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Application of data compression methods to
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We show that data compression methods (or universal codes) can be applied for hypotheses testing in a framework of
classical mathematical statistics. Namely, we describe tests, which are based on data compression methods, for the
three following problems: i) identity testing, ii) testing for independence and iii) testing of serial independence for
time series. Applying our method of identity testing to pseudorandom number generators, we obtained experimental
results which show that the suggested tests are quite efficient.
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1 Introduction
In this paper, we suggest a new approach to testing statistical properties of stationary and ergodic pro-
cesses. In contrast to known methods, the suggested approach gives a possibility to make tests, based on
any lossless data compression method even if the distribution law of the codeword lengths is not known.
We describe three statistical tests, which are based on this approach.

We consider a stationary and ergodic source (or process), which generates elements from a finite set
(or alphabet)A and three problems of statistical testing. The fist problem is the identity testing, which is
described as follows: a hypothesesHid

0 is that the source has a particular distributionπ and the alternative
hypothesisHid

1 that the sequence is generated by a stationary and ergodic source which differs from the
source underHid

0 . One particular case in which the source alphabetA = {0, 1} and the main hypothesis
Hid

0 is that a bit sequence is generated by the Bernoulli source with equal probabilities of 0’s and 1’s,
is applied to randomness testing of random number and pseudorandom number generators. Tests for this
particular case were investigated in [20] and the test suggested below can be considered as a generalization
of the methods from [20]. We carried out some experiments, where the suggested method of identity
testing was applied to pseudorandom number generators. The results show that the suggested methods are
quite efficient.

The second problem is a generalization of the problem of nonparametric testing for serial independence
of time series. More precisely, we consider the following two hypotheses:HSI

0 is that the source is
Markovian with memory (or connectivity) not larger thanm, (m ≥ 0), and the alternative hypothesis
HSI

1 that the sequence is generated by a stationary and ergodic source which differs from the source under
HSI

0 . (This problem is considered by the authors in [19].) In particular, ifm = 0, that is the problem of
testing for independence of time series, which is well known in mathematical statistics [7].

The third problem is the independence test. In this case it is assumed that the source is Marko-
vian, whose memory is not larger thanm, (m ≥ 0), and the source alphabet can be presented as
a product ofd alphabetsA1, A2, . . . , Ad (i.e. A =

∏d
i=1Ai). The main hypothesisHind

0 is that
p(xm+1 = (ai1 , . . . , aid)/x1...xm) =

∏d
j=1 p(x

j
m+1 = aij/x1...xm) for each(ai1 , . . . , aid) ∈

∏d
i=1Ai,

wherexm+1 = (x1
m+1, ..., x

d
m+1). The alternative hypothesisHind

1 is that the sequence is generated by a
Markovian source with memory not larger thanm, (m ≥ 0), which differs from the source underHind

0 .
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In all three cases the testing should be based on a samplex1 . . . xt generated by the source.
All three problems are well known in mathematical statistics and there is an extensive literature dealing

with their nonparametric testing, see, for ex., [7, 9].
We suggest nonparametric statistical tests for these problems. The tests are based on methods of data

compression, which are deeply connected with universal codes and universal predictors. It is important to
note that practically used so-called archivers can be used for suggested testing. It is no surprise that the
results and ideas of universal coding theory can be applied to some classical problems of mathematical
statistics. In fact, the methods of universal coding (and a closely connected universal prediction) are
intended to extract information from observed data in order to compress (or predict) data efficiently when
the source statistics are unknown.

It is important to note that, on the one hand, the universal codes and archivers are based on results of
Information Theory, the theory of algorithms and some other branches of mathematics; see, for example,
[4, 10, 13, 14, 18]. On the other hand, the archivers have shown high efficiency in practice as compressors
of texts, DNA sequences and many other types of real data. In fact, archivers can find many kinds of latent
regularities, that is why they look like a promising tool for identity and independence testing; see also [2].

The outline of the paper is as follows. The next section contains definitions and necessary information.
Section 3 is devoted to the description of the tests and their properties. In Section 4 the new tests are
experimentally compared with methods from [15]. All proofs are given in Appendix.

