A sufficient condition for bicolorable hypergraphs

David Défossez¹

¹Laboratoire Leibniz-Imag, 46 avenue Félix Viallet, 38031 Grenoble Cédex, France. E-mail: david.defossez@imag.fr

In this note we prove Sterboul's conjecture, that provides a sufficient condition for the bicolorability of hypergraphs.

Keywords: hypergraphs, coloring, Sterboul's conjecture

In [2], Fournier and Las Vergnas gave a sufficient condition for the bicolorability of hypergraphs. Their theorem was a weaker form of a conjecture due to Sterboul, that we prove here. These facts are reproduced in [1] and [3].

A hypergraph is a pair $H = (V, \mathcal{E})$, where the elements of V are the vertices, and the elements of \mathcal{E} are subsets of V and are called the *edges*. A function $c : V \to \{1, 2\}$ is called a *bipartition* of V, and for $x \in V$, we call c(x) the *color* of x. If c is such that for any $e \in \mathcal{E}$ with $|e| \ge 2$ both colors occur, then c is called a *bicoloration* of H. If only one color occurs, the edge is said to be *monochromatic*. If a hypergraph admits a bicoloration we say that it is *bicolorable*.

A sequence $(x_1, e_1, x_2, ..., e_k, x_1)$, where the e_i 's are distinct edges, the x_i 's are distinct vertices, and $k \ge 3$, is said to be a *cycle* if $x_i \in e_{i-1} \cap e_i$ for i = 2, ..., k and $x_1 \in e_1 \cap e_k$. A cycle is said to be *odd* if it has an odd number of edges.

An odd cycle $(x_1, e_1, x_2, ..., e_k, x_1)$ such that two non-consecutive edges are disjoint and $|e_i \cap e_{i+1}| = 1$ for i = 1, 2, ..., k - 1, is called a *Sterboul cycle*. If a hypergraph *H* has no Sterboul cycle, it is said to be a *Sterboul hypergraph*.

Then we can word Sterboul's conjecture as follows:

Theorem 1 If H is a Sterboul hypergraph, then H is bicolorable.

Proof: The proof works by induction on the number of edges.

When the hypergraph has no edge, the theorem clearly holds.

The general step assumes that we have a hypergraph $H = (V, \mathcal{E})$ and $e_0 \in \mathcal{E}$ such that $H \setminus e_0 = (V, \mathcal{E} \setminus e_0)$ has a bicoloration $c : V \to \{1, 2\}$.

We can assume that e_0 has size at least 2, and that c leaves e_0 monochromatic, or else we have nothing to do.

1365-8050 © 2005 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France

Now we use the following algorithm to transform the bipartition c into a bicoloration of H. The algorithm switches successively the colors of some vertices of H that are contained in a monochromatic edge in the current bipartition. It constructs an arborescence $G_0 = (V_0, E_0)$ and a mapping $g: V_0 \to \mathcal{E}$ that keep track of the running of the algorithm: the vertices of G_0 are those whose colors were switched, and g associates a vertex with the monochromatic edge that caused its color switch.

The vertices are chosen with a DFS (Depth-First Search) method, and to do so the algorithm uses a LIFO (Last In First Out) stack \mathcal{P} that contains the set of vertices whose colors have been switched, and so that might be in a monochromatic edge. $top(\mathcal{P})$ returns the last vertex entered in \mathcal{P} ; $drop(\mathcal{P})$ removes $top(\mathcal{P})$ out of \mathcal{P} ; and put (x, \mathcal{P}) enters a new vertex x in \mathcal{P} .

```
INPUT: A hypergraph H = (V, \mathcal{E}) and a bipartition c such that e_0 \in \mathcal{E} is the only monochromatic edge.
OUTPUT: A bicoloration of H or an Error message only if H is not a Sterboul hypergraph.
```

```
let x_0 \in e_0
G_0 := (\{x_0\}, \emptyset)
g(x_0) := e_0
switch c(x_0)
put (x_0, \mathcal{P})
While \mathcal{P} \neq \emptyset do
        let v = \operatorname{top}(\mathcal{P})
        If there exists e \in \mathcal{E}, |e| \geq 2, monochromatic such that v \in e then
                If e \setminus V_0 = \emptyset then
                        return Error
                else
                        let w \in e \setminus V_0
                        V_0 := V_0 \cup w ; E_0 := E_0 \cup (vw)
                        g(w) := e
                        switch c(w)
                       put (w, \mathcal{P})
                end If
        else
               drop(\mathcal{P})
        end If
end While
```

First we remark that G_0 is indeed an arborescence since the end point of each new arc of G_0 is a new vertex. Then for a given $x \in V_0$ there is a unique path in G_0 from x_0 to x. Moreover when x is at the top of \mathcal{P} , then \mathcal{P} contains exactly the vertices of that path (because \mathcal{P} is a LIFO stack).

