
2005 International Conference on Analysis of Algorithms DMTCS proc.AD, 2005, 287–296

The master ring problem

Hadas Shachnai1 and Lisa Zhang2

1Computer Science Dept., Technion, Haifa 32000, Israel.
2Bell Labs, Lucent Technologies, 600 Mountain Ave., Murray Hill, NJ 07974.

We consider themaster ring problem (MRP)which often arises in optical network design. Given a network which
consists of a collection of interconnected ringsR1, . . ., RK , with n1, . . ., nK distinct nodes, respectively, we need
to find an ordering of the nodes in the network that respects the ordering of every individual ring, if one exists. Our
main result is an exact algorithm for MRP whose running time approachesQ ·

QK
k=1(nk/

√
2) for some polynomial

Q, as thenk values become large. For thering clearance problem, a special case of practical interest, our algorithm
achieves this running time for rings ofany sizenk ≥ 2. This yields the first nontrivial improvement, by factor of
(2
√

2)K ≈ (2.82)K , over the running time of the naive algorithm, which exhaustively enumerates all
QK

k=1(2nk)
possible solutions.

Keywords: Master ring, shortest common supersequence, optical networks, exact algorithms.

1 Introduction
1.1 Problem Statement and Motivation
The prevalence of SONET (Synchronous Optical NETwork) technology has made the ring a popular net-
work topology [13]. To carry a demand between two nodes on a SONET ring, traffic is routed simultane-
ously clockwise and counter-clockwise, one as the primary path and the other as the backup path. Often
an optical network consists of a collection of interconnected SONET rings. Amaster ringcontains every
node in the network exactly once and respects the node ordering of every individual SONET ring. The
master ring problem (MRP)is to find such a ring, whenever it exists.

Formally, the master ring problem is defined as follows. Suppose that a network consists ofK rings,
R1, . . ., RK , with n1, . . ., nK distinct nodes, respectively. Each ring has twoorientations, clockwise and
counter-clockwise. We say thatR is asubringof M (or M is amaster ringof R) if either the clockwise or
the counter-clockwise orientation ofR can be obtained fromM by erasing zero or more nodes fromM .
The goal is to find a master ring whenever it exists. Consider an instance of MRP as shown in Figure 1.
The network consists of 3 rings.R1 has the nodesabcdef , R2 has the nodesachg, andR3 has the nodes
ghcdi. A possible master ring isabghcdefi.

c

b
a

d

i

h

g

f

e

Fig. 1: An instance of MRP.

There are a number of reasons for finding master rings. For example, as a network evolves with growing
traffic, it expands from an initially small number of SONET rings, to include a large collection of rings.
Unfortunately, such expansion is often carried out in an ad-hoc manner, with circuits added and torn
down over time. As a result, the network may have unnecessarily complex topology that makes network
management a nightmare. To replace a spaghetti-like network, one simple topology is a master ring. Since

1365–8050c© 2005 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France

288 Hadas Shachnai and Lisa Zhang

a master ring respects the node ordering of every existing SONET ring, it has the advantage of preserving
the routing label of every demand intra to an existing SONET ring. Indeed, a demand may traverse more
nodes around the master ring than around its original SONET ring; however, preserving the order in which
the SONET nodes are traversed allows to efficiently update the routing tables, rather than redefine from
scratch the Label Switched paths. (Such paths are used, e.g., in MPLS [14].) Even if the network is not
sought to be rebuilt, it still needs to handle the routine downtime, for purposes such as software upgrade.
A master ring can then serve as a simple backup topology. Providing a master ring (whenever possible) to
a network management system simplifies its operation and is therefore valuable [12, 1, 2].

We emphasize that the master ring can be viewed as a “logic” ring. That is, two neighboring nodes in
the ring do not need to be physically connected by links already existing in the network. (Such links can
be added once the master ring is set as a new/backup topology.) In addition, if two SONET ringsRi and
Rj intersect then they have at least two nodes in common. This is because two common nodes can tolerate
one node failure when supporting a demand between a node inRi and a node inRj .

