2005 International Conference on Analysis of Algorithms DMTCS proc.AD, 2005, 17-26

Near—perfect non-crossing harmonic
matchings in randomly labeled points on a
circle
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Consider a sef of points in the plane in convex position, where each point has an integer label@tdm .., n—1}.

This naturally induces a labeling of the edges: each €dgg is assigned label 4+ j, modulon. We propose the
algorithms for finding large non—crossim@rmonic matchings or paths, i. e. the matchings or paths in which no

two edges have the same label. When the point labels are chosen uniformly at random, and independently of each
other, our matching algorithm with high probability (w.h.p.) delivers a nearly—perfect matching, a matching of size
n/2 —O0(n'3nn).

Keywords: Graceful, harmonious labeling, noncrossing, harmonic graph, convex position, matching, algorithm,
average case behavior

1 Introduction

We are motivated by the concepts of graceful labelings and harmonious graphs introduced by Graham
and Sloane [6] (see [5] for a comprehensive survey on these problems). Our interest is in the problem of
existence of the large substructures (subsets of edges or subgraphs) such that all the edges involved have
different labels. Typically, an edge label is a function of the labels of the endvertices, e.g. the absolute
value of their difference (graceful labelings), or their sum modulo sertfearmonious graphs).

For the point set in the plane it is natural to seek the large substructures (matchings, trees) that meet
certain geometric conditions. One poputem—crossingondition requires that no two edges in the sub-
structure cross each other. For a sample of diverse results in this area of combinatorial geometry we refer
the reader to see [1, 2,7, 8, 9].

To describe the results of this paper, we need some terminology and notations. Following $3], let
be a set of points in the plane in a convex position. Assume that each point has an integer label from
{0,...,n — 1}. If p, q are distinct points (also callegerticeg in S, then we let(p, ¢) denote the straight
segment (oedgeg that hagp andq as its endvertices. This naturally induces a (compigé®metric graph
Gs. Ingeneral, we leE(K') denote the set of edges of a gragh A subsetE’ of E(Gs) is non—crossing
if no two edges inE’ intersect in a point other that a common endvertex. A subgfagf G5 is non—
crossingif E(H) is non—crossing.

As for the edge labels, we use the sum rule; it assigns to each(edgea number equal to the sum
of labels ofp and¢g modulon. One such rule assigns to each edge the sum (mogdubd the labels of
its endpoints. In this geometric setting, the central problem is to find conditions for existence of large
non—crossing subgraphs whose edge labels are all distinct.

While the paper [3] dealt exclusively with the worst—case instances of the label8d@atgoal is to
study the average (likely) case behavior under assumption that the labels of pdirgssimandom. More
specifically, we assume that each of theoints is labeled with an integer drawn uniformly at random
from{0,1,2,...,n — 1}, independently of all other labels.

How many edges are there typically in a maximum Size harmonic non—crossing matching in Gg?
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We have found a greedy matching algorithm (MM HING) that w.h.p. delivers a nearly perfect match-
ing, of sizen/2 — O(n'/3Inn), with the number of unmatched vertices of likely oraéf In n, at most.
Thus the maximum matching number w.h.pnj& — O(n'/? Inn) at least. The matching process works
by going through the cyclically ordered sequence of vertices, starting from an arbitrary initial point. The
probability that the resulting matching is perfect is not too small, of oftler /3 In~' n) at least, i.
e. the expected number of the “lucky” starting point§2ig:2/3 In~! n). We conjecture that the number
itself is likely to be that large as well, so that w.h.p. there exists a perfect matching! In Section 2 we
present HM\TCHING, and in Section 3 we give the experimental results that allowed us to predict the
likely behavior of the algorithm. In Section 4 we provide a rigorous analysis which confirms—uwithin the
logarithmic factors— the conjectured bounds. Despite appearance of the fractional pgsvers3, that
are also prevalent in the asymptotic behavior of the near-critical random Gfapin), Bollobas [4], we
do not see any connection between the two schemes.

How many vertices are there typically in a maximum size harmonic non—crossing tree or forest in Gg?

We conjecture, that the answer(is— ¢,,)n, wheres,, — 0.

2 HMATCHING: the algorithm

Recall that we are assuming that we have a collecfioof n points in convex position. No relevant
geometrical information is lost if we assume that all the points lie on a circle. Therefore, we may denote
the points aq, p1,...,pn_1, according to the cyclic (counter-clockwise) order in which they appear
on the circle. Further each poipt gets a labeld[i], and then labels are drawn independently from
the uniform distribution o0, 1,...,n — 1}. Given the point labels, each ed@s, p;) gets the label
Ali, 7] := Ali] + Alj](modn).