2 Definitions and Preliminaries.
First, we define stochastic processes (or sources of information). Consider an alphabetA = {a1, · · · , an}
with n ≥ 2 letters and denote byAt andA∗ the set of all words of lengtht overA and the set of all
finite words overA, correspondingly (A∗ =

⋃∞
i=1A

i). Letµ be a source which generates letters fromA.
Formally,µ is a probability distribution on the set of words of infinite length or, more simply,µ = (µt)t≥1

is a consistent set of probabilities over the setsAt ; t ≥ 1. ByM∞(A) we denote the set of all stationary
and ergodic sources, which generate letters fromA. LetMk(A) ⊂ M∞(A) be the set of Markov sources
with memory (or connectivity)k, k ≥ 0. More precisely, by definitionµ ∈Mk(A) if

µ(xt+1 = ai1/xt = ai2 , xt−1 = ai3 , ... , xt−k+1 = aik+1 , ...)
= µ(xt+1 = ai1/xt = ai2 , xt−1 = ai3 , ... , xt−k+1 = aik+1) (1)

for all t ≥ k andai1 , ai2 , . . . ∈ A. By definition,M0(A) is the set of all Bernoulli (or i.i.d.) sources over
A andM∗(A) =

⋃∞
i=0Mi(A) is the set of all finite-memory sources.

A data compression method (or code)ϕ is defined as a set of mappingsϕn such thatϕn : An →
{0, 1}∗, n = 1, 2, . . . and for each pair of different wordsx, y ∈ An ϕn(x) 6= ϕn(y). Informally,
it means that the codeϕ can be applied for compression of each message of any lengthn over alpha-
bet A and the message can be decoded if its code is known. It is also required that each sequence
ϕn(u1)ϕn(u2)...ϕn(ur), r ≥ 1, of encoded words from the setAn, n ≥ 1, could be uniquely de-
coded intou1u2...ur. Such codes are called uniquely decodable. For example, letA = {a, b}, the
codeψ1(a) = 0, ψ1(b) = 00, obviously, is not uniquely decodable. It is well known that if a codeϕ is
uniquely decodable then the lengths of the codewords satisfy the following inequality (Kraft inequality):
Σu∈An 2−|ϕn(u)| ≤ 1 , see, for ex., [6]. (Here and below|v| is the length ofv, if v is a word and the
number of elements ofv if v is a set.) It will be convenient to reformulate this property as follows:

Claim 1. Letϕ be a uniquely decodable code over an alphabetA. Then for any integern there exists a
measureµϕ onAn such that

|ϕ(u)| ≥ − logµϕ(u) (2)

for anyu fromAn .
(Here and belowlog ≡ log2 .) Obviously, Claim 1 is true for the measure

µϕ(u) = 2−|ϕ(u)|/Σu∈An 2−|ϕ(u)| .

In what follows we call uniquely decodable codes just ”codes”.
There exist so-called universal codes. For their description we recall that (as it is known in Information

Theory) sequencesx1 . . . xt, generated by a sourcep, can be ”compressed” till the length− log p(x1...xt)
bits and, on the other hand, for any sourcep there is no codeψ for which the average codeword length
( Σu∈At p(u)|ψ(u)| ) is less than−Σu∈At p(u) log p(u). The universal codes can reach the lower bound
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− log p(x1...xt) asymptotically for any stationary and ergodic sourcep with probability 1. The formal
definition is as follows: A codeϕ is universal if for any stationary and ergodic sourcep

lim
t→∞

t−1(− log p(x1...xt)− |ϕ(x1...xt)|) = 0 (3)

with probability 1. So, informally speaking, universal codes estimate the probability characteristics of
the sourcep and use them for efficient ”compression”. One of the first universal codes was described in
[16], see also [17]. Now there are many efficient universal codes (and universal predictors connected with
them), which are described in numerous papers, see [8, 10, 12, 13, 14, 18].

3 The tests.
3.1 Identity Testing.
Now we consider the problem of testingHid

0 againstHid
1 . Let the required level of significance (or a Type

I error) beα, α ∈ (0, 1). (By definition, the Type I error occurs ifH0 is true, but the test rejectsH0.) We
describe a statistical test which can be constructed based on any codeϕ.