One convenient way to represent the rings is to use sequences. Each orientation of a ring withn
nodes corresponds ton sequences, depending on the node with which the sequence starts. Figure 2
shows the sequence representation of the instance in Figure 1. For example, the ringR1 in Figure 2
has 6 clockwise sequences:abcdef , bcdefa, cdefab, defabc, efabcd, fabcde and 6 counter-clockwise
sequences:fedcba, edcbaf , dcbafe, cbafed, bafedc, afedcb. We also refer to each sequence as an
openingof a ring. We say thatS is asubsequenceof T (or T is asupersequenceof S) if S can be obtained
from T by erasing zero or more symbols fromT . Therefore,R is asubringof M (or M is amaster ring
of R) if some sequence that corresponds toR is a subsequence of a sequence that corresponds toM (see
Figure 2).

c

d

e

f

h

g

b

a

R2 R3R1

Master ring

a

c
h

cd

e

f

i

g

g

i

dc

h

b

a

Fig. 2: (Left) Three ringsR1, R2 andR3. (Right) A possible master ring. For example,R1 is a subring since its clock-
wise sequenceabcdef is a subsequence of the sequenceabghcdefi corresponding to the master ring;R2 is a subring
since its clockwise sequenceaghc is a subsequence;R3’s counter-clockwise sequenceghcdi is a subsequence.

Given K sequences, each with any symbol appearing at most once, we note that it is easy to find a
supersequence that contains each symbol once, if one exists. We construct a directed graphG = (V,E),
whose vertex set consists of the symbols in theK sequences and whose edge set consists of directed edges
of the form(a, b), wherea appears immediately beforeb in a sequence. Recall that a topological sort of
a digraph is any linear order on the vertices respecting the graph’s partial order. Hence, ifG is acyclic
then a topological sort ofG is a (minimum possible length) supersequence of allK sequences. Deciding
whether a digraph is acyclic and finding a topological sort are polynomially solvable (see e.g. [4]). Thus,
our main task is to determine a set of sequences which can be represented as an acyclic digraph (whenever
such a set exists). This is the focus of the paper.

1.2 Main Result

Our main result (in Section 2) is an exact algorithm for MRP, whose running time approachesQ ·∏K
k=1(nk/

√
2) for someQ that is polynomial in the input size, as thenk values become large. For

the ring clearance problem, a special case of practical interest, our algorithm achieves this running time
for rings of any sizenk ≥ 2 (see in Section 3). This yields the first non-trivial improvement, by factor
of (2

√
2)K ≈ 2.82K , over the naive algorithm which exhaustively enumerates all

∏K
k=1(2nk) possible

solutions (see, e.g., in [2]).
Our algorithm applies enumeration guided by anintersection graphof the network, which represents

The master ring problem 289

the interconnections among the rings. The graph is used for identifying subsets of rings whose openings
leave only a few consistent openings for all other rings, thereby decreasing the remaining number of
enumeration steps. While enumeration alone is inefficient, and using the intersection graph alone may
result in a false solution for our problem (see in Section 2), we show that combining the two yields a
significant improvement in running time, and guarantees that a master ring will be found, if one exists.
We believe that similar techniques can be used in solving exactly other related problems, such as shortest
common supersequence (SCS) and feedback arc set (FAS) and their variants. (See in Section 4.)

e

f

b

c
d

u

w

v

a

Ru

e

f

d
Rw

Rv

a

b

c

Fig. 3: (Left) An instance of MRP:Ru consists of nodesabcd, Rv consists ofcdef and Rw consists ofbefa.
(Middle) The intersection graphH. (Right)Ru, Rv andRw induce a large ring.

2 Algorithm
A naive solution for MRP is to enumerate all possible sequences for each ring and find if there is a topo-
logical sort for each resulting directed graph. Obviously, trying the total of

∏
1≤k≤K(2nk) possibilities

suffices to solve the problem; the running time isP ·
∏

1≤k≤K(2nk), whereP is the polynomial time
required for topological sort. We describe below an algorithm which avoids enumerating some of these
possibilities, by using theintersection graphof the network.

Before we apply our algorithm, we first eliminate allsingletonnodes from each ring, i.e. those nodes
that appear only in one ring. If nodea is a singleton, thena can be ignored when constructing the master
ring. Indeed, if a master ring exists withouta, thena may always be added to the master ring. From now
on we may assume without of loss of generality that every node appears in at least 2 rings.