HMATCHING takes as the input an arrdyl[0], A[1], A[2], ..., Aln — 1]) and its output is a (non—
crossing, harmonic) matching dh At each step we have a current matching, both non—crossing and
harmonic , to which we add a new edge to get a larger matching that meets the same requirements.
Formally, we maintain the current matchirlg as a collection of ordered paifs, j) with i < j, where
(4,7) representsp;, p;). Clearly the edge seY! satisfies the following conditions:

(a)if (¢,7) and(¢', 5/) are different pairs inV1, then{i, j} N {#’, 7'} = 0 (M is a matching);

(b) if (i,7) and (¢/,4") are different pairs inM, then A[i] + A[j] # A[i'] + A[j'](modn) (M is
harmonic);

(c)if (4,5) and(s', 5') are different pairs in\t, with i < 4/, then eithei < j < i’ < j'ori <i' < j' <
Jj (M is non—crossing).

The pseudocode for HMCHING is the following.

Input: An array(A[0], A[1],..., A[n — 1]), such thatd[i] € {0,1,...,n — 1} for everyi.
Output: The size of a seM of pairs(, j), with i < 7, that satisfies (a), (b), and (c).
Procedure :

1 S=0, M=0; L=0; k=0

2 whilek<n-1

3 do

4 if S#0

5 then if A[max S] + A[k](modn) ¢ L

6 then M — MU {(max S, k)}

7 L — LU{AmaxS] + Alk](modn)}
8 S «— S\ {max S}

9 else S~ SuU{k}

10 elseS — {k}

11 k—k+1

12 return |L|

The action of the algorithm is illustrated in Figure 1.

In this example A[0] = 7, A[1] = 6, A[2] = 4,..., A[9] = 3. In the first step we explord[0] and
add0 to S. In the second step, we explarg1], and check ifA[0] + A[1] (mod10) is in L. Since it is
not, the edgd A[0], A[1]) is added taM, and sinceA[0] + A[1] = 7+ 6 = 3 (mod10), L becomes
{3}, andS goes back td). In the third step we explord[2], and since there is no stack, we azltb .S
(so thatS becomeq 2}, since it was empty) and move on to the fourth step, where we exgl@tesince
A[2] + A[3] = 4+ 9 = 3 (mod10) is already inL, we must now sef = {2,3}. In the fifth step we
exploreA[4] = 5. Since3 is the largest integer i, we check ifA[3] + A[4] = 4 (mod10) isin L. Since
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Fig. 1: lllustration of HMATCHING.

it is not, then we addA([3], A[4]) to M, 4 to L, and remové from S. At the end, we obtain the matching
shown, which happens to be perfect.

3 Performance of HMATCHING: empirical results

There are two natural parameters to measure the performance af EHWNG: (i) the expected size of the
matching obtained by running HMCHING, and (ii) the probability that HMTCHING delivers a perfect
matching.

(i) We ran our algorithmi0¢ times for each of the following values af 5000, 10000, 15000, 20000 ,

25000, 30000, 35000, 40000, 45000, and50000. For each such, we computed the average of the®
experiments. Usin@nuplot ©, we plotted the results and obtained a cus€’ /1.46 that fitted the data

quite well. In view of our experiments, we conjecture that the expected number of vertices left unmatched
is ©(n'/3), or in other words, the expected size of the matching/i— ©(n'/?).

(i) We ran 10¢ experiments for each = 5000, 10000, . .., 50000, and computed the proportion of ex-
periments for which HMTCHING yielded a perfect matching. The data fit the cunvé/? so well that

we are led to the conjecture: the probability that WM HING delivers a perfect matching is of order
O(n~1/3). It is tempting to state an even stronger conjecture: the probability that the resulting matching
is perfect is asymptotic ta—'/2. In the next section we prove a slightly weaker result, namely that this
probability is betweer;n~1/3 In"! n andecyn /3 Inn. We also show that the likely size of the terminal
matching is between/2 — c3n'/?Inn andn/2 — c4n'/3 In~! n, which again is within the logarithmic
factors from the conjectured formuta2 — ©(n?/3). Consequently, on average, the number of the starting
points for which the algorithm finds a perfect matching is of an empirical @dde?/?), and of a provable
orderQ(n?/3In""' n). This suggests the following.

Conjecture 1 W.h.p. there is a perfect (non—crossing, harmonic) matching, and it can be found by running
HMATCHING n times, selecting each of tmepoints as a starting point.

In our computer experiments, witlh up to 105 and 10° problem instances, we always found a perfect
matching by running the algorithm for sufficiently many starting points.

