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We consider thenaster ring problem (MRPWhich often arises in optical network design. Given a network which
consists of a collection of interconnected rin@@s, . .., Rx, with n, ..., nx distinct nodes, respectively, we need

to find an ordering of the nodes in the network that respects the ordering of every individual ring, if one exists. Our
main result is an exact algorithm for MRP whose running time approa@heﬁ,f:l(nk/\/i) for some polynomial

Q, as theny, values become large. For thieg clearance problema special case of practical interest, our algorithm
achieves this running time for rings ahy sizen, > 2. This yields the first nontrivial improvement, by factor of
(2v2)¥ ~ (2.82)%, over the running time of the naive algorithm, which exhaustively enumeratﬁk}é:u@nk)
possible solutions.
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1 Introduction

1.1 Problem Statement and Motivation

The prevalence of SONETS¢nchronous Optical NETwdrkechnology has made the ring a popular net-
work topology [13]. To carry a demand between two nodes on a SONET ring, traffic is routed simultane-
ously clockwise and counter-clockwise, one as the primary path and the other as the backup path. Often
an optical network consists of a collection of interconnected SONET ringsagter ringcontains every
node in the network exactly once and respects the node ordering of every individual SONET ring. The
master ring problem (MRH} to find such a ring, whenever it exists.

Formally, the master ring problem is defined as follows. Suppose that a network condistsnofs,
Ry, ..., Rk, withng, ..., ng distinct nodes, respectively. Each ring has twigntations clockwise and
counter-clockwise. We say th&tis asubringof M (or M is amaster ringof R) if either the clockwise or
the counter-clockwise orientation & can be obtained from/ by erasing zero or more nodes frah.
The goal is to find a master ring whenever it exists. Consider an instance of MRP as shown in Figure 1.
The network consists of 3 ring$2; has the nodesbcde f, R, has the nodeschg, and Rz has the nodes
ghedi. A possible master ring ishghcde f7i.

Fig. 1: An instance of MRP.

There are a number of reasons for finding master rings. For example, as a network evolves with growing
traffic, it expands from an initially small number of SONET rings, to include a large collection of rings.
Unfortunately, such expansion is often carried out in an ad-hoc manner, with circuits added and torn
down over time. As a result, the network may have unnecessarily complex topology that makes network
management a nightmare. To replace a spaghetti-like network, one simple topology is a master ring. Since

1365-805Q0) 2005 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France



288 Hadas Shachnai and Lisa Zhang

a master ring respects the node ordering of every existing SONET ring, it has the advantage of preserving
the routing label of every demand intra to an existing SONET ring. Indeed, a demand may traverse more
nodes around the master ring than around its original SONET ring; however, preserving the order in which

the SONET nodes are traversed allows to efficiently update the routing tables, rather than redefine from
scratch the Label Switched paths. (Such paths are used, e.g., in MPLS [14].) Even if the network is not

sought to be rebuilt, it still needs to handle the routine downtime, for purposes such as software upgrade.
A master ring can then serve as a simple backup topology. Providing a master ring (whenever possible) to
a network management system simplifies its operation and is therefore valuable [12, 1, 2].

We emphasize that the master ring can be viewed as a “logic” ring. That is, two neighboring nodes in
the ring do not need to be physically connected by links already existing in the network. (Such links can
be added once the master ring is set as a new/backup topology.) In addition, if two SONER,riays
R; intersect then they have at least two nodes in common. This is because two common nodes can tolerate
one node failure when supporting a demand between a nallgand a node irR;.

One convenient way to represent the rings is to use sequences. Each orientation of a ring with
nodes corresponds teo sequencesdepending on the node with which the sequence starts. Figure 2
shows the sequence representation of the instance in Figure 1. For example, tRe rmgigure 2
has 6 clockwise sequencesicdef, bede fa, cde fab, defabe, efabed, fabede and 6 counter-clockwise
sequences;fedcba, edcbaf, dcbafe, cbafed, bafede, afedchb. We also refer to each sequence as an
openingof a ring. We say tha$' is asubsequencef T" (or T' is asupersequenagf S) if S can be obtained
from T' by erasing zero or more symbols fréf Therefore,R is asubringof M (or M is amaster ring
of R) if some sequence that correspond$ites a subsequence of a sequence that correspornds(gee
Figure 2).

