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We show that data compression methods (or universal codes) can be applied for hypotheses testing in a framework of
classical mathematical statistics. Namely, we describe tests, which are based on data compression methods, for the
three following problems: i) identity testing, ii) testing for independence and iii) testing of serial independence for
time series. Applying our method of identity testing to pseudorandom number generators, we obtained experimental
results which show that the suggested tests are quite efficient.
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1 Introduction

In this paper, we suggest a new approach to testing statistical properties of stationary and ergodic pro-
cesses. In contrast to known methods, the suggested approach gives a possibility to make tests, based on
any lossless data compression method even if the distribution law of the codeword lengths is not known.
We describe three statistical tests, which are based on this approach.

We consider a stationary and ergodic source (or process), which generates elements from a finite set
(or alphabet)4 and three problems of statistical testing. The fist problem is the identity testing, which is
described as follows: a hypothesd§’ is that the source has a particular distributioand the alternative
hypothesisiH:? that the sequence is generated by a stationary and ergodic source which differs from the
source undef/i?. One particular case in which the source alphabet {0, 1} and the main hypothesis
H{? is that a bit sequence is generated by the Bernoulli source with equal probabilities of 0’'s and 1s,
is applied to randomness testing of random number and pseudorandom number generators. Tests for this
particular case were investigated in [20] and the test suggested below can be considered as a generalization
of the methods from [20]. We carried out some experiments, where the suggested method of identity
testing was applied to pseudorandom number generators. The results show that the suggested methods are
quite efficient.

The second problem is a generalization of the problem of nonparametric testing for serial independence
of time series. More precisely, we consider the following two hypotheggg! is that the source is
Markovian with memory (or connectivity) not larger than, (m > 0), and the alternative hypothesis
HP! that the sequence is generated by a stationary and ergodic source which differs from the source under
Hy'. (This problem is considered by the authors in [19].) In particula i 0, that is the problem of
testing for independence of time series, which is well known in mathematical statistics [7].

The third problem is the independence test. In this case it is assumed that the source is Marko-
vian, whose memory is not larger than, (m > 0), and the source alphabet can be presented as
a product ofd alphabetsA;, A,,..., A; (ie. A = HleAi). The main hypothesig¢Zi"? is that

P(Tmt1 = (Qiyy ey Qi) /T1Tin) = H?Zl p(xl, 1 = ai, /z1..2m) foreach(a;,, ..., a;,) € Hle A;,
wherez,,, 11 = (T}, 41, 1351+1)~ The alternative hypothesigi"? is that the sequence is generated by a
Markovian source with memory not larger than (m > 0), which differs from the source undéfi™<.

TResearch was supported by the joint project grant "Efficient randomness testing of random and pseudorandom number genera-
tors” of Royal Society, UK (grant ref: 15995) and Russian Foundation for Basic Research (grant no. 03-01-00495.)

1365-805Q0) 2005 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France



400 Boris Ryabko and Jaakko Astola

In all three cases the testing should be based on a samplex; generated by the source.

All three problems are well known in mathematical statistics and there is an extensive literature dealing
with their nonparametric testing, see, for ex., [7, 9].

We suggest nonparametric statistical tests for these problems. The tests are based on methods of data
compression, which are deeply connected with universal codes and universal predictors. It is important to
note that practically used so-called archivers can be used for suggested testing. It is no surprise that the
results and ideas of universal coding theory can be applied to some classical problems of mathematical
statistics. In fact, the methods of universal coding (and a closely connected universal prediction) are
intended to extract information from observed data in order to compress (or predict) data efficiently when
the source statistics are unknown.

It is important to note that, on the one hand, the universal codes and archivers are based on results of
Information Theory, the theory of algorithms and some other branches of mathematics; see, for example,
[4, 10, 13, 14, 18]. On the other hand, the archivers have shown high efficiency in practice as compressors
of texts, DNA sequences and many other types of real data. In fact, archivers can find many kinds of latent
regularities, that is why they look like a promising tool for identity and independence testing; see also [2].

The outline of the paper is as follows. The next section contains definitions and necessary information.
Section 3 is devoted to the description of the tests and their properties. In Section 4 the new tests are
experimentally compared with methods from [15]. All proofs are given in Appendix.