The main idea of the suggested test is quite natural: compress a sample sequencex1...xn by a codeϕ.
If the length of the codeword (|ϕ(x1...xn)|) is significantly less than the value− log π(x1...xn), thenHid

0

should be rejected. The main observation is that the probability of all rejected sequences is quite small for
anyϕ, that is why the Type I error can be made small. The precise description of the test is as follows:
The hypothesisHid

0 is accepted if

− log π(x1...xn)− |ϕ(x1...xn)| ≤ − logα. (4)

Otherwise,Hid
0 is rejected.(Hereπ is a given distribution andα ∈ (0, 1).) We denote this test byΓ(n)

π,α,ϕ.
Theorem 1. i) For each distributionπ, α ∈ (0, 1) and a codeϕ, the Type I error of the described test

Γ(n)
π,α,ϕ is not larger thanα and ii) if, in addition,π is a finite-memory stationary and ergodic process over

A∞ (i.e. π ∈M∗(A)) andϕ is a universal code, then the Type II error of the testΓ(n)
π,α,ϕ goes to 0, when

n tends to infinity.

3.2 Testing of Serial Independence.
First, we give some additional definitions. Letv be a wordv = v1...vk, k ≤ t, vi ∈ A. Denote the rate
of a wordv occurring in the sequencex1x2 . . . xk , x2x3 . . . xk+1, x3x4 . . . xk+2, . . ., xt−k+1 . . . xt as
νt(v). For example, ifx1...xt = 000100 andv = 00, thenν6(00) = 3. Now we define for any0 ≤ k < t
a so- called empirical Shannon entropy of orderk as follows:

h∗k(x1 . . . xt) = − 1
(t− k)

∑
v∈Ak

ν̄t(v)
∑
a∈A

(νt(va)/ν̄t(v)) log(νt(va)/ν̄t(v)) , (5)

whereν̄t(v) =
∑
a∈A ν

t(va). In particular, ifk = 0, we obtainh∗0(x1 . . . xt) = − 1
t

∑
a∈A ν

t(a) log(νt(a)/t) ,
Let, as before,HSI

0 be that the sourceπ is Markovian with memory (or connectivity) not greater than
m, (m ≥ 0), and the alternative hypothesisHSI

1 be that the sequence is generated by a stationary and
ergodic source, which differs from the source underHSI

0 . The suggested test is as follows.
Letψ be any code. By definition, the hypothesisHSI

0 is accepted if

(t−m)h∗m(x1...xt)− |ψ(x1...xt)| ≤ log(1/α) , (6)

whereα ∈ (0, 1). Otherwise,HSI
0 is rejected.We denote this test byΥt

α, ψ,m.

Theorem 2. i) For any distributionπ and any codeψ the Type I error of the testΥt
α, ψ,m is less than

or equal toα, α ∈ (0, 1) and, ii) if, in addition,π is a stationary and ergodic process overA∞ andψ is a
universal code, then the Type II error of the testΥt

α, ψ,m goes to 0, whent tends to infinity.

3.3 Independence Testing.
Now we consider the problem of the independence testing for Markovian sources. More precisely, in this
subsection we suppose that it is known a priori that a source belongs toMm(A) for some knownm,m ≥ 0.
We will consider sources, which generate letters from an alphabetA =

∏d
i=1Ai, d ≥ 2, and present each
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generated letterxi as the following string:xi = (x1
i , . . . , x

d
i ),wherexji ∈ Aj . The hypothesisHind

0 is that
a sequencex1...xt is generated by such a sourceµ ∈ Mk(A) that for eacha = (a1, . . . , ad) ∈

∏d
i=1Ai

and eachx1...xm ∈ Am the following equality is valid:

µ(xm+1 = (a1, . . . , ad)/x1...xm) =
d∏
i=1

µi(xim+1 = ai/x1...xm), (7)

where, by definition,

µi(xim+1 = ai/x1...xm) =
∑

b1,...,bi−1∈
Qi−1

j=1 Aj

∑
bi+1,...,bd∈

Qd
j=i+1 Aj

µ(xm+1 = (b1, . . . , bi−1, ai, bi+1, . . . , bd)/x1...xm).

(8)
The hypothesisHind

1 is that the source belongs toMm(A) and the equation (7) is not valid at least for one
(a1, . . . , ad) ∈

∏d
i=1Ai and x1...xm ∈ Am.