R1 R2 R3

Master ring

Fig. 2: (Left) Three ringsR:, R2 andRs. (Right) A possible master ring. For exampl, is a subring since its clock-
wise sequencebcde f is a subsequence of the sequeakghcde fi corresponding to the master rinB; is a subring
since its clockwise sequeneghc is a subsequenc®s’s counter-clockwise sequengécdi is a subsequence.

Given K sequences, each with any symbol appearing at most once, we note that it is easy to find a
supersequence that contains each symbol once, if one exists. We construct a directéd graphF),
whose vertex set consists of the symbols inkheequences and whose edge set consists of directed edges
of the form(a, b), wherea appears immediately befoben a sequence. Recall that a topological sort of
a digraph is any linear order on the vertices respecting the graph’s partial order. Hefds,atyclic
then a topological sort aff is a (minimum possible length) supersequence ofialiequences. Deciding
whether a digraph is acyclic and finding a topological sort are polynomially solvable (see e.g. [4]). Thus,
our main task is to determine a set of sequences which can be represented as an acyclic digraph (whenever
such a set exists). This is the focus of the paper.

1.2 Main Result

Our main result (in Section 2) is an exact algorithm for MRP, whose running time approéches
Hle(nk/\/i) for some( that is polynomial in the input size, as the values become large. For
thering clearance problema special case of practical interest, our algorithm achieves this running time
for rings ofanysizen, > 2 (see in Section 3). This yields the first non-trivial improvement, by factor
of (2v/2)% = 2.82%, over the naive algorithm which exhaustively enumerate§fall , (2n;.) possible
solutions (see, e.g., in [2]).

Our algorithm applies enumeration guided byiatersection graplof the network, which represents
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the interconnections among the rings. The graph is used for identifying subsets of rings whose openings
leave only a few consistent openings for all other rings, thereby decreasing the remaining number of
enumeration steps. While enumeration alone is inefficient, and using the intersection graph alone may
result in a false solution for our problem (see in Section 2), we show that combining the two yields a
significant improvement in running time, and guarantees that a master ring will be found, if one exists.
We believe that similar techniques can be used in solving exactly other related problems, such as shortest
common supersequence (SCS) and feedback arc set (FAS) and their variants. (See in Section 4.)

d!

. |
€

Fig. 3: (Left) An instance of MRP:R,, consists of nodesbcd, R, consists ofcdef and R,, consists ofbefa.

(Middle) The intersection grapH. (Right) R.., R, andR,, induce a large ring.

2 Algorithm

A naive solution for MRP is to enumerate all possible sequences for each ring and find if there is a topo-
logical sort for each resulting directed graph. Obviously, trying the totdl[pf, . .- (2n1) possibilities
suffices to solve the problem; the running timeAs [, ., (2nx), whereP is the polynomial time
required for topological sort. We describe below an algorithm which avoids enumerating some of these
possibilities, by using thatersection graptof the network.

Before we apply our algorithm, we first eliminate sihgletonnodes from each ring, i.e. those nodes
that appear only in one ring. If nodeis a singleton, then can be ignored when constructing the master
ring. Indeed, if a master ring exists withautthena may always be added to the master ring. From now
on we may assume without of loss of generality that every node appears in at least 2 rings.

We construct an undirected intersection grdphthat shows how the rings are interconnected. The
graph H consists ofK vertices, each corresponding to one of feings. If two rings share common
nodes, then there is an edge between their corresponding vertiéeshor clarity, we usererticesand
edgeswvhen referring to the elements in the graffrandnodesandlinks — when referring to the elements
of aring. We also use letters near the beginning of the alphabet (sugh,asandd) when referring to
nodes in a ring and letters near the end of the alphabet (suchvaendw) when referring to vertices in
H. For a vertex: in H, we useR,, to represent the corresponding ring. (See Figure 3 for an example.)