2 Definitions and Preliminaries.

First, we define stochastic processes (or sources of information). Consider an alphalfet, - - ,a,}
with n > 2 letters and denote byl and A* the set of all words of length over A and the set of all
finite words overA, correspondingly 4* = | J;=, A%). Let u be a source which generates letters frdm
Formally, 1. is a probability distribution on the set of words of infinite length or, more simply, (u"):>1

is a consistent set of probabilities over the séts ¢ > 1. By M., (A) we denote the set of all stationary
and ergodic sources, which generate letters frorhet M, (4) C M. (A) be the set of Markov sources
with memory (or connectivityk, & > 0. More precisely, by definitiom € M. (A) if

(i1 = ag, [ = Qjgy Tt—1 = Qjgy ooy Tt—k+1 = Qigyq, )

= pu(Tey1 = @iy [T = Qiy, Tp1 = iy, oo, Tppr1 = Qi) (1)

forall ¢ > k anda;,, a4,,... € A. By definition, My (A) is the set of all Bernoulli (or i.i.d.) sources over
AandM*(A) = U;2, M;(A) is the set of all finite-memory sources.

A data compression method (or code)s defined as a set of mappings, such thatp,, : A" —
{0,1}*, n = 1,2,... and for each pair of different words,y € A™ ¢,(z) # p.(y). Informally,
it means that the code can be applied for compression of each message of any lengtler alpha-
bet A and the message can be decoded if its code is known. It is also required that each sequence
©n(u1)pn(ug)...on(u-),r > 1, of encoded words from the set”,n > 1, could be uniquely de-
coded intoujus...u,. Such codes are called uniquely decodable. For exampled let {a,b}, the
codeyn (a) = 0,41(b) = 00, obviously, is not uniquely decodable. It is well known that if a codes
uniquely decodable then the lengths of the codewords satisfy the following inequality (Kraft inequality):
Yuean 271921 < 1| see, for ex., [6]. (Here and beloWw| is the length ofv, if v is a word and the
number of elements af if v is a set.) It will be convenient to reformulate this property as follows:

Claim 1. Lety be a uniquely decodable code over an alphateThen for any integen there exists a
measureu, on A™ such that

lp(u)| > —log pp(u) 2

for anyw from A™ .
(Here and belovilog = log, .) Obviously, Claim 1 is true for the measure

fip (1) = 27 leWIl /5 e qn 27161

In what follows we call uniquely decodable codes just "codes”.

There exist so-called universal codes. For their description we recall that (as it is known in Information
Theory) sequences, . .. z;, generated by a sourgecan be "compressed” till the lengthlog p(x;...x)
bits and, on the other hand, for any sougcthere is no code) for which the average codeword length
(Zucat p(w)|p(u)]) is less than-3,c 4t p(u) log p(u). The universal codes can reach the lower bound
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—logp(x;...z;) asymptotically for any stationary and ergodic soupogith probability 1. The formal
definition is as follows: A code is universal if for any stationary and ergodic soupce

thjgo t~H(—logp(x1..ws) — |p(21...¢)]) = O 3
with probability 1. So, informally speaking, universal codes estimate the probability characteristics of
the sourcey and use them for efficient "compression”. One of the first universal codes was described in
[16], see also [17]. Now there are many efficient universal codes (and universal predictors connected with
them), which are described in numerous papers, see [8, 10, 12, 13, 14, 18].

3 The tests.
3.1 Identity Testing.

Now we consider the problem of testiff? againstHi?. Let the required level of significance (or a Type
| error) bea, « € (0,1). (By definition, the Type | error occurs ) is true, but the test rejecfd,.) We
describe a statistical test which can be constructed based on anycode

The main idea of the suggested test is quite natural: compress a sample sequengdy a codep.
If the length of the codeword(x; ...x,,)|) is significantly less than the valuelog 7(z ...z, ), then Hi?
should be rejected. The main observation is that the probability of all rejected sequences is quite small for
any ¢, that is why the Type | error can be made small. The precise description of the test is as follows:
The hypothesigli? is accepted if

—logm(xy...xy) — |@(x1...,)| < —loga. 4)

Otherwise H}¢ is rejected.(Herer is a given distribution and € (0, 1).) We denote this test bI;)ST’f?W.
Theorem 1. i) For each distributionr, « € (0, 1) and a codep, the Type | error of the described test
FSZ}&7¢ is not larger than and ii) if, in addition, is a finite-memory stationary and ergodic process over
A (i.e.m € M*(A)) andy is a universal code, then the Type Il error of the tﬁg,t)w goes to 0, when

n tends to infinity.

