≥ 1),
Pr(ξj+1 = 1 | ξj = 0) = 1.

Furthermore, for each integerw > 0, Pr(Wm > w) ≤ nPr(Wm > w), whereWm is the maximum ofξj

for j between0 and the first momentt > 0 whenξt = 0. Using the classic gambler’s ruin formula, we
have

Pr(Wm > w) =
q/p− 1

(q/p)w+1 − 1
≤ (p/q)w.

Then, introducingmi = n
2 − [ain

2/3 lnn] andpi = mi/n, i = 1, 2, with a2 = a1/2, we have

Pr
(
Wmi

> n1/3
)
≤ 2n

(
m2

n−m2

)n1/3

< 3n
(
1− 4a2n

−1/3 lnn
)n1/3

< 3n exp(−4a2 lnn) =
3

n2a1−1
→ 0,

provideda1 > 1/2.
Now, since2mk + sk = k at each step, we have

m =
Tm −Hm

2
≥ Tm −Wm

2
.

Applying this tom = m1,m2, we see that

Pr

{
2⋂

i=1

(
2mi ≤ Tmi

≤ 2mi + n1/3 andHmi
≤ n1/3

)}
≥ 1−O(n−a), a = 2a1 − 1.

Therefore

Pr
{

(Tm2 − Tm1 = a1n
2/3 lnn + O(n1/3)) ∩ (Hm1 ≤ n1/3)

}
≥ 1−O(n−a).

Denote the event in this bound byA. Let

B = A ∩ {sk becomes zero at somek ∈ [Tm1 , Tm2 ]}.

We want to show that Pr(A \ B) ≤ n−b, ∀ b > 0, for n large enough. Lett1 ∈ [0, n − 1]. Suppose that
mt1 ≤ m2, and0 < st1 ≤ n1/3. These conditions certainly hold ift1 = Tm1 . Let T = T (t1) be the first
t > t1 such that eithermt = m2, or st = 0. As before,{st}t<T is dominated by the asymmetric walk
{ξj}j≥t1 , ξt1 = bn1/3c, with p = m2/n. ThereforeT − t1 is dominated byXp,bn1/3c, whereXp,s is the
first time the random walk hits0, if ξ0 = s. Since by Proposition 3

Pr(Xp,s ≥ r) ≤ (4pq)−r/2

(2p)s
,

it follows that

Pr

(
Xm2

n ,bn1/3c ≥ bn2/3c
)
≤

(
1− 4ba2n2/3 ln nc

n2

)bn2/3c

(
1− 2ba2n2/3 ln nc

n

)bn1/3c ≤ exp(−a2 ln2 n).
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ThereforeT (t1) − t1 ≤ n2/3 quite surely (q.s. in short), i.e. with probability1 − n−b, for everyb > 0,
uniformly for all t1. ThusT (Tm1)− Tm1 ≤ n2/3 q.s. as well. SinceTm2 − Tm1 is of ordern2/3 lnn�
n2/3 onA, we conclude that indeed Pr(A \B) ≤ n−b, for everyb > 0. So the Markov process{mk, sk}
reaches a state(m0, 0), wheren/2 −m0 ∈ (0.5a1n

2/3 lnn, a1n
2/3 lnn), with probability1 − O(n−a),

a = 2a1 − 1.
Proof of Theorem 2, part 1.Let T be the firstk such that

mk ∈ (n/2− (1 + a)n2/3 log n, n/2− 0.5(1 + a)n2/3 log n), sk = 0.

By Lemma 1,T is well defined with probability1 − O(n−a). Let ` be the number of the remaining
unexplored points afterT steps; clearly

(1 + a)n2/3 lnn ≤ ` ≤ 2(1 + a)n2/3 lnn.

The additional increase ofmk during the remainingn − T steps is(` − sn)/2, wheresn is the terminal
stack size. SoZn = mn is given by

Zn =
n− `

2
+

`− sn

2
=

n

2
− 0.5sn.

Thus we need to show that w.h.p.sn = O(n1/3 log n). Sincemk ≤ n/2 for all k, sn is dominatedξ`,
where{ξj} is the simple symmetric random walk withp = q = 1/2, andξ0 = 0. We need to find a likely
upper bound forξ`. First of all, for each integerx ≥ 0,

Pr(ξ` = x) =
∑

2t+µ=`

PtQµ(x); (4)

herePt = Pr(ξ2t = 0), the probability that the walk returns to0 after2t steps;Qµ(0) = δµ,0, andQµ(x),
x > 0, is the probability that the walk, that starts at0, reachesx afterµ steps without ever returning to
0. We will need the full strength of this formula later, but for now we are content with its weak corollary,
namely

Pr(ξ` = x) ≤
∑

µ,t≥0
2t+µ=`

Qµ(x). (5)

As forQµ(x), recall that, by the ballot theorem, the total number of ways to reach the pointx from the
point0 by makingµ (±1)-moves, without returning to0, is

x

µ

(
µ

(µ + x)/2

)
, µ ≥ x,

(µ + x)/2 being the total number of right moves. Therefore, for the(p, q)-simple walk,

Qµ(x) :=
x

µ

(
µ

(µ + x)/2

)
p(µ+x)/2−1q(µ−x)/2;

(the probability of the first move, from0 to 1, is1, each of the otherµ−1 moves has probabilityp.) Using
Stirling’s formula and4pq ≤ 1, we obtain a simple estimate

Qµ(x) ≤ c0x
exp(−x2/2µ)√
µ(µ2 − x2 + µ)

, x > 0 (6)

wherec0 is some constant. (We will continue to usec’s for various absolute constants.) Combining (5)
and (6), we have

Pr(ξ` = x) ≤ c0xe−x2/2`
∑

x≤µ≤`

1√
µ(µ2 − x2 + µ)

≤ c1xe−x2/2`.