Our algorithm is motivated by observations that we detail later. Consider a vettex?. If R, is
already opened, andis a neighbor ofi, then the number afonsistenbpenings ofR,, is limited. (We
say that a set of sequences apasistenif they have a supersequence.) For example, suppos&hetd
R, have in common the nodesandb, andR,, ordersa beforeb; then,R,, would have to as well.

We note, however, that even if any tweighboringrings have consistent openings, it does not neces-
sarily imply consistent openings for all rings. Consider the instance of Figure 3. \Nhe®s oriented
clockwise, andR,, R, are oriented counter-clockwise, they induce a large tbglef. If R, corre-
sponds to the sequenaécd, R, corresponds tedef, andR,, corresponds tefab then no opening of
this induced ring contains the three sequences as subsequences. Therefore, these three openings cannot be
consistent with one another. However, any two of these openings are consistent. (See Figure 3, Right). If,
instead,R,, has the openingbe f, then the three openings are consistent and have a masteibeihgyf .

The example in Figure 3 shows that we cannot use the gkaplone for determining good openings for

all rings, since this graph indicates only the ‘local’ dependencies among the rings. To guarantee that no
induced rings remain in the network after we ofen . . ., Rx, we use the properties of the grafhonly

as guidance for the algorithm.



290 Hadas Shachnai and Lisa Zhang

Algorithm A/ r

0 Eliminate singleton nodes frof,, . .., Rx. Construct the grapK with vertex sef’.

Phase 1. Low-degree vertices
N=L=40.
2 While there is a low-degree vertexc V. — L — N
add vertexv to setL and its neighbors to seX.
3 Foru € N, try all possible sequences f&, .
4 Forv € L with z neighbors, try at most possible sequences f&,.
(See Lemma 1.)

[N

Phase 2. Dominating set

5 Find a dominating vertex sél for the verticesy € H suchthab € V — L — N.
6 Foru € D, try all possible sequences fé, .
Phase 3. Remaining vertices
7 LetC=V —-L—-N-D.
8 Foru € C, try a total ofy!“! combinations of sequences f8x,,
wherey is given in Lemma 5.
9 For each combination of sequences for vertice¥in L U D U C,
find a supersequend@éusing topological sort.
10 If T" exists, a master ring is found. Algorithm terminates.

11 Output no master ring exists.

Fig. 4: The master ring algorithml s r.

In our algorithm,A,,r, we identify a low-degree vertexin H and enumerate all possible openings
of u's neighbors. Since has low degree, relatively few rings are opened, but this dramatically limits the
number of consistent openings Bf,. (See Lemma 1.) WheH has only high-degree vertices, we find
adominating setwhere a dominating set consists of vertices that are neighbors to every vertex not in the
set. We can find a small dominating set in a graph with high degree vertices. By enumerating all possible
openings for the (small number of) vertices in the dominating set, we can reduce the number of consistent
openings for each remaining vertex by a constant factor. (See Lemma 5.) In our algorithm we define low
and high degree vertices through a paraméteve setd = logn/c, wherec > 3 is some constant. If a
vertexu € H has degree lower thanthenw is alow-degreevertex. A pseudocode of algorithsy, r is
given in Figure 4.

3 Analysis

For simplicity of exposition, we assume throughout the analysis that all of the rings are of the same size,
n. Later, we show how the analysis extends to rings of arbitrary sizes.

In the following we show the correctness of algorithiy, . Certainly, if the algorithm finds a sequence
T that is a supersequence for some opening of everyRingvherel < k < K, the master ring can be
defined byT. However, since our algorithm does not exhaustively enumerate all @httogpenings of
each ring, if it does not find a supersequence we need to verify that we have not missed any opening that
could have lead to a supersequence. We start by analyzing the first phase.

Lemma 1 If avertexv € L hasz neighbors inH, and each neighbor is opened (i.e. is given a sequence),
then at most: sequences af can be consistent with theneighboring sequences.