3.2 Testing of Serial Independence.

First, we give some additional definitions. Lebe a wordv = vy...vx, k < t,v; € A. Denote the rate
of a wordwv occurring in the sequence xs, ... xg , o3 ... Tha1, T3T4 ..  Tht2y « -y Tg—ft1 ... Ty S
vt (v). For example, ifc;...z; = 000100 andv = 00, then%(00) = 3. Now we define forany < k < t
a so- called empirical Shannon entropy of oréexs follows:

1

hp(ey .o = = > PH(0) Y (V' (va) /7 (v)) log(v! (va) /7 (v)) (%)
(t k) veEAF acA
wherei' (v) = 3, V' (va). Inparticular, ifk = 0, we obtaimy(z1 ... z) = —1 3, 4 v (a) log(v'(a)/t),

Let, as beforeH 5! be that the source is Markovian with memory (or connectivity) not greater than
m, (m > 0), and the alternative hypothesis’’ be that the sequence is generated by a stationary and
ergodic source, which differs from the source un#gr’ . The suggested test is as follows.

Letwy be any code. By definition, the hypothe&ig! is accepted if

(t—m)h} (z1..x¢) — |Y(x1..20)| < log(1l/ar), (6)
wherea € (0,1). Otherwise,H;j" is rejected We denote this test by, ,
Theorem 2. i) For any distribution7 and any code) the Type | error of the teél“t m 1S less than

or equal toa, @ € (0, 1) and, ii) if, in addition,r is a stationary and ergodic process ove?o andy isa
universal code then the Type Il error of the t&”%MM goes to 0, whentends to infinity.

3.3 Independence Testing.

Now we consider the problem of the independence testing for Markovian sources. More precisely, in this
subsection we suppose that it is known a priori that a source belodg tel) for some knownn, m > 0.
We will consider sources, which generate letters from an alphfabetl_[f:1 A;, d > 2, and present each
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generated letter; as the following stringx; = (z1,..., x%), Wherea;g € A;. The hypothesigf{"? is that

a sequence; ...z, is generated by such a souncec My (A) that for eachu = (aq,...,aq) € Hle A;
and eactx; ...z, € A™ the following equality is valid:

d

w(@my1 = (a1,...,04)/T1...Tm) = Hui(xan = a;/T1...Tm), (7)
i=1

where, by definition,

P (@l = i/ T) = Z Z wxmar = (b1, bi—1,a4, 0501, -+, b4) /X1 T).
bl,...,bi71enj;} Aj bi+1 ..... deHJd‘:i,_'_l A]‘
_ 8
The hypothesigfi™¢ is that the source belongs 3d,,,(A) and the equation (7) is not valid at least for one

(a1y...,aq) € H?zl A; andzq..x,, € A™.
Let us describe a test for hypothedd§' and Hi"¢. Let be any code. By definition, the hypothesis
H{ is accepted if

Z(t —m)hi (zh..2h) — |o(2r...20)| < log(1/a), 9)

where(zy, ..., z¢) = (z},22,..29), (2,23, ..29), ..., (2}, 22, ..2¢) anda € (0,1). Otherwise H;"? is
rejected.We denote this test b% »,m- Firstwe give an informal explanation of the main idea of the test.
The Shannon entropy is the lower bound of the compression ratio and the empirical érffrogy..z})
is its estimate. So, if/i" is true, the sund_"_, (t —m)h?, (2% ...2) is, on average, close to lower bound.
Hence, if the length of a codeword of some cadés significantly less than the sum of the empirical
entropies, it means that there is some dependence between components, which is used for some additional
compression. The following theorem describes the properties of the suggested test.

Theorem 3.i) For any distributiony € M,,,(A) and any code» the Type | error of the tesp,
less than or equal tey, « € (0,1) and ii) if, in addition, ¢ is a universal code, then the Type II error of
the testY?,  ,, goes to 0, whentends to infinity.

4  Experiments

In this section we describe some experiments carried out to compare new tests with known ones. We
consider a problem of the randomness testing, i.e. a particular case of the identity testing, where the
source alphabet ig = {0,1} and the main hypothesi#/? is that a bit sequence is generated by the
Bernoulli source with equal probabilities of 0's and 1's.