Let us describe a test for hypothesesHind
0 andHind

1 . Letϕ be any code. By definition, the hypothesis
Hind

0 is accepted if
d∑
i=1

(t−m)h∗m(xi1...x
i
t)− |ϕ(x1...xt)| ≤ log(1/α) , (9)

where(x1, ..., xt) = (x1
1, x

2
1, ...x

d
1), (x

1
2, x

2
2, ...x

d
2), . . . , (x

1
t , x

2
t , ...x

d
t ) andα ∈ (0, 1). Otherwise,Hind

0 is
rejected.We denote this test byΦtα, ϕ,m. First we give an informal explanation of the main idea of the test.
The Shannon entropy is the lower bound of the compression ratio and the empirical entropyh∗m(xi1...x

i
t)

is its estimate. So, ifHind
0 is true, the sum

∑d
i=1(t−m)h∗m(xi1...x

i
t) is, on average, close to lower bound.

Hence, if the length of a codeword of some codeϕ is significantly less than the sum of the empirical
entropies, it means that there is some dependence between components, which is used for some additional
compression. The following theorem describes the properties of the suggested test.

Theorem 3. i) For any distributionµ ∈ Mm(A) and any codeϕ the Type I error of the testΦtα, ϕ,m is
less than or equal toα, α ∈ (0, 1) and ii) if, in addition,ϕ is a universal code, then the Type II error of
the testΥt

α, ϕ,m goes to 0, whent tends to infinity.

4 Experiments
In this section we describe some experiments carried out to compare new tests with known ones. We
consider a problem of the randomness testing, i.e. a particular case of the identity testing, where the
source alphabet isA = {0, 1} and the main hypothesisHid

0 is that a bit sequence is generated by the
Bernoulli source with equal probabilities of 0’s and 1’s.

We have compared tests which are based on archivers RAR and ARJ, and tests from [15]. The point
is that the tests from [15] are selected basing on comprehensive theoretical and experimental analysis and
can be considered as the state-of-the-art in randomness testing.

The behavior of the tests was investigated for files of various lengths generated by the pseudo random
generator RANDU, whose description can be found in [5]. We generated 100 different files of each length
and applied each test from [15] to each file with level of significance 0.01. So, if a test is applied to a
truly random bit sequence, on average 1 file from 100 should be rejected. All results are given in the table,
where integers in the cells are the numbers of rejected files (from 100). For example, the first number of
the fourth row of the table 1 is 2. It means that there were 100 files of the length5 104 bits generated by
PRNG RANDU. When the Frequency test from [15] was applied, the hypothesisH0 was rejected 2 times
from 100 (and, correspondingly,H0 was accepted 98 times.) If a number of rejections is not given for a
certain length and test, it means that the test cannot be applied for files of such length.

When we used archivers RAR and ARJ, we applied each method to a file and first estimated the length
of compressed data. Then we used the testΓ(t)

uniform,α,ϕ with the critical value1/256 as follows. The length
of a file (in bits) is equal to8n (before compression), wheren is the length in bytes. So, takingα = 1/256,
we see that the hypothesis about randomness (Hid

0 ) should be rejected, if the length of compressed file
is less than or equal to8n − 8 bits. Taking into account that the length of computer files is measured in
bytes, we use the very simple rule : if then−byte file is really compressed (i.e. the length of the encoded
file is n − 1 bytes or less), this file is not random (andHid

0 is rejected). So, the following table contains
numbers of cases, where files were really compressed.
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Let us now give some comments about parameters of the methods from [15]. The point is that there are
some tests from [15], where parameters can be chosen from a certain interval. In such cases we repeated
all calculations three times, taking the minimal possible value of the parameter, the maximal one and the
average one. Then the data for the case when the number of rejections of the hypothesisH0 is maximal,
was taken into the table.

We can see from the table that the new tests, which are based on data compression methods, can detect
non-randomness quite efficiently.

Tab. 1: Number of files generated by PRNG RANDU and recognized as non-random for different tests.