Proof: Letwu be a neighbor of andsS,, be the sequence representing the opening of theRindConsider
the subsequencE, of S, that consists of the nodes commonAg andR,. Leta,, be the first symbol in
T,. Since we have no singleton nodes, we know thatT;, contains all the nodes iR,. Therefore, if
S, begins with a node iff;, for some neighbot, thensS, has to begin withs,,; otherwise,S, cannot be
consistent withS,,. Furthermore, ifS,, starts witha,, it has to follow the direction dictated b¥,. If T,
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consists of 3 or more nodes, then this direction is uniqué, I€onsists of 2 nodes, then either clockwise
or counter-clockwise direction could be consistent. We examine the two neighboring inadds of

a, on ring R, that are not inl’,. For S, to start ata,, and continue wittb, b has to be the first node in
some other subsequen@g for some neighbot’, or S, cannot be consistent with, . In addition, if
bothb andc are the first nodes of some subsequences, no matter which dirégtiakes,S, cannot be
consistent with both. Therefor§,, can only start with one of at mostnodes and for each starting node
there is only one possible direction. O

From Lemma 1, in Line 4 of the algorithm we try at méstequences for any ring,, such that is a
low-degree vertex irl{. This allows us to bound the running time of Phase 1.

k .
Lemma 2 The running time of Phase 1 is at md@st+ o(l))% wherek = |L| 4 |N]| is the total

fe(c—
number of vertices dealt with in this phase. 2
Proof: It is easy to see that the number of combinations that Phase 1 tries is bounctd) 6y 2!/,
wherex < §. However, to execute Line 4 we need to determine the orientation for each:optbtential
openings of aring. This can be done in ti@éxx| L|) for some constant using the procedure described
in Lemma 1. Therefore, the outer loop in our algorithm, Phase 1, takes at(2m&Y! (ax|L| + z!),
which is(1 + o(1))(2n)V1§IL1. Note that thes(1) term is a function of the ring size andc,

Let us look at the running time more closely. liet= |L|+|N| be the total number of vertices handled in
Phase 1. Sincé consists of vertices with degree lower thiwe have L| > k/6 and|N| < k(1 —1/).
Therefore,

1L NI o ) P
@n)VIgIEL = IEINT (O T gint <k (O gka—d) L okt —agka—) < _ M
n n 2k(c—2)

O

Let us bound the size of the dominating $&tn Phase 2.

Lemma3 [D| < [V — L — N| - HH2to),

Proof: We first prove the next claim, which generalizes a result in [3]. et (V, E) be a graph, such
that all the vertices i’/ C V have degree at least Then there exists a subset of vertid€s C V' of
size at mostV’|%, suchthat/ = (V' \ V') | V" is a dominating set fofs.

Consider the following Greedy algorithr(i.) We start by adding all the verticesin\ V' to U. (i7) Let
W be the set of vertices iti’ that are notin U and do not have a neighbor in U; WHilg > |V'|/(s+1)
do: Find a vertew € W such that has a maximal number of neighborsiin; addv to U. (iii) Add the
vertices inlW to U.

Clearly, U is a dominating set fo€z. To bound the size oV, we first note that, by an averaging
argument, since all the vertices¥\ V' are added t&/, the number of iterations untiW| < |V'|/(s+1)
isat mostV’|In(s+1)/(s+1). (A similar argument is given in the analysis of the deterministic algorithm
for the dominating set problem in [3]; we omit the details.) Hence, we getiHat< |V/|In(s+1)/(s+
)+ |V'|/(s+1). IfwesetV' =V — N — Lands = ¢, our lemma follows directly. O

The greedy algorithm in Lemma 3 takes time at most quadrafic,ithe number of vertices ii. Hence,

Lemma 4 The running time of Phase 2jgly(K) + (2n)!P!.
We now discuss how to efficiently find openings for the remaining verticésdaring Phase 3.