We have compared tests which are based on archivers RAR and ARJ, and tests from [15]. The point
is that the tests from [15] are selected basing on comprehensive theoretical and experimental analysis and
can be considered as the state-of-the-art in randomness testing.

The behavior of the tests was investigated for files of various lengths generated by the pseudo random
generator RANDU, whose description can be found in [5]. We generated 100 different files of each length
and applied each test from [15] to each file with level of significance 0.01. So, if a test is applied to a
truly random bit sequence, on average 1 file from 100 should be rejected. All results are given in the table,
where integers in the cells are the numbers of rejected files (from 100). For example, the first number of
the fourth row of the table 1 is 2. It means that there were 100 files of the I&rigthbits generated by
PRNG RANDU. When the Frequency test from [15] was applied, the hypothksigas rejected 2 times
from 100 (and, correspondinglyf, was accepted 98 times.) If a number of rejections is not given for a
certain length and test, it means that the test cannot be applied for files of such length.

When we used archivers RAR and ARJ, we applied each method to a file and first estimated the length
of compressed data. Then we used thelfé%;oma’w with the critical valuel /256 as follows. The length
of afile (in bits) is equal tén (before compression), whenrgs the length in bytes. So, taking= 1/256,
we see that the hypothesis about randomné&€)(should be rejected, if the length of compressed file
is less than or equal ®n — 8 bits. Taking into account that the length of computer files is measured in
bytes, we use the very simple rule : if the-byte file is really compressed (i.e. the length of the encoded
file isn — 1 bytes or less), this file is not random (afgj” is rejected). So, the following table contains
numbers of cases, where files were really compressed.
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Let us now give some comments about parameters of the methods from [15]. The point is that there are
some tests from [15], where parameters can be chosen from a certain interval. In such cases we repeated
all calculations three times, taking the minimal possible value of the parameter, the maximal one and the
average one. Then the data for the case when the number of rejections of the hypg@ghesisaximal,
was taken into the table.

We can see from the table that the new tests, which are based on data compression methods, can detect
non-randomness quite efficiently.

Tab. 1: Number of files generated by PRNG RANDU and recognized as non-random for different tests.

Name of test / Length of file (in bits) 50 000 | 100 000| 500 000| 1 000 000

RAR 0 0 100 100

ARJ 0 0 99 100
Frequency 2 1 1 2
Block Frequency 1 2 1 1
Cumulative Sums 2 1 2 1
Runs 0 2 1 1
Longest Run of Ones 0 1 0 0
Rank 0 1 1 0
Discrete Fourier Transform 0 0 0 1
NonOverlapping Templates - - - 2
Overlapping Templates - - - 2
Universal Statistical - - 1 1
Approximate Entropy 1 2 2 7
Random Excursions - - - 2
Random Excursions Variant - - - 2
Serial 0 1 2 2
Lempel-Ziv Complexity - - - 1
Linear Complexity - - - 3

5 Appendix

The following well known inequality, whose proof can be found in [6], will be used in proofs of all
theorems.

Claim 2. Letp andq be two probability distributions over some alphalé&tThen} , _  p(b) log ”Ebg
> 0 with equality if and only ip = q.

The following property of the empirical Shannon entropy will be used in proofs of the Theorem 2 and
Theorem 3.

Lemma. Letd be a measure from/,,,(A),m > 0,andx; ...z, € At. Then

(9 < H H ua /V ) vi(ua) _ 2—(t—m)hfn,(:c1...3:,,) (10)

ucA™ a€A

Proof of the Lemma. First we show that for any sout¢ec My(A) and any wordr; ...z, € A%t >
1

)

0 (z1...2) = [[ (0" (a))”" @ < J] (' (a) /1)@ (11)

acA ac€A
Here the equality holds, becauge € M;(A) . The inequality follows from the Claim 2. Indeed, if
p(a) = v'(a)/t andg(a) = 6*(a), then}" _, = g“)l og W ei(i/t) > 0. From the latter inequality we
obtain (11). Now we presefi{x; ...z;) as

O(wr...o) =0y ...om) [[ [ 0Ca/w?

u€EA™ a€A
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wheref(z; ... z,,) is the limit probability of the word; . .. z,,. Hence,

) < H HGa/u” ua)

uceA™ a€A

Taking into account the inequality (11), we obtain

H 9 a/u V' (ua) < H ua /l/ t(ua)

acA a€A

for any wordu. So, from the last two inequalities we obtain the inequality (10). The equality in (10)
follows from (5).