Name of test / Length of file (in bits) 50 000 100 000 500 000 1 000 000

RAR 0 0 100 100

ARJ 0 0 99 100

Frequency 2 1 1 2

Block Frequency 1 2 1 1

Cumulative Sums 2 1 2 1

Runs 0 2 1 1

Longest Run of Ones 0 1 0 0

Rank 0 1 1 0

Discrete Fourier Transform 0 0 0 1

NonOverlapping Templates – – – 2

Overlapping Templates – – – 2

Universal Statistical – – 1 1

Approximate Entropy 1 2 2 7

Random Excursions – – – 2

Random Excursions Variant – – – 2

Serial 0 1 2 2

Lempel-Ziv Complexity – – – 1

Linear Complexity – – – 3

5 Appendix
The following well known inequality, whose proof can be found in [6], will be used in proofs of all
theorems.

Claim 2. Letp andq be two probability distributions over some alphabetB. Then
∑
b∈B p(b) log p(b)

q(b)

≥ 0 with equality if and only ifp = q.
The following property of the empirical Shannon entropy will be used in proofs of the Theorem 2 and

Theorem 3.
Lemma. Letθ be a measure fromMm(A),m ≥ 0, andx1 . . . xt ∈ At. Then

θ(x1 . . . xt) ≤
∏
u∈Am

∏
a∈A

(νt(ua)/ν̄t(u))ν
t(ua) = 2−(t−m)h∗m(x1...xt) (10)

Proof of the Lemma. First we show that for any sourceθ∗ ∈M0(A) and any wordx1 . . . xt ∈ At, t >
1,

θ∗(x1 . . . xt) =
∏
a∈A

(θ∗(a))ν
t(a) ≤

∏
a∈A

(νt(a)/t)ν
t(a) (11)

Here the equality holds, becauseθ∗ ∈ M0(A) . The inequality follows from the Claim 2. Indeed, if

p(a) = νt(a)/t andq(a) = θ∗(a), then
∑
a∈A

νt(a)
t log (νt(a)/t)

θ∗(a) ≥ 0. From the latter inequality we
obtain (11). Now we presentθ(x1 . . . xt) as

θ(x1 . . . xt) = θ(x1 . . . xm)
∏
u∈Am

∏
a∈A

θ(a/u)ν
t(ua) ,
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whereθ(x1 . . . xm) is the limit probability of the wordx1 . . . xm. Hence,

θ(x1 . . . xt) ≤
∏
u∈Am

∏
a∈A

θ(a/u)ν
t(ua) .

Taking into account the inequality (11), we obtain∏
a∈A

θ(a/u)ν
t(ua) ≤

∏
a∈A

(νt(ua)/ν̄t(u))ν
t(ua)

for any wordu. So, from the last two inequalities we obtain the inequality (10). The equality in (10)
follows from (5).

Proof of Theorem 1. LetCα be a critical set of the testΓ(n)
π,α,ϕ, i.e., by definition,Cα = {u : u ∈ At &−

log π(u)− |ϕ(u)| > − logα}. Let µϕ be a measure for which the claim 1 is true. We define an auxiliary
setĈα = {u : − log π(u) − (− logµϕ(u)) > − logα}. We have1 ≥

∑
u∈Ĉα

µϕ(u) ≥
∑
u∈Ĉα

π(u)/α
= (1/α)π(Ĉα). (Here the second inequality follows from the definition ofĈα, whereas all others are
obvious.) So, we obtain thatπ(Ĉα) ≤ α. From definitions ofCα, Ĉα and (2) we immediately obtain that
Ĉα ⊃ Cα. Thus,π(Cα) ≤ α. By definition,π(Cα) is the value of the Type I error. The first statement of
the theorem 1 is proven.

Let us prove the second statement of the theorem. Suppose that the hypothesisHid
1 is true. That is, the

sequencex1 . . . xt is generated by some stationary and ergodic sourceτ andτ 6= π. Our strategy is to
show that

lim
t→∞

− log π(x1 . . . xt)− |ϕ(x1 . . . xt)| = ∞ (12)

with probability 1 (according to the measureτ ). First we represent (12) as

− log π(x1 . . . xt)− |ϕ(x1 . . . xt)| = t(
1
t

log
τ(x1 . . . xt)
π(x1 . . . xt)

+
1
t
(− log τ(x1 . . . xt)− |ϕ(x1 . . . xt)|)).