Lemma 5 The running time of Phase 3 is at mosiy(K)y!¢!, wherey < v/2(3 + n/2). Hence, the
running time of phase 3 isoly(K)(n/v/2)!¢!.

Proof: During Phase 3, every vertexe C' has some neighberin the dominating seb. By assumption,

R, andR, have at least 2 nodes, sayndb, in common. Any sequence &, defines an ordering af

andb, i.e.a appears beforgor afterb. Among the2n sequences aR,, exactlyn respect this ordering of

a andb. Any of the othem sequences that disrespect the ordering cannot produce a topological sort and
therefore need not be considered. We get that it suffices to enumerate at segstences for the ring,,,
foranyu € C.
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We can further reduce the number of enumerations usingginzg algorithmdescribed below. Instead
of directly enumerating possible sequences f&,, whereu € C, we pair up the sequences so that one
sequence in a pair begins with a node, sagind the other sequence in the pair ends with the modfée
refer toa as thepivot of the pair. (At most 3 out of the sequences cannot be paired up with another
sequence.) More concretely, let us consider the following examplew Eo€”, suppose the ring,, has
6 nodesabede f clockwise. Suppose thafs neighborv € D has chosen a sequence g in which b
precedes. Therefore, any sequence f&, needs to havé beforee, else there is no topological sort.
Among the 12 possible sequences Ry, the following 6 haveh beforee.

abcde f bedefa fabede dcbafe chafed ba fedc

We pair up the 1st and 2nd sequencés;de f andbcde fa, with pivot a, and pair up the 4th and 5th
sequencesicba fe andcba fed with pivot d. The 3rd sequenceiabede, and the 6th sequencl fedc,
remain singletons.

We first enumerate the+ n/2 groups (at most/2 pairs and at most 3 unpaired singletons) for every
u € C. This gives a total of at mog8 +n/2)!¢! possibilities. In the following we show that to determine
the actual sequence within each pair for ang C, we do not need to try both possibilities. In fact,
a total of2!¢1/2 trials suffices. Hence, the total number of trialgds+ n/2)I¢12/1/2, which implies
y <V2(3+n/2).

For example, suppose ring,, whereu € C has the above 6 possibilities and we are considering the
first pair with pivota. Sincea is not a singleton node, necessarily appears in another ring, gay. If
the sequence faR,, is decided, then we necessarily know which sequedeele f or bede fa, would be
good. This is becausk, and R,, must share a node other tharand let’s call this node. Sincea is a
pivot for R,,, if a appears before for R,, then only the first sequenedcde f can be good; itv appears
afterc for R,, then only the second sequeriede fa can be good.

N

Fig. 5: Examples of the graph’. One possible solution for the graph on the left (right) is to circle the vertard
mark all other vertices cross. If vertexn the middle graph is not i@ then neither vertex is circled.

In general, we construct a directed graptwhere each vertex corresponds to a verteg'inWe put
a directed edge from to w if the pivot of u is a vertex in the ringR,,. If there are multiple such rings
R,, for u we choose an arbitrary one. As argued above, if there is a directed edge fom, then we
only need to enumerate the two choices in a chosen paitfoand and the choice fak,, is implied. We
determine which rings to enumerate as follows. We matckogson a vertex to indicate that the choice
is implied and we mark aircle on a vertex to indicate that we enumerate both possibilities. Initially, we
mark a cross on a vertexif it has no outgoing edges. This means the pivot @fppears in some ring,,
that belongs td. U N U D. Hence, the sequence fay, is already chosen and therefore the sequence for
R, is implied. For each vertex in F' that is not yet marked, we follow the directed edges, starting from
u, until (¢) we have reached a marked vertex (either with a circle or with a cros$);)owe stop right
before the path fromu intersects itself, i.e., in a vertexsuch that there is an edde, «). In the latter
case, we circle the vertex where we stop. In both cases, we also mark a cross on every (unmarked) vertex
along the path. (See Figure 5.)