Proof of Theorem 1. LeC,, be a critical set of the teS’l§T .00 1-€., by definition(, = {u:u € A &—
log m(u) — |p(u)| > —log a}. Let u, be a measure for which the claim 1 is true. We define an auxiliary
setC, = {u: —logm(u) — (—logpy(u)) > —logat. We havel > - o pp(u) >3-, co m(u)/a
= (1/a)n(C,). (Here the second inequality follows from the definition(@f, whereas all others are
obvious.) So, we obtain that(é‘a) < «. From definitions ofC,,, C,, and (2) we immediately obtain that
C, o Cl,. Thus,7(C,) < a. By definition,7(C,,) is the value of the Type | error. The first statement of
the theorem 1 is proven.

Let us prove the second statement of the theorem. Suppose that the hypHti{asitrue. That is, the
sequencer; ...z iS generated by some stationary and ergodic sodraedr # 7. Our strategy is to
show that

tlirrolo—logw(acl...xt) —lo(xy...2)| = 0 (12)

with probability 1 (according to the measurk First we represent (12) as

1 T(x1... 1) 1

—logm(zy...2¢) — |p(z1...2)| = t(;log P ;(—logr( cox) — o(xy . x)]))-

From this equality and the property of a universal code (3) we obtain

1 T(x1... 2T
—logm(zy...m) — o(zy ... 2] :t(flogM

t Tz ...x) +o(l)- (13)

Now we use some results of the ergodic theory and the information theory, which can be found, for ex.,
in [1]. First, according to the Shannon-MacMillan-Breiman theorBm;_, ., — log 7(x; ... x¢)/t exists

(with probability 1) and this limit is equal to so-called limit Shannon entropy, which we dendtg &s).
Second, it is known that for any integethe following inequality is true:

hoo(T) <= > 7(v) Y 7(a/v)logr(a/v).

ve Ak acA

(Here the right hand value is called— order conditional entropy). It will be convenient to represent both
statements as follows:

lim —log7(xy...2¢)/t < — Z 7(v) Z 7(a/v)logT(a/v) (14)

bmeo vEAF acA
for any & > 0 (with probability 1). It is supposed that the proceskas a finite memory, i.e. belongs to
M (A) for somes. Having taken into account the definition bf;(A) (1), we obtain the following repre-
sentation—log 7w(zy ... 2y) /t = —t~! 22:1 logm(x;/zy ... xi-1) = —t‘l(Z?zl logm(x;/ay ... xi—1)
+ Zﬁzkﬂ log m(x;/xi—k ... x;—1)) for anyk > s. According to the ergodic theorem there exists a limit

limy oot 1 Zf:kﬂ logm(xi/2i—k ... 2;—1),whichisequalto- ) 4« 7(v) > ,c 4 T(a/v)log w(a/v),
see [1, 6]. So, from the two latter equalities we can see that

Jlim (—logm(z1...2,))/t = — > 7)Y 7(a/v)logm(a/v).
veAF a€A
Taking into account this equality, (14) and (13), we can see that

—logm(xy...x¢) — |p(z1...2)| > t( Z 7(v) Z T(a/v)log(T(a/v)/m(a/v))) + oft)

ve AR a€cA
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foranyk > s. From this inequality and the Claim 2 we can obtain that- log (21 . .. ) —|p(21 . . . 2¢)| >
ct+ o(t), wherec is a positive constant,— oco. Hence, (12) is true and the theorem is proven.
Proof of Theorem 2. It will be convenient to define two auxiliary measureglbas follows:

7Tm(331~-~37t) - A 2—(t—m)h:n(z1...wt) , (15)

wherez;..z; € A'andA = (3, c 40 270 Pm(@2) ) =1 From this definition and Lemma we can
see that for any measufes M,,,(A) and anyz; ...z, € A,

O(xy...x) < mp(xr..w) /A (16)