We construct an undirected intersection graphH that shows how the rings are interconnected. The
graphH consists ofK vertices, each corresponding to one of theK rings. If two rings share common
nodes, then there is an edge between their corresponding vertices inH. For clarity, we useverticesand
edgeswhen referring to the elements in the graphH andnodesandlinks– when referring to the elements
of a ring. We also use letters near the beginning of the alphabet (such asa, b, c andd) when referring to
nodes in a ring and letters near the end of the alphabet (such asu, v andw) when referring to vertices in
H. For a vertexu in H, we useRu to represent the corresponding ring. (See Figure 3 for an example.)

Our algorithm is motivated by observations that we detail later. Consider a vertexu in H. If Rv is
already opened, andv is a neighbor ofu, then the number ofconsistentopenings ofRu is limited. (We
say that a set of sequences areconsistentif they have a supersequence.) For example, suppose thatRu and
Rv have in common the nodesa andb, andRv ordersa beforeb; then,Ru would have to as well.

We note, however, that even if any twoneighboringrings have consistent openings, it does not neces-
sarily imply consistent openings for all rings. Consider the instance of Figure 3. WhenRu is oriented
clockwise, andRv, Rw are oriented counter-clockwise, they induce a large ringabcdef . If Ru corre-
sponds to the sequenceabcd, Rv corresponds tocdef , andRw corresponds toefab then no opening of
this induced ring contains the three sequences as subsequences. Therefore, these three openings cannot be
consistent with one another. However, any two of these openings are consistent. (See Figure 3, Right). If,
instead,Rw has the openingabef , then the three openings are consistent and have a master ringabcdef .
The example in Figure 3 shows that we cannot use the graphH alone for determining good openings for
all rings, since this graph indicates only the ‘local’ dependencies among the rings. To guarantee that no
induced rings remain in the network after we openR1, . . . , RK , we use the properties of the graphH only
as guidance for the algorithm.

290 Hadas Shachnai and Lisa Zhang

Algorithm AMR

0 Eliminate singleton nodes fromR1, . . . , RK . Construct the graphH with vertex setV .

Phase 1. Low-degree vertices
1 N = L = ∅.
2 While there is a low-degree vertexv ∈ V − L−N

add vertexv to setL and its neighbors to setN .
3 Foru ∈ N , try all possible sequences forRu.
4 Forv ∈ L with x neighbors, try at mostx possible sequences forRv.

(See Lemma 1.)

Phase 2. Dominating set
5 Find a dominating vertex setD for the verticesv ∈ H such thatv ∈ V − L−N .
6 Foru ∈ D, try all possible sequences forRu.

Phase 3. Remaining vertices
7 LetC = V − L−N −D.
8 Foru ∈ C, try a total ofy|C| combinations of sequences forRu,

wherey is given in Lemma 5.
9 For each combination of sequences for vertices inN ∪ L ∪D ∪ C,

find a supersequenceT using topological sort.
10 If T exists, a master ring is found. Algorithm terminates.

11 Output no master ring exists.

Fig. 4: The master ring algorithmAMR.

In our algorithm,AMR, we identify a low-degree vertexu in H and enumerate all possible openings
of u’s neighbors. Sinceu has low degree, relatively few rings are opened, but this dramatically limits the
number of consistent openings ofRu. (See Lemma 1.) WhenH has only high-degree vertices, we find
a dominating set, where a dominating set consists of vertices that are neighbors to every vertex not in the
set. We can find a small dominating set in a graph with high degree vertices. By enumerating all possible
openings for the (small number of) vertices in the dominating set, we can reduce the number of consistent
openings for each remaining vertex by a constant factor. (See Lemma 5.) In our algorithm we define low
and high degree vertices through a parameterδ; we setδ = log n/c, wherec ≥ 3 is some constant. If a
vertexu ∈ H has degree lower thanδ thenu is a low-degreevertex. A pseudocode of algorithmAMR is
given in Figure 4.

3 Analysis
For simplicity of exposition, we assume throughout the analysis that all of the rings are of the same size,
n. Later, we show how the analysis extends to rings of arbitrary sizes.

In the following we show the correctness of algorithmAMR. Certainly, if the algorithm finds a sequence
T that is a supersequence for some opening of every ringRk, where1 ≤ k ≤ K, the master ring can be
defined byT . However, since our algorithm does not exhaustively enumerate all of the2n openings of
each ring, if it does not find a supersequence we need to verify that we have not missed any opening that
could have lead to a supersequence. We start by analyzing the first phase.