It is easy to verify that the choice for each vertex with a cross can be implied from the choice for some
vertex with a circle. In terms of the running time, we observe that at most half of the verti¢ésan
be circled, since each circled vertex needs at least one distinct vertex that has a cross. To mark each
vertex inF" with a circle or cross requires visiting each vertex once. Hence, the time requirement is linear
in |C|. It follows that the running time of Phase 3 is at mpsty(|C|)(3 + n/2)I¢l - 21€1/2 which is

poly(K)(n/v2))!. :

From Lemmas 1 and 5 we see that although algorithyyz does not enumerate all possibilities for the
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vertices inL andC we do not miss out any potentially good opening. Our algorithm is therefore correct.
We bound the running time as follows.

Theorem 6 When the ring sizes gets large, the running time of our algorithdy, r is (14-o(1))(n/v/2)% -
P - @, whereP is the time needed for topological sort &f sequences of length and@ is a polynomial
in K.

Proof: Itis easy to see that the overall running time is the product of the running times of the three phases
and P, the time for each topological sort. From Lemmas 2, 4 and 5, the overall running time is,

nILI+IN|
(1+ 0(1))W - (poly(K) + (2n)1P1) - (poly(K)(n/v2)I!) - P
We have,
I LI+IN]
2(IL|+|N[)(c~2)

n¥ 1
9K/2 " 9(LI+IN[)(c—2.5)9-3|D|/2"

. (Qn)\D\ . (n/ﬁ)\c\

When the ring sizen gets large, the value of is large and hence the size of the dominating Bet
approaches a small constant. When 2.5, the exponent of the second term in the above denominator
is positive. Hence, the above expression approathgs’2). Therefore the overall running time of
algorithm Ay g is (1 + o(1))(n/v2)% - P - Q. m

We note that the naive algorithm that enumerateraossibilities for each ring také&n)¥ - P time.
Our algorithm essentially improves the tefém)X to (n/v/2)%

Our algorithm achieves better running time for two important subclasses of inputs. Consider the sub-
class ofsparseinputs: in the intersection graph of the ring$, all the vertices are of low-degree. Thus,
our algorithm terminates after Phase 1. The following comes directly from Lemma 2.

Corollary 7 For anyc > 3, if the maximal degree i/ is smaller tharlog n/c then the running time of
the algorithm is at mostl + o(1))(52z ). In particular, if the maximal degree ifl is some constant

d > 1 then the running time ol is (1 + o(1))(n!~ )X,

Consider now the subclass @énsdanputs, where each node in the network appears in atteasigs,
for somem > 2; then, in Phase 3 of our algorithm, we get that the remaining rings can be grouped to
‘clusters’ of size at least:. In each cluster we need to try the two possible openings of a single ring. (We
use as before the algorithm of Phase 3, with slight modifications. We give the details in the full version of
the paper.) This reduces the running time of Phasepdtg(K)(3 + 2)I¢1 - 2 =
Corollary 8 If each node in the network appears in at leastings, for somen > 2, then the running
time of the algorithm is at mogt + o(l))(%)’(.

-5

Ring Clearance. In the ring clearance problem, we need to “cleBq”and reroute all the traffic through
the other rings. In order for such transition to occur, it is assumedihaitersects with each of the other
rings. In other words in the intersection grafihevery vertex is a neighbor of the vertexcorresponding
to R;. Hence,{w} is a dominating set for all vertices iH. We only need to apply Phase 3 of our
algorithm. Using the simple analysis in Lemma 3, it is easy to see that any openiRg lohits the
number of openings of any other ring to at mastf we follow the more sophisticated pairing argument
in Lemma 3 we only need to try a total 6f/v/2)% possibilities.

Corollary 9 The algorithm solves the ring clearance problem in at nfegt/2)% - P - Q steps, for rings
of any lengthn > 2.

Rings of distinct lengths. The analysis for the case where each rityghas a distinct sizesy,,, is similar.