4 Analysis of HMATCHING

4.1 The matching algorithm as a Markov Chain.

Consider the generié;th, step of the matching algorithm. Before this step the vergiges ., p,_1 have

been explored, and some of them have been matchedMLbe the current (non-crossing, harmonious)
matching andS be the current set (stack) of all unmatch ed points whose labels have been explored.
Then2|M| + |S| = k — 1. Suppose first thaf # (. Assume inductively that there are no triples
(PasPbsDe), @ < b < ¢, such that(p,,p.) € M andp, € S. This condition means that no edge
(pasps), such thatp, € S andb > b* = max{c : p. € S}, crosses an edge from. In particular,

we can and do add td4 the edge(p,-, pi) if the label of this edge is not i, the label set of the
edges inM, i. e. if A[b*] + A[k](modn) ¢ L. The last condition restricts the valuHk] to a subset

of {0,...,n — 1} of cardinalityn — |L| = n — |[M|. SinceA[k] is uniform on{0,...,n — 1}, and
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independent ol [0], ..., A[k — 1], the (conditional) probability thdip,-, pr,) is added taM in the k—th
iteration step id — |L|/n = 1 — | M|/n. In this caseM +{(py+, pi) } andS'\ {p,~ } are the next matching
set and the next stack respectively. Alternatively, with the probaljiltyf/»n the matching set remains
the same, but the stack grows.$aJ {pi}. If S = (), then the matching se#! remains the same, and
the nextS is {pi}. In all cases the new matchinyt and the new staclk meet the same non-crossing
condition as the previoust andS. Clearly the sequendeMy,, Sk tk<n, (Mo = 0, So = 0), is a Markov
chain. The chain terminates on2pM,,| + |Sk| reaches:, that is when there are no unexplored points
left. Remarkably, the transition probabilities and the termination rule depend oflyleh So there is a
reduction of{ My, Sj.} to a much simpler Markov chaifiny, s;.} on the set of pairém, s), m = |M|,
s =|5|, with termination conditioremy, + s; = n.
Here is the formal definition of the reduced Markov chain.
Markov Process 1 (MP,) Each state is a pair (m,s), where m and s are nonnegative integers, and
2m + s < n, where n is a fixed integer given in advance. The initial state is (0,0). The transition rules
are :
If s = 0, then the next state is
(m,s+1)=(m,1).

If s > 0, then the next state is

(m+1,s—1), with probability 1 — m/n,
(m,s+1), with probability m/n.

4.2 The likely size of the terminal matching.

According to our reduction, to study the size of the terminal matching is the same as taZtuthe
terminal value ofn in the Markov chain MP .

Theorem 2 1. Givena > 0, seta = 2y/a(1l + a).

Pr(Z, >n/2 —an'?Inn) =1—-0(n"%). @

Pr(Z, <n/2—n'*In"%n) =1-0(n"'n). 2

3. Let P, = Pr(Z,, = n/2), n even, and P,, = Pr(Z,, = (n — 1)/2), n odd. Then, for some constants
a, >0,
an 32y <P, < ﬁn_l/g Inn. 3)

For the proof we need the following statements.

Proposition 3 Define the random variabl&,, ; as the time it takes for thép, 1 — p)-random walk to
reach the zero state from the staterhen, for allr > 0,

1
(2p)t(4p(1 —p))~7/%

Proposition 4 For each evert > 0, let R,,(¢) denote the probability of being état the time step in the
(p, ¢)—random walk o0, 1, 2, ...} with the repellend state. Then

Pr(Xp.,t >7) <

Rij(t) ~ eit™'/2 and
R,(t) < 3(1—2p)+ (xt)~Y2, if p<1/2.

Lemma5 Leta > 0. With probabilityl — O(n~?), there exists such that
my € (n/2 — (1+a)n*?Inn, n/2 — 0.5(1 4+ a)n®31nn), s, =0,

with ©(n?/3 Inn) points remaining to be explored.
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Proof of Lemma 5Givenm < n/2, letT,, = min{k : m; = m} and setl,,, = n, if no suchk exists.
IntroduceH,, = s7,,, the stack size at this moment. By the definition of (Mfor j < k ands; > 0, the
conditional probability of the transitiofm;, s;) — (m;+1,s;+1) = (m;, s;+1), which leads to increase
of the stack byl, is m/n at most. And the alternative transition leads to the stacksizel. Fors; = 0,
we haves;;; = 1. These observations imply that,, is stochastically dominated B¥,,, the maximum
of the simple asymmetric random wa{K; } ,<, on{0,1,2, ...}, defined as follows¢, = 0,

Pr§+1=¢§ +1]§)=p=m/n, (§>1),
Prgr=¢&—11&)=q:=1-m/n, (§>1),
Pr(§j+1 = 1|fj = O) =1.