Lemma 1 If a vertexv ∈ L hasx neighbors inH, and each neighbor is opened (i.e. is given a sequence),
then at mostx sequences ofv can be consistent with thex neighboring sequences.

Proof: Let u be a neighbor ofv andSu be the sequence representing the opening of the ringRu. Consider
the subsequenceTu of Su that consists of the nodes common toRu andRv. Let au be the first symbol in
Tu. Since we have no singleton nodes, we know that

⋃
u Tu contains all the nodes inRv. Therefore, if

Sv begins with a node inTu for some neighboru, thenSv has to begin withau; otherwise,Sv cannot be
consistent withSu. Furthermore, ifSv starts withau it has to follow the direction dictated byTu. If Tu

The master ring problem 291

consists of 3 or more nodes, then this direction is unique. IfTu consists of 2 nodes, then either clockwise
or counter-clockwise direction could be consistent. We examine the two neighboring nodesb andc of
au on ringRu that are not inTu. For Sv to start atau and continue withb, b has to be the first node in
some other subsequenceTu′ for some neighboru′, or Sv cannot be consistent withSu′ . In addition, if
bothb andc are the first nodes of some subsequences, no matter which directionSv takes,Sv cannot be
consistent with both. Therefore,Sv can only start with one of at mostx nodes and for each starting node
there is only one possible direction. 2

From Lemma 1, in Line 4 of the algorithm we try at mostδ sequences for any ringRv, such thatv is a
low-degree vertex inH. This allows us to bound the running time of Phase 1.

Lemma 2 The running time of Phase 1 is at most(1 + o(1))
nk̂

2k̂(c−2)
wherek̂ = |L| + |N | is the total

number of vertices dealt with in this phase.

Proof: It is easy to see that the number of combinations that Phase 1 tries is bounded by(2n)|N |x|L|,
wherex ≤ δ. However, to execute Line 4 we need to determine the orientation for each of thex potential
openings of a ring. This can be done in timeO(αx|L|) for some constantα using the procedure described
in Lemma 1. Therefore, the outer loop in our algorithm, Phase 1, takes at most(2n)|N |(αx|L| + x|L|),
which is(1 + o(1))(2n)|N |δ|L|. Note that theo(1) term is a function of the ring sizen andc,

Let us look at the running time more closely. Letk̂ = |L|+|N | be the total number of vertices handled in
Phase 1. SinceL consists of vertices with degree lower thanδ, we have|L| ≥ k̂/δ and|N | ≤ k̂(1− 1/δ).
Therefore,

(2n)|N |δ|L| = n|L|+|N |
(

δ

n

)|L|

2|N | ≤ nk̂

(
δ

n

)k̂/δ

2k̂(1− 1
δ) = nk̂2k̂(logδ

δ −c)2k̂(1− 1
δ) ≤ nk̂

2k̂(c−2)
.

2

Let us bound the size of the dominating setD in Phase 2.

Lemma 3 |D| ≤ |V − L−N | · 1+ln(1+δ)
1+δ .

Proof: We first prove the next claim, which generalizes a result in [3]. LetG = (V,E) be a graph, such
that all the vertices inV ′ ⊆ V have degree at leasts. Then there exists a subset of verticesV ′′ ⊆ V ′ of
size at most|V ′| 1+ln(1+s)

1+s , such thatU = (V \ V ′)
⋃

V ′′ is a dominating set forG.
Consider the following Greedy algorithm.(i) We start by adding all the vertices inV \V ′ to U . (ii) Let

W be the set of vertices inV ′ that are not in U and do not have a neighbor in U; While|W | > |V ′|/(s+1)
do: Find a vertexv ∈ W such thatv has a maximal number of neighbors inW ; addv to U . (iii) Add the
vertices inW to U .

Clearly, U is a dominating set forG. To bound the size ofV ′′, we first note that, by an averaging
argument, since all the vertices inV \V ′ are added toU , the number of iterations until|W | ≤ |V ′|/(s+1)
is at most|V ′| ln(s+1)/(s+1). (A similar argument is given in the analysis of the deterministic algorithm
for the dominating set problem in [3]; we omit the details.) Hence, we get that|V ′′| ≤ |V ′| ln(s+1)/(s+
1) + |V ′|/(s + 1). If we setV ′ = V −N − L ands = δ, our lemma follows directly. 2

The greedy algorithm in Lemma 3 takes time at most quadratic inK, the number of vertices inH. Hence,

Lemma 4 The running time of Phase 2 ispoly(K) + (2n)|D|.