We remove the singleton nodes and create the intersection gfaggshbefore. For Phase 1, we say that a
vertexu has low degree if it has fewer thap = logn, /c neighbors. The running time of Phase 1 is at
most(1 + o(1)) [[,en (27u) [T,cr 0u- Similar to Lemma 2 we deduce,

ueLuNnu
[1 @) H5 S QML)
ueN

In Phase 2, we find again a dominating Seand we can bounfD| by [V — L — N| - X120+ where

0 = min, §,. When all ring sizes,, get large, the size ab approaches a small constant. The running
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time for Phase 2 ipoly(K )+ ], p(2n.). Finally, for Phase 3 we use the pairing algorithm as described
in Lemma 5 for the vertices i@, and the running time igoly (K ) [T,,cc(nu/V2).

Theorem 10 For rings with distinct sizes, when the ring sizes get large the running time of algorithm
Ayris (1+0(1)) [T, (nu/v?2) - P - Q, where then(1) term is a function of the ring sizes andP is the
time needed for topological sort & sequences, an@ is a polynomial ink .

4 Relation to Other Problems

We briefly discuss how MRP relates to the shortest common supersequence (SCS) and feedback arc set
(FAS) problems. We defer the details of this section to the full version.

4.1 Shortest Common Supersequence

In SCS we are givet strings,S = {S1,...,Sk}, of lengthsny,...,nk, over an alphabet, where
[%] = N. We seek a supersequeniEefor S of minimum length. MRP defines the following natural
variant of SCS. Awo-way cyclicpermutation of a string allows cyclic shifts of the string in the forward
and reverse directions. For example, the sttibgl has 4 forward shiftsgbed, beda, cdab anddabe, and
4 reverse shiftsfcba, cbad, badc andadcb. In thetwo-way cyclic SCS (2Cyclic-SC&pblem, we seek a
stringT" of minimum length, such that there exists a two-way cyclic permutation of each Strjng. , Sk
in S that is a subsequence df We say thafl’ is a2cyclic supersequender S. A supersequenceg of
length\/ corresponds to a master ring for the set of rings defineiiby. ., Sk

The SCS problem is known to be hard to approximate. In particular, Jiang and Li [10] showed that
there exists a constaat> 0 such that if SCS has a polynomial time approximation algorithm with ratio
log® K, then NP is contained in DTIM@rev29(5)) The best known approximation ratio 52, due
to Fraser and Irving [7]. Middendorf considered in [11] a number of variants of SCS. This includes the
Cyclic-SCS problem, in which the strings B can be cyclically permuted in theamedirection. The
paper shows that this problem is NP-hard. (Cyclic-SCS solves MRP in the case where each ring has a
fixedorientation.) On the other hand, Permutation-SCS, where each Sjricgn be permuted to any one
of theny! possibilities, is shown in [11] to be polynomially solvable for strings of any length. This implies
that MRP can be solved in polynomial time for inputs whege< 3, for1 < k < K.

The hardness of 2Cyclic-SCS can be shown via a reduction from the vertex cover problem.

Theorem 11 Givenm, it is NP-hard to determine if 2Cyclic-SCS has a solution at nmast

Our algorithm,4,,r, can be combined with a dynamic programming algorithm for SCS [6, 9, 5] to yield
an optimal solution for 2Cyclic-SCS with a running time @f N 2% Hszl n?). Alternatively, we can

find a supersequende of minimum length byguessindirst the cyclic shift of each string ifi"; we can

then solve the SCS problem using dynamic programming (see, e.g. [6]). The best known DP algorithm
has running time ([T, nx). Thus, we have,

K

2
Theorem 12 The 2Cyclic-SCS problem can be solve@i@%) steps.

4.2 Feedback Arc Set

MRP relates also to thieedback arc set (FA$)roblem in directed graphs, which is known to be NP-
hard [8]. Consider the special case of MRP in which the orientation for each of the rings is given. We
denote thisorientedversion M RP»,. We can viewM RP» as the following variant of FAS, that we

call exact subset FASNVe have a directed grapi = (V, E), and a set ofK’ (directed) cycles inz,
R={Ry,...,Ri}. LetG’ = (V', E’) be the subgraph induced by the vertices and edg&s Ve seek

a subset ofK” edges inE’ whose deletion leaveS’ acyclic, such that in each of the cyclfs, ..., Rk

we omitexactlyone edge. Such a subset of vertices exists iff we have a solution for the corresponding
M RPy instance. Since we are given the orientation for each of the rings, we can apply only Phase 3 of
algorithm A, r. By finding a master ring, we solve tlegact subset FAgroblem. Hence, we have