From this equality and the property of a universal code (3) we obtain

− log π(x1 . . . xt)− |ϕ(x1 . . . xt)| = t (
1
t

log
τ(x1 . . . xt)
π(x1 . . . xt)

+ o(1)). (13)

Now we use some results of the ergodic theory and the information theory, which can be found, for ex.,
in [1]. First, according to the Shannon-MacMillan-Breiman theorem,limt→∞− log τ(x1 . . . xt)/t exists
(with probability 1) and this limit is equal to so-called limit Shannon entropy, which we denote ash∞(τ).
Second, it is known that for any integerk the following inequality is true:

h∞(τ) ≤ −
∑
v∈Ak

τ(v)
∑
a∈A

τ(a/v) log τ(a/v).

(Here the right hand value is calledm− order conditional entropy). It will be convenient to represent both
statements as follows:

lim
t→∞

− log τ(x1 . . . xt)/t ≤ −
∑
v∈Ak

τ(v)
∑
a∈A

τ(a/v) log τ(a/v) (14)

for anyk ≥ 0 (with probability 1). It is supposed that the processπ has a finite memory, i.e. belongs to
Ms(A) for somes. Having taken into account the definition ofMs(A) (1), we obtain the following repre-
sentation:− log π(x1 . . . xt)/t=−t−1

∑t
i=1 log π(xi/x1 . . . xi−1) =−t−1(

∑k
i=1 log π(xi/x1 . . . xi−1)

+
∑t
i=k+1 log π(xi/xi−k . . . xi−1)) for anyk ≥ s. According to the ergodic theorem there exists a limit

limt→∞ t−1
∑t
i=k+1 log π(xi/xi−k . . . xi−1),which is equal to−

∑
v∈Ak τ(v)

∑
a∈A τ(a/v) log π(a/v),

see [1, 6]. So, from the two latter equalities we can see that

lim
t→∞

(− log π(x1 . . . xt))/t = −
∑
v∈Ak

τ(v)
∑
a∈A

τ(a/v) log π(a/v).

Taking into account this equality, (14) and (13), we can see that

− log π(x1 . . . xt)− |ϕ(x1 . . . xt)| ≥ t (
∑
v∈Ak

τ(v)
∑
a∈A

τ(a/v) log(τ(a/v)/π(a/v))) + o(t)
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for anyk ≥ s. From this inequality and the Claim 2 we can obtain that− log π(x1 . . . xt)−|ϕ(x1 . . . xt)| ≥
c t+ o(t), wherec is a positive constant,t→∞. Hence, (12) is true and the theorem is proven.

Proof of Theorem 2. It will be convenient to define two auxiliary measures onAt as follows:

πm(x1...xt) = ∆ 2−( t−m )h∗m(x1...xt) , (15)

wherex1...xt ∈ At and∆ = (
∑
x1...xt∈At 2−t h

∗
m(x1...xt) )−1 . From this definition and Lemma we can

see that for any measureθ ∈Mm(A) and anyx1 . . . xt ∈ At,

θ(x1 . . . xt) ≤ πm(x1...xt)/∆ . (16)

Let us denote the critical set of the testΥt
α, ψ,m asCα, i.e., by definition,Cα = {x1 . . . xt : (t −

m) h∗m(x1 . . . xt) − |ψ(x1...xt)|) > log(1/α)}. From the Claim 1 we can see that there exists such a
measureµψ that− logµψ(x1...xt) ≤ |ψ(x1...xt)| . We also define

Ĉα = {x1 . . . xt : (t−m) h∗m(x1 . . . xt)− (− logµψ(x1...xt)) ) > log(1/α)}. (17)

From the definition ofCα and and the latest inequality we can see thatĈα ⊃ Cα.

From (16) and (17) we can see that for any measureθ ∈Mm(A)

θ(Cα) ≤ πm(Cα)/∆ . (18)

From (17) and (15) we obtain

Ĉα = {x1 . . . xt : 2 (t−m) h∗m(x1...xt) > (α µψ(x1 . . . xt))−1}
= {x1 . . . xt : (πm(x1 . . . xt)/∆)−1 > (α µψ(x1 . . . xt))−1} .