We now discuss how to efficiently find openings for the remaining vertices inC during Phase 3.

Lemma 5 The running time of Phase 3 is at mostpoly(K)y|C|, wherey ≤
√

2(3 + n/2). Hence, the
running time of phase 3 ispoly(K)(n/

√
2)|C|.

Proof: During Phase 3, every vertexu ∈ C has some neighborv in the dominating setD. By assumption,
Ru andRv have at least 2 nodes, saya andb, in common. Any sequence ofRv defines an ordering ofa
andb, i.e.a appears beforeb or afterb. Among the2n sequences ofRu, exactlyn respect this ordering of
a andb. Any of the othern sequences that disrespect the ordering cannot produce a topological sort and
therefore need not be considered. We get that it suffices to enumerate at mostn sequences for the ringRu,
for anyu ∈ C.

292 Hadas Shachnai and Lisa Zhang

We can further reduce the number of enumerations using thepairing algorithmdescribed below. Instead
of directly enumeratingn possible sequences forRu whereu ∈ C, we pair up the sequences so that one
sequence in a pair begins with a node, saya, and the other sequence in the pair ends with the nodea. We
refer toa as thepivot of the pair. (At most 3 out of then sequences cannot be paired up with another
sequence.) More concretely, let us consider the following example. Foru ∈ C, suppose the ringRu has
6 nodesabcdef clockwise. Suppose thatu’s neighborv ∈ D has chosen a sequence forRv in which b
precedese. Therefore, any sequence forRu needs to haveb beforee, else there is no topological sort.
Among the 12 possible sequences forRu, the following 6 haveb beforee.

abcdef bcdefa fabcde dcbafe cbafed bafedc

We pair up the 1st and 2nd sequences,abcdef and bcdefa, with pivot a, and pair up the 4th and 5th
sequences,dcbafe andcbafed with pivot d. The 3rd sequence,fabcde, and the 6th sequence,bafedc,
remain singletons.

We first enumerate the3 + n/2 groups (at mostn/2 pairs and at most 3 unpaired singletons) for every
u ∈ C. This gives a total of at most(3+n/2)|C| possibilities. In the following we show that to determine
the actual sequence within each pair for anyu ∈ C, we do not need to try both possibilities. In fact,
a total of2|C|/2 trials suffices. Hence, the total number of trials is(3 + n/2)|C|2|C|/2, which implies
y ≤

√
2(3 + n/2).

For example, suppose ringRu whereu ∈ C has the above 6 possibilities and we are considering the
first pair with pivota. Sincea is not a singleton node,a necessarily appears in another ring, sayRw. If
the sequence forRw is decided, then we necessarily know which sequence,abcdef or bcdefa, would be
good. This is becauseRu andRw must share a node other thana and let’s call this nodec. Sincea is a
pivot for Ru, if a appears beforec for Rw then only the first sequenceabcdef can be good; ifa appears
afterc for Rw then only the second sequencebcdefa can be good.

v

u

u

Fig. 5: Examples of the graphF . One possible solution for the graph on the left (right) is to circle the vertexu and
mark all other vertices cross. If vertexv in the middle graph is not inC then neither vertex is circled.

In general, we construct a directed graphF where each vertex corresponds to a vertex inC. We put
a directed edge fromu to w if the pivot of u is a vertex in the ringRw. If there are multiple such rings
Rw for u we choose an arbitrary one. As argued above, if there is a directed edge fromu to w, then we
only need to enumerate the two choices in a chosen pair forRw and and the choice forRu is implied. We
determine which rings to enumerate as follows. We mark acrosson a vertex to indicate that the choice
is implied and we mark acircle on a vertex to indicate that we enumerate both possibilities. Initially, we
mark a cross on a vertexu if it has no outgoing edges. This means the pivot ofu appears in some ringRw

that belongs toL ∪N ∪D. Hence, the sequence forRw is already chosen and therefore the sequence for
Ru is implied. For each vertexu in F that is not yet marked, we follow the directed edges, starting from
u, until (i) we have reached a marked vertex (either with a circle or with a cross), or(ii) we stop right
before the path fromu intersects itself, i.e., in a vertexz such that there is an edge(z, u). In the latter
case, we circle the vertex where we stop. In both cases, we also mark a cross on every (unmarked) vertex
along the path. (See Figure 5.)