Corollary 13 Forany K > 1 andn; > 2, forall 1 < k < K, exact subset FAS on the subgragh
induced byK cycles of the lengths , . .., nx can be solved itP - (H,‘f=1 nk/(V2)X) steps, where is
a polynomial ofK .
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5 Open Problems

Consider the following parameterized version of the Permutation-SCS. Each Sfring< k < K, is
associated with a subset of permutatioiig, and we seek a supersequeficef minimum length, such
that there exists a permutationyf in I1;, that is a subsequencedf We call this problenPerm-SCHI},).
Indeed, the Cyclic-SCS problem is a special case of this problem, in Whiéhthe set of;. cyclic shifts
of Sk, in a single direction. As shown in [11], this special case of the problem is NP-hard. We have shown
(in Theorem 11) that if we extend the permutation sets in the Cyclic-SCS, stfithatthe set of cyclic
shifts intwo directions (2Cyclic-SCS), the problem remains NP-hard. On the other hand,Iyhisrthe
set ofall possible permutations &, (Permutation-SCS), the problem is solvable in polynomial time [11].
Determining whether Perm-SCI$;) is polynomially solvable on other classes of inputs remains an open
problem.

Finally, a natural variant of MRP which is of practical interest, is to identifgaximunsubset of rings
for which we can find a master ring, in any given network.

Acknowledgements

We thank an anonymous referee for helpful comments on the paper.

References

[1] S. Acharya, B. Gupta, P. Risbood, A. Srivastadéless Network Engineering of SONET Rin@dobecom 2003.
[2] S. Acharya, B. Gupta, P. Risbood, A. Srivastavaservice Optimization of stacked SONET Rijrgyhmitted.
[3] N. Alon and J. H. Spencer. The Probabilistic Method, Second Edition. Wiley-Interscience, 2000.

[4] T.H.Cormen, C. E. Leiserson, R. L. Rivest and C. Steitroduction to Algorithms2nd Edition, MIT Press and
McGraw-Hill, 2002.

[5] D.E. Foulser, M. Li and Q. Yandh Theory of Plan MergingAtrtificial Intelligence, 57, 1992, pp. 143-181.

[6] C.B. Frasersubsequences and Supersequences of StigB. Thesis, Dept. of Computer Science, University
of Glasgow, 1995.

[7] C. B. Fraser and R. W. Irving Approximation algorithms for the shortest common supersequétmelic J.
Comp. 2, 1995, pp. 303-325.

[8] M.R. Garey and D.S. JohnsonComputers and Intractability: A Guide to the Theory of NP-Completeness
W.H. Freeman, 1979.

[9] S.Y.Itoga,The String Merging ProblenBIT, 21, 1981, pp.20-30.

[10] T. Jiang and M. Li,On the Approximation of Shortest Common Supersequences and Longest Common Subse-
quencesSIAM Journal on Computing, 24(5), October 1995, pp. 1122-1139.

[11] M. Middendorf, More on the complexity of common superstring and supersequence probtesogetical Com-
puter Sciencd 25 (1994), 205-228.

[12] Mobius network management and optimization systems. Lucent Technologies Proprietary. Internal website:
http://www-zoo.research.bell-labs.conmobius/.

[13] R. Ramaswami and K. SivarajaOptical networks: a practical perspectivéMorgan Kaufmann Publishers
Inc., San Francisco, 1998).

[14] E. Rosen and A. Viswanathan Internet Standards for Multi Protocol Label Switching In
http://www.ietf.org/rfc/rfc3031.txt



296 Hadas Shachnai and Lisa Zhang