(That the last sum is uniformly bounded follows from considering separatelyµ ≥ 2x andx ≤ µ ≤ 2x.)
Then

Pr(ξ` ≥ αn1/3 lnn) ≤ c1

∑
x≥αn1/3 ln n

xe−x2/2` ≤ c2 exp
(
− α2n2/3 ln2 n

4(1 + a)n2/3 lnn

)
= c2n

−a, (7)
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as` ≤ 2(1 + a)n2/3 lnn, andα = 2
√

a(1 + a).
Proof of Theorem 2, part 2.As in the proof of part 1,

Zn =
n

2
− 0.5sn,

so we need to show that w.h.p.sn ≥ νn := 2n1/3 ln−2 n. Clearlysn stochastically dominatesξ` for the
(p, q)-walk, where

p =
mT

n
=

1
2
− `

n
, ` = n− 2mT ∈ [(1 + a)n2/3 lnn, 2(1 + a)n2/3 lnn].

Thus
Pr(sn ≤ νn) ≤ Pr(ξ` ≤ νn) =

∑
x≤νn

Pr(ξ` = x),

with Pr(ξ` = x) given by (4). This time we need a sharp bound forPt, which is

Pt ≤ c((1− 2p) + (t + 1)−1/2) = c

(
`

n
+ t−1/2

)
, (8)

see Proposition 4. Fort ∈ [`/2, `], the first summand dominates since`3/2 � n, and the bound simplifies
to Pt ≤ 2c(`/n). Break the sum in (4) into two parts,µ ≥ `/2 andµ < `/2. Sincex ≤ νn � `, it
follows from (6) and (8) that, forx > 0,

∑
2t+µ=`
µ≥`/2

PtQµ(x) ≤ c′x

 ∑
µ≥`/2

µ−3/2
(
`/n + (`− µ + 1)−1/2

) ≤ c′′x
(
(`/n)`−1/2 + `−1

)
= O

(
x`1/2/n

)
,

as`3/2 � n. Therefore∑
0<x≤νn

∑
2t+µ=`
µ≥`/2

PtQµ(x) = O(ν2
n`1/2n−1) = O(ln−3/2 n). (9)

Let µ ≤ `/2 now. Since2t + µ = `, it follows thatt ≥ `/4, and soPt = O(`/n). Then, using (6), we
obtain ∑

t+µ=`
µ≤`/2

PtQµ(x) ≤ ĉ`n−1x

(∫ ∞

x

e−x2/2y√
y(y2 − x2)

dy

)
. (10)

Substitutingy = x/z, we transform the last integral into

x−1/2

∫ 1

0

e−xz/2√
z(1− z2)

dz =

√
2
x

(J1 + J2),

with J1, J2 corresponding to integration over[0, 1/2] and[1/2, 1], respectively. Then, substitutingw =
xz/2,

J1 ≤
2√
3

∫ 1/2

0

z−1/2e−xz/2 dz ≤ 2√
3
x−1/2

∫ ∞

0

w−1/2e−w dw = ĉ1x
−1/2,

and

J2 ≤ e−x/4

∫ 1

1/2

dz√
z(1− z2)

= ĉ2e
−x/4.

Therefore the bound (10) becomes∑
2t+µ=`
µ≤`/2

PtQµ(x) = O(`n−1x(x−1/2)2) = O(`/n), x > 0.
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Consequently ∑
0<x≤νn

∑
t+µ=`
µ≤`/2

PtQµ(x) = O(`n−1νn) = O(ln−1 n). (11)

Combining (9) and (11), we obtain∑
0<x≤ν

∑
2t+µ=`

PtQµ(x) = O(ln−1 n).

Finally ∑
2t + µ = `PtQµ(0) = P`/2 = O(`/n) = O(n−1/3 lnn).

So

Pr(ξ` ≤ νn) =
∑

0≤x≤νn

∑
2t+µ=`

PtQµ(x)

= O(n−1/3 lnn) + O(ln−1 n) = O(ln−1 n).

SinceZn = n/2− 0.5sn, andsn dominatesξ`, the statement follows.
Proof of Theorem 2, part 3.First of all, forn even,Zn = n/2 iff sn = 0, and, forn odd,Zn = (n− 1)/2
iff sn−1 = 0. Consider, for instance, evenn. We know that, conditioned on the event in Lemma (call it
A), sn is dominated byξ`(1/2) of the walk({ξj}j≤`) with p = 1/2, and dominatesξ` of the walk with
p = pn := 1/2− `/n. Then, using (3),

Pr(sn = 0 | A) ≤ Pr(ξr(pn) = 0)|r=`

= O((1− 2pn) + `−1/2) = O(`/n) = O(n−1/3 lnn). (12)

On the other hand, again using (3),

Pr(sn = 0 | A) ≥ Pr(ξr(1/2))|r=`

= Ω(`−1/2) = Ω(n−1/3 ln−1/2 n). (13)

Since Pr(Ac) = O(n−a), pickinga > 1/3 we conclude that unconditionally

αn−1/3 ln−1/2 n ≤ Pr(sn = 0) ≤ βn−1/3 lnn,

for some absolute constantsα, β > 0. The casen odd is similar. This completes the proof of the theorem.
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