It is easy to verify that the choice for each vertex with a cross can be implied from the choice for some
vertex with a circle. In terms of the running time, we observe that at most half of the vertices inF can
be circled, since each circled vertex needs at least one distinct vertex that has a cross. To mark each
vertex inF with a circle or cross requires visiting each vertex once. Hence, the time requirement is linear
in |C|. It follows that the running time of Phase 3 is at mostpoly(|C|)(3 + n/2)|C| · 2|C|/2, which is
poly(K)(n/

√
2))|C|. 2

From Lemmas 1 and 5 we see that although algorithmAMR does not enumerate all possibilities for the

The master ring problem 293

vertices inL andC we do not miss out any potentially good opening. Our algorithm is therefore correct.
We bound the running time as follows.

Theorem 6 When the ring sizesn gets large, the running time of our algorithmAMR is (1+o(1))(n/
√

2)K ·
P ·Q, whereP is the time needed for topological sort ofK sequences of lengthn, andQ is a polynomial
in K.

Proof: It is easy to see that the overall running time is the product of the running times of the three phases
andP , the time for each topological sort. From Lemmas 2, 4 and 5, the overall running time is,

(1 + o(1))
n|L|+|N |

2(|L|+|N |)(c−2)
· (poly(K) + (2n)|D|) · (poly(K)(n/

√
2)|C|) · P.

We have,

n|L|+|N |

2(|L|+|N |)(c−2)
· (2n)|D| · (n/

√
2)|C| ≤ nK

2K/2
· 1
2(|L|+|N |)(c−2.5)2−3|D|/2

.

When the ring sizen gets large, the value ofδ is large and hence the size of the dominating setD
approaches a small constant. Whenc > 2.5, the exponent of the second term in the above denominator
is positive. Hence, the above expression approaches(n/

√
2)K . Therefore the overall running time of

algorithmAMR is (1 + o(1))(n/
√

2)K · P ·Q. 2

We note that the naive algorithm that enumerates all2n possibilities for each ring takes(2n)K ·P time.
Our algorithm essentially improves the term(2n)K to (n/

√
2)K .

Our algorithm achieves better running time for two important subclasses of inputs. Consider the sub-
class ofsparseinputs: in the intersection graph of the rings,H, all the vertices are of low-degree. Thus,
our algorithm terminates after Phase 1. The following comes directly from Lemma 2.

Corollary 7 For anyc ≥ 3, if the maximal degree inH is smaller thanlog n/c then the running time of
the algorithm is at most(1 + o(1))(n

2c−2)K . In particular, if the maximal degree inH is some constant

d ≥ 1 then the running time ofAMR is (1 + o(1))(n1− 1
d)K .

Consider now the subclass ofdenseinputs, where each node in the network appears in at leastm rings,
for somem ≥ 2; then, in Phase 3 of our algorithm, we get that the remaining rings can be grouped to
‘clusters’ of size at leastm. In each cluster we need to try the two possible openings of a single ring. (We
use as before the algorithm of Phase 3, with slight modifications. We give the details in the full version of

the paper.) This reduces the running time of Phase 3 topoly(K)(3 + n
2)|C| · 2

|C|
m .

Corollary 8 If each node in the network appears in at leastm rings, for somem ≥ 2, then the running
time of the algorithm is at most(1 + o(1))(n

2(1− 1
m

)
)K .

Ring Clearance. In the ring clearance problem, we need to “clear”R1 and reroute all the traffic through
the other rings. In order for such transition to occur, it is assumed thatR1 intersects with each of the other
rings. In other words in the intersection graphH every vertex is a neighbor of the vertexw corresponding
to R1. Hence,{w} is a dominating set for all vertices inH. We only need to apply Phase 3 of our
algorithm. Using the simple analysis in Lemma 3, it is easy to see that any opening ofR1 limits the
number of openings of any other ring to at mostn. If we follow the more sophisticated pairing argument
in Lemma 3 we only need to try a total of(n/

√
2)K possibilities.

Corollary 9 The algorithm solves the ring clearance problem in at most(n/
√

2)K ·P ·Q steps, for rings
of any lengthn ≥ 2.