Let us denote the critical set of the téﬁg’w’m asC,, i.e., by definition,C,, = {z1...2¢ : (t —
m) b (z1...x) — |Y(x1..2)]) > log(1/a)}. From the Claim 1 we can see that there exists such a
measures, that—log juy (x1...2¢) < |¢(x1...2¢)| . We also define

C, = {z1...p: t=m) R} (z1...2¢) — (—log py(z1...)) ) > log(1l/a)}. a7)

From the definition of”, and and the latest inequality we can see tab C,.
From (16) and (17) we can see that for any meaduzel/,,,(A)

0(Co) <mm(Co)/A . (18)

From (17) and (15) we obtain

Co={21...2¢: 2 (t=m) hyp (w1e) (o pryp (21 ~~xt))_1}
={z1...x: (mpl@y.. @) /D) > (o pylzy.ozy)) 7 )

Finally,
Co={x1... ¢ : pp(xy... o) > mpm(xy...z)/ (@A)} (19)

The following chain of inequalities and equalities is valid:

1> Y pplrrz) > Y wmr..w)/(@A) = 1,(Ca)/ (@) > 0(Ca)A/ (@A) = 6(Ca) /o

z1...2:.€C4q z1...x:€C,

(Here both equalities and the first inequality are obvious, the second and the third inequalities follow from
(19) and (18), correspondingly.) So, we obtain #f,,) < « for any measuré € M,, (A). Taking into
account that’,, > C,, whereC, is the critical set of the test, we can see that the probability of the First
Type error is not greater than The first statement of the theorem is proven.

The proof of the second statement of the theorem will be based on some results of Information Theory.
Thet— order conditional Shannon entropy is defined as follows:

he(p) = — Z p(xy...xt) Zp(a/a:l...xt) logp(a/xy...xt), (20)

T1...T €A a€cA

wherep € M., (A). Itis known that for any € M (A) first, log |A| > ho(p) > hi(p) > ..., Second,
there exists limit Shannon entropy, (p) = lim; . h¢(p), third, lim;_ oo —t =1 log p(z1...7¢) = heo(p)

with probability 1 and, fourthh.,, (p) is strictly greater thah, (p), if the memory ofp is greater tham,
(i.e.p € Mo (A) \ M,,(A)), see, for example, [1, 6]. Taking into account the definition of the universal
code (3), we obtain from the above described properties of the entropy that

Jim ¢ (1.2 = hoolp) (21)

with probability 1. It can be seen from (5) thaf, is an estimate for thex—order Shannon entropy (20).
Applying the ergodic theorem we obtain lim; o0 A (21 ... @) = hy(p) With probability 1;
see [1, 6]. Having taken into account thaf (p) > ho(p) and (21) we obtain from the last equality that
limg oo ((t —m) b (21 ... 2¢) — |9(x1...2¢)|) = co. This proves the second statement of the theorem.
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Proof of Theorem 3. LetC, be a critical set of the test, i.e., by definitiof, = {(z1,...,2¢) :

" o
(1, xy) = (21,22, 2}, (23,23, ..29), ... (x}, 22, ad) & SO0 (t—m)hi, (2h..2b) —|p(21..) | >

log(1/a)}. According to the Claim 1, there exists a measuge for which (2) is valid. Hence,

d
Co CCL={(a1,ms): Y (t— L) —log(1/py (1, ...y 2) > log(1/a)}. (22)

=1

Let 6 be any measure from,,,(A). Then, the following chain of inequalities and equalities is valid:

12%(02)2&1 Z H2tm (@),

Having taken into account Lemma, we obtain

d
1>p,(Co) = Y [[#E

z1,...,0¢€CE i=1

It is supposed that/i"¢ is true and, hence, (7) is valid. So, from the latter inequalities we can see that
12 pp(CR) 2 2, wecs (@1, -, ). Taking into account that:, o co (1, -y 1) = p(CF)
and (22), we obtain that(C,,) < «a. So, the first statement of the theorem is proven.
We give a short scheme of the proof of the second statement of the theorem, because it is based on
well-known facts of Information Theory. It is known thiag, (1) — Zle ho (p?) = 0 if Hi" is true and
this difference is negative undéfi"¢. A universal code compresses a sequencé/itjll(x) (Informally, it
uses dependence for the better compression.) That is why the differegéu) — >, hn (1)) goes
to infinity, whent increases and, hencH:"? will be rejected.
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