Furthermore, for each integer > 0, PV, > w) < nPr(WV,, > w), whereW,, is the maximum of;

for j between) and the first moment > 0 when¢; = 0. Using the classic gambler’s ruin formula, we

have
q/p—1

(a/p)“*t -1

Then, introducingn; = % — [a;n?/?Inn] andp; = m;/n, i = 1,2, with as = a1 /2, we have

PrWn, > w) = <(p/q)".

1/3

) < Sn(l — 4a2n*1/3 In n)

mao nt/3

n—mso

Pr(Wmi > n1/3) <2n <

< 3nexp(—4azlnn) = — 0,

n2a1 —1

provideda; > 1/2.
Now, since2my, + s = k at each step, we have
TNL - Hm Tm - Wm
> .
2 - 2

Applying this tom = my, mo, we see that
2
Pf{ﬂ@mi < T, <2my + nl/? andH,,, < nl/s)} >1-0(n"%), a=2a -1
i=1

Therefore
Pr{(Tm2 — T, = a1n??Inn+ O(n'/?)) N (H,,, < nl/g)} >1-0(n"°).
Denote the event in this bound by, Let
B = AN {s; becomes zero at somec [T,,,, Trn,]}

We want to show that PA \ B) < n=° Vb > 0, for n large enough. Let; € [0,n — 1]. Suppose that
my, < my, and0 < s;, < n'/3. These conditions certainly holddf = T}, . LetT = 7 (t;) be the first

t > t; such that eithem; = mao, ors; = 0. As before {s; }+<7 is dominated by the asymmetric walk
{& Yzt &, = [n*/?], with p = my /n. ThereforeT — t; is dominated byX,, |,,1/3|, whereX,,  is the
first time the random walk hitg, if £, = s. Since by Proposition 3

(4pq)~"/?

Pr(X,s >r) < OO

it follows that

(1 _ 4lasn?/3Inn | (%)

n2

Pr(X":L‘z’Lnl/sj Z Ln2/3j) S ) 2/ Inn] [ni/3] S exp(—a2 1112 n)
(1 _ 2]azn nn )

n
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Therefore7 (t,) — t; < n?/3 quite surely (q.s. in short), i.e. with probability— n~?, for everyb > 0,

uniformly for allt;. Thus7 (T,,,,) — Trn, < n*/? q.s. as well. Sinc,,,, — T},, is of ordern?®/3Inn >
n?/3 on A, we conclude that indeed Pt \ B) < n~?, for everyb > 0. So the Markov procesgny, s; }

reaches a stateno, 0), wheren/2 — mg € (0.5a1n%/% Inn, a;n?/? Inn), with probabilityl — O(n=%),

a=2a;—1.1

Proof of Theorem 2, part 1.et T" be the firstk such that

my € (n/2 — (1+a)n®3logn, n/2 — 0.5(1 + a)n®>logn), sp = 0.

By Lemma 1,7 is well defined with probabilityl — O(n~%). Let ¢ be the number of the remaining
unexplored points afteF steps; clearly

(1+a)n*3In <<2(1+a)n*>Inn.

The additional increase of,;, during the remaining. — T steps iS(¢ — s,,)/2, wheres,, is the terminal
stack size. S&,, = m,, is given by
n—¢ {—s,

n
7, = = 05s,.
5 T3 2 5

Thus we need to show that w.h.p,, = O(n1/3 logn). Sincemy < n/2 for all k, s,, is dominated,
where{¢;} is the simple symmetric random walk with= ¢ = 1/2, and¢, = 0. We need to find a likely
upper bound fog,. First of all, for each integer > 0,

P& =2)= > PQux @

2t4pu=~

hereP; = Pr({y; = 0), the probability that the walk returns cafter2t steps;Q,,(0) = 6,0, andQ,,(x),

x > 0, is the probability that the walk, that startstatreachese after i steps without ever returning to

0. We will need the full strength of this formula later, but for now we are content with its weak corollary,
namely

54 = (E E Q,u (5)
w,t>0
2t4-p=~

As for Q,,(x), recall that, by the ballot theorem, the total number of ways to reach thespoiom the
point0 by makingu (£1)-moves, without returning t0, is

z(w +ux>/2)’ o

(1 + z)/2 being the total number of right moves. Therefore, for they)-simple walk,
_Z H +z)/2-1 (n—z)/2.
0. (x ._< >p(;+)/ S/,
(@) p\(pu+)/2