Rings of distinct lengths. The analysis for the case where each ringRu has a distinct size,nu, is similar.
We remove the singleton nodes and create the intersection graphH as before. For Phase 1, we say that a
vertexu has low degree if it has fewer thanδu = log nu/c neighbors. The running time of Phase 1 is at
most(1 + o(1))

∏
u∈N (2nu)

∏
u∈L δu. Similar to Lemma 2 we deduce,∏

u∈N

(2nu)
∏
u∈L

δu ≤
∏

u∈L∪N nu

2(|L|+|N |)(c−2)
.

In Phase 2, we find again a dominating setD and we can bound|D| by |V − L −N | · 1+ln(1+δ)
1+δ , where

δ = minu δu. When all ring sizesnu get large, the size ofD approaches a small constant. The running

294 Hadas Shachnai and Lisa Zhang

time for Phase 2 ispoly(K)+
∏

u∈D(2nu). Finally, for Phase 3 we use the pairing algorithm as described
in Lemma 5 for the vertices inC, and the running time ispoly(K)

∏
u∈C(nu/

√
2).

Theorem 10 For rings with distinct sizes, when the ring sizes get large the running time of algorithm
AMR is (1 + o(1))

∏
u(nu/

√
2) ·P ·Q, where theo(1) term is a function of the ring sizes andc, P is the

time needed for topological sort ofK sequences, andQ is a polynomial inK.

4 Relation to Other Problems
We briefly discuss how MRP relates to the shortest common supersequence (SCS) and feedback arc set
(FAS) problems. We defer the details of this section to the full version.

4.1 Shortest Common Supersequence

In SCS we are givenK strings,S = {S1, . . . , SK}, of lengthsn1, . . . , nK , over an alphabetΣ, where
|Σ| = N . We seek a supersequenceT for S of minimum length. MRP defines the following natural
variant of SCS. Atwo-way cyclicpermutation of a string allows cyclic shifts of the string in the forward
and reverse directions. For example, the stringabcd has 4 forward shifts,abcd, bcda, cdab anddabc, and
4 reverse shifts,dcba, cbad, badc andadcb. In thetwo-way cyclic SCS (2Cyclic-SCS)problem, we seek a
stringT of minimum length, such that there exists a two-way cyclic permutation of each stringS1, . . . , SK

in S that is a subsequence ofT . We say thatT is a2cyclic supersequencefor S. A supersequenceT of
lengthN corresponds to a master ring for the set of rings defined byS1, . . . , SK .

The SCS problem is known to be hard to approximate. In particular, Jiang and Li [10] showed that
there exists a constantε > 0 such that if SCS has a polynomial time approximation algorithm with ratio
logε K, then NP is contained in DTIME(2polylog(K)). The best known approximation ratio isK+3

4 , due
to Fraser and Irving [7]. Middendorf considered in [11] a number of variants of SCS. This includes the
Cyclic-SCS problem, in which the strings inS can be cyclically permuted in thesamedirection. The
paper shows that this problem is NP-hard. (Cyclic-SCS solves MRP in the case where each ring has a
fixedorientation.) On the other hand, Permutation-SCS, where each stringSk can be permuted to any one
of thenk! possibilities, is shown in [11] to be polynomially solvable for strings of any length. This implies
that MRP can be solved in polynomial time for inputs wherenk ≤ 3, for 1 ≤ k ≤ K.

The hardness of 2Cyclic-SCS can be shown via a reduction from the vertex cover problem.

Theorem 11 Givenm, it is NP-hard to determine if 2Cyclic-SCS has a solution at mostm.

Our algorithm,AMR, can be combined with a dynamic programming algorithm for SCS [6, 9, 5] to yield
an optimal solution for 2Cyclic-SCS with a running time ofO(N2K

∏K
k=1 n2

k). Alternatively, we can
find a supersequenceT of minimum length byguessingfirst the cyclic shift of each string inT ; we can
then solve the SCS problem using dynamic programming (see, e.g. [6]). The best known DP algorithm
has running timeO(

∏K
k=1 nk). Thus, we have,

Theorem 12 The 2Cyclic-SCS problem can be solved inO(
∏K

k=1 n2
k

2K/2
) steps.