Finally,
Ĉα = {x1 . . . xt : µψ(x1 . . . xt) > πm(x1 . . . xt)/(α∆)}. (19)

The following chain of inequalities and equalities is valid:

1 ≥
∑

x1...xt∈Ĉα

µψ(x1 . . . xt) ≥
∑

x1...xt∈Ĉα

πm(x1 . . . xt)/(α∆) = πm(Ĉα)/(α∆) ≥ θ(Ĉα)∆/(α∆) = θ(Cα)/α.

(Here both equalities and the first inequality are obvious, the second and the third inequalities follow from
(19) and (18), correspondingly.) So, we obtain thatθ(Ĉα) ≤ α for any measureθ ∈Mm(A). Taking into
account that̂Cα ⊃ Cα, whereCα is the critical set of the test, we can see that the probability of the First
Type error is not greater thanα. The first statement of the theorem is proven.

The proof of the second statement of the theorem will be based on some results of Information Theory.
Thet− order conditional Shannon entropy is defined as follows:

ht(p) = −
∑

x1...xt∈At

p(x1...xt)
∑
a∈A

p(a/x1...xt) log p(a/x1...xt), (20)

wherep ∈ M∞(A). It is known that for anyp ∈ M∞(A) first, log |A| ≥ h0(p) ≥ h1(p) ≥ ..., second,
there exists limit Shannon entropyh∞(p) = limt→∞ ht(p), third, limt→∞−t−1 log p(x1...xt) = h∞(p)
with probability 1 and, fourth,hm(p) is strictly greater thanh∞(p), if the memory ofp is greater thanm,
(i.e. p ∈ M∞(A) \Mm(A)), see, for example, [1, 6]. Taking into account the definition of the universal
code (3), we obtain from the above described properties of the entropy that

lim
t→∞

t−1|ψ(x1...xt)| = h∞(p) (21)

with probability 1. It can be seen from (5) thath∗m is an estimate for them−order Shannon entropy (20).
Applying the ergodic theorem we obtain limt→∞ h∗m(x1 . . . xt) = hm(p) with probability 1;
see [1, 6]. Having taken into account thathm(p) > h∞(p) and (21) we obtain from the last equality that
limt→∞((t−m)h∗m(x1 . . . xt)− |ψ(x1...xt)|) = ∞. This proves the second statement of the theorem.
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Proof of Theorem 3. LetCα be a critical set of the test, i.e., by definition,Cα = {(x1, ..., xt) :
(x1, ..., xt) = (x1

1, x
2
1, ...x

d
1), (x

1
2, x

2
2, ...x

d
2), . . . , (x

1
t , x

2
t , ...x

d
t ) &

∑d
i=1(t−m)h∗m(xi1...x

i
t)−|ϕ(x1...xt)| >

log(1/α)}. According to the Claim 1, there exists a measureµϕ, for which (2) is valid. Hence,

Cα ⊂ C∗α ≡ {(x1, ..., xt) :
d∑
i=1

(t−m)h∗m(xi1...x
i
t)− log(1/µϕ(x1, ..., xt) > log(1/α)}. (22)

Let θ be any measure fromMm(A). Then, the following chain of inequalities and equalities is valid:

1 ≥ µϕ(C∗α) ≥ α−1
∑

x1,...,xt∈C∗α

d∏
i=1

2−(t−m)h∗m(xi
1...x

i
t).

Having taken into account Lemma, we obtain

1 ≥ µϕ(C∗α) ≥
∑

x1,...,xt∈C∗α

d∏
i=1

µi(xi1...x
i
t).

It is supposed thatHind
0 is true and, hence, (7) is valid. So, from the latter inequalities we can see that

1 ≥ µϕ(C∗α) ≥
∑
x1,...,xt∈C∗α

µ(x1, ..., xt). Taking into account that
∑
x1,...,xt∈C∗α

µ(x1, ..., xt) = µ(C∗α)
and (22), we obtain thatµ(Cα) ≤ α. So, the first statement of the theorem is proven.

We give a short scheme of the proof of the second statement of the theorem, because it is based on
well-known facts of Information Theory. It is known thathm(µ)−

∑d
i=1 hm(µi) = 0 if Hind

0 is true and
this difference is negative underHind

1 . A universal code compresses a sequence tillthm(µ) (Informally, it
uses dependence for the better compression.) That is why the differencet (hm(µ)−

∑d
i=1 hm(µi)) goes

to infinity, whent increases and, hence,Hind
0 will be rejected.
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