(the probability of the first move, frofito 1, is 1, each of the othet — 1 moves has probability.) Using
Stirling’s formula anddpq < 1, we obtain a simple estimate

exp(—2*/2p)
w(p? — a2 +p)’

wherecy is some constant. (We will continue to use for various absolute constants.) Combining (5)
and (6), we have

Qu(zr) <

x>0 (6)

: 1
Pri§r =) < coxefmz/% = = < clzefﬁ/%.
x<pu<t /”'(/’L —z°+ :u)

(That the last sum is uniformly bounded follows from considering separatety2x andz < u < 2x.)
Then

p 1/31 —x?/2¢ *n?3 1% n
r(fg > an nn) <c Z xre < co exp —m

) = cn, (7)

z>anl/31nn
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ast < 2(1+ a)n*?Inn, anda = 21/a(1 + a). 1

Proof of Theorem 2, part 2As in the proof of part 1,

Z, = g —0.55,,,

so we need to show that w.h.p, > v, := 2n'/3In"? n. Clearlys,, stochastically dominate% for the
(p, q)-walk, where

. L=n—2mp e |[1+a)n*?mnn,2(1+a)n?3n).

Thus
Pr(sn § Vn) S Pr(fé § Vn) = Z Pr(é-f = fﬂ),

z<v,
with Pr(¢, = x) given by (4). This time we need a sharp boundZgrwhich is

Py <e((1-2p)+ (t+1)"/?) —c<£ +t1/2), (8)

n

see Proposition 4. Fare [¢/2, /], the first summand dominates singé? >> n, and the bound simplifies
to P, < 2¢(¢/n). Break the sumin (4) into two partg, > ¢/2 andu < ¢/2. Sincex < v, < ¢, it
follows from (6) and (8) that, for: > 0,

Z PO, (x) <z Z u73/2(£/n—|— (0—p—+ 1)1/2)] <x((U/n)e 240t = O(xﬁl/Q/n),

2t+pu=4~ n>e/2
u=t/2

as¢3/2 > n. Therefore

Yo D PiQula) = OwptPnT) = O(n =2 n). ©)
0<x<vy, 2t+u=>~L
u>L/2

Let u < £/2 now. Since2t + u = ¢, it follows thatt > £/4, and soP; = O(¢/n). Then, using (6), we

obtain
3 PiQu(a) <@t < e T/ ) (10)
< on~ g .
t u
=t x VY y _IQ

u<e/2
Substitutingy = z/z, we transform the last integral into

7wz/2 9
71/2 E (Jl +J2),

m

with .J;, J corresponding to integration ovér, 1/2] and[1/2, 1], respectively. Then, substituting =
xz/2,

2 [ 12 —az)2 2 i [T i 1/2
J < — 27 e A dy < —x~ w7 eV dw = ¢raxT 7,
BRVE] /o V3 /0

and

1
Jy < e*w/4/ _dz = ¢pe~ /4,
172 /(1 — 22)

Therefore the bound (10) becomes

37 PiQulx) = O(tn~ u(x=/?)?) = O(¢/n), = > 0.

2t+pu=~L
u<e/2
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Consequently
Yo D PeQul@) =0(tn"v,) = O(ln™" m). (11)
0<x<Lv, t+u=~L
n<e/2

Combining (9) and (11), we obtain

Z Z P:Q,(z) = O(In"' n).

0<z<v 2t+pu=~L

Finally
ZQt + 1 =P Qu(0) = Pyja = O(¢/n) = O(n~31nn).
So
Priéc <) = > > PQu(x)
0<e<y, 2t+u==~L
=0 3Inn)+O(In"'n) = O(In"' n).
SinceZ,, = n/2 — 0.5s,,, ands,, dominate,, the statement follows. L]

Proof of Theorem 2, part First of all, forn even,Z,, = n/2iff s, = 0, and, forn 0dd, Z,, = (n—1)/2

iff s,,_1 = 0. Consider, for instance, even We know that, conditioned on the event in Lemma (call it
A), s,, is dominated by, (1/2) of the walk({{;},<¢) with p = 1/2, and dominateg, of the walk with
p=pn:=1/2—¢/n. Then, using (3),

Pr(s, =0]A) < Pr(& (pn) =0)],_,

= O0((1 = 2pp) + 7Y% =0(/n) = O(n~31nn). (12)

On the other hand, again using (3),
Pr(sn = 0]A) = Pr(&(1/2))],—
= QU2 =Qn VP m™Y2n). (13)
Since P(A°) = O(n~?), pickinga > 1/3 we conclude that unconditionally
an Y32 n < Pr(s, =0) < fn3lnn,

for some absolute constantss > 0. The case: odd is similar. This completes the proof of the theorem.
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