4.2 Feedback Arc Set

MRP relates also to thefeedback arc set (FAS)problem in directed graphs, which is known to be NP-
hard [8]. Consider the special case of MRP in which the orientation for each of the rings is given. We
denote thisorientedversionMRPO. We can viewMRPO as the following variant of FAS, that we
call exact subset FAS. We have a directed graphG = (V,E), and a set ofK (directed) cycles inG,
R = {R1, . . . , RK}. Let G′ = (V ′, E′) be the subgraph induced by the vertices and edges inR. We seek
a subset ofK edges inE′ whose deletion leavesG′ acyclic, such that in each of the cyclesR1, . . . , RK

we omit exactlyone edge. Such a subset of vertices exists iff we have a solution for the corresponding
MRPO instance. Since we are given the orientation for each of the rings, we can apply only Phase 3 of
algorithmAMR. By finding a master ring, we solve theexact subset FASproblem. Hence, we have

Corollary 13 For anyK ≥ 1 andnk ≥ 2, for all 1 ≤ k ≤ K, exact subset FAS on the subgraphG′

induced byK cycles of the lengthsn1, . . . , nK can be solved inP · (
∏K

k=1 nk/(
√

2)K) steps, whereP is
a polynomial ofK.

The master ring problem 295

5 Open Problems
Consider the following parameterized version of the Permutation-SCS. Each stringSk, 1 ≤ k ≤ K, is
associated with a subset of permutations,Πk, and we seek a supersequenceT of minimum length, such
that there exists a permutation ofSk in Πk that is a subsequence ofT . We call this problemPerm-SCS(Πk).
Indeed, the Cyclic-SCS problem is a special case of this problem, in whichΠk is the set ofnk cyclic shifts
of Sk, in a single direction. As shown in [11], this special case of the problem is NP-hard. We have shown
(in Theorem 11) that if we extend the permutation sets in the Cyclic-SCS, so thatΠk is the set of cyclic
shifts in two directions (2Cyclic-SCS), the problem remains NP-hard. On the other hand, whenΠk is the
set ofall possible permutations ofSk (Permutation-SCS), the problem is solvable in polynomial time [11].
Determining whether Perm-SCS(Πk) is polynomially solvable on other classes of inputs remains an open
problem.

Finally, a natural variant of MRP which is of practical interest, is to identify amaximumsubset of rings
for which we can find a master ring, in any given network.

Acknowledgements
We thank an anonymous referee for helpful comments on the paper.

References
[1] S. Acharya, B. Gupta, P. Risbood, A. Srivastava.Hitless Network Engineering of SONET Rings, Globecom 2003.

[2] S. Acharya, B. Gupta, P. Risbood, A. Srivastava.In-service Optimization of stacked SONET Rings, submitted.

[3] N. Alon and J. H. Spencer. The Probabilistic Method, Second Edition. Wiley-Interscience, 2000.

[4] T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein,Introduction to Algorithms, 2nd Edition, MIT Press and
McGraw-Hill, 2002.

[5] D. E. Foulser, M. Li and Q. Yang,A Theory of Plan Merging, Artificial Intelligence, 57, 1992, pp. 143–181.

[6] C. B. Fraser,subsequences and Supersequences of Strings. Ph.D. Thesis, Dept. of Computer Science, University
of Glasgow, 1995.

[7] C. B. Fraser and R. W. Irving ,Approximation algorithms for the shortest common supersequence, Nordic J.
Comp. 2, 1995, pp. 303–325.

[8] M.R. Garey and D.S. Johnson.Computers and Intractability: A Guide to the Theory of NP-Completeness.
W.H. Freeman, 1979.

[9] S.Y. Itoga,The String Merging Problem, BIT, 21, 1981, pp.20–30.

[10] T. Jiang and M. Li,On the Approximation of Shortest Common Supersequences and Longest Common Subse-
quences, SIAM Journal on Computing, 24(5), October 1995, pp. 1122–1139.

[11] M. Middendorf, More on the complexity of common superstring and supersequence problems,Theoretical Com-
puter Science125 (1994), 205-228.

[12] Mobius network management and optimization systems. Lucent Technologies Proprietary. Internal website:
http://www-zoo.research.bell-labs.com/∼mobius/.

[13] R. Ramaswami and K. Sivarajan.Optical networks: a practical perspective. (Morgan Kaufmann Publishers
Inc., San Francisco, 1998).

[14] E. Rosen and A. Viswanathan Internet Standards for Multi Protocol Label Switching. In
http://www.ietf.org/rfc/rfc3031.txt

296 Hadas Shachnai and Lisa Zhang