We can also remark that if the algorithm does not return Error, then at each iteration either a new vertex is put into \mathcal{P} , or a vertex is dropped out of \mathcal{P} . Since a vertex appears at most once in G_0 and thus can be put at most once in \mathcal{P} , we have at most 2|V| iterations, and the algorithm ends.

A sufficient condition for bicolorable hypergraphs

We note $\mathcal{P}^{(i)}$, $G_0^{(i)} = (V_0^{(i)}, E_0^{(i)})$, $c^{(i)}$, $g^{(i)}$ the values of \mathcal{P} , $G_0 = (V_0, E_0)$, c, g (respectively) at the beginning of the *i*-th iteration. We also note $c^{(0)}$ the original bipartition (which is different from $c^{(1)}$ because of the switch of $c(x_0)$).

To prove the validity of the algorithm, we have to prove that:

- Error cannot be returned if H is a Sterboul hypergraph.

- The output of the algorithm if no Error occurs is a bicoloration.

Before proving those points, we claim the following:

Claim 1 Suppose that *H* is a Sterboul hypergraph. Consider the beginning of the *i*-th iteration. Let $\mathcal{P}^{(i)} = (x_k...x_0)$, and $e_j = g^{(i)}(x_j)$ for j = 0, ..., k. Then we have:

(a) For each j = 0, ..., k, x_j is the only vertex of its color in e_j .

(b) For each j = 0, ..., k - 1 we have $e_j \cap e_{j+1} = \{x_j\}$.

(c) Two non-consecutive edges are disjoint.

Proof: The proof works by induction on *i*.

For i = 1 the claim clearly holds since $\mathcal{P}^{(1)} = (x_0)$.

We now consider $i \ge 1$ and we suppose the claim holds at iteration i. We are going to prove that it also holds at iteration i + 1. Let $\mathcal{P}^{(i)} = (x_k \dots x_0)$, and $e_j = g^{(i)}(x_j)$ for $j = 0, \dots, k$.

If during the *i*-th iteration the algorithm dropped x_k out of \mathcal{P} (that is $\mathcal{P}^{(i+1)} = (x_{k-1}...x_0)$), the claim clearly holds at iteration i + 1. Thus we assume that the algorithm found $e_{k+1} \in \mathcal{E}$ with $x_k \in e_{k+1}$ that is monochromatic for $c^{(i)}$, and $x_{k+1} \in e_{k+1} \setminus V_0^{(i)}$ (because we assume that there is a (i + 1)-th iteration or else the claim is true) so that $\mathcal{P}^{(i+1)} = (x_{k+1}x_k...x_0)$.

Since (a) holds at iteration i, we know that if $w \in e_k \setminus x_k$ then $c^{(i)}(w) \neq c^{(i)}(x_k)$. As $x_k \in e_{k+1}$ and e_{k+1} is monochromatic for $c^{(i)}$, then $e_k \cap e_{k+1} = \{x_k\}$ and (b) holds at iteration i + 1.

Suppose $j_0 = max\{0 \le j \le k-1 | e_j \cap e_{k+1} \ne \emptyset\}$ exists, and let $y \in e_{j_0} \cap e_{k+1}$. If $k - j_0$ is odd, then $(y, e_{j_0}, x_{j_0}, ..., e_{k+1}, y)$ is a Sterboul cycle (because (c) holds at iteration i and (b) holds at iteration i + 1), so $k - j_0$ is even. But then since (a) holds at iteration i, we have $c^{(i)}(y) \ne c^{(i)}(x_{j_0})$ ($y \ne x_{j_0}$ by definition of j_0), $c^{(i)}(x_{j_0}) \ne c^{(i)}(x_{j_0+1})$, ..., $c^{(i)}(x_{k-1}) \ne c^{(i)}(x_k)$ and then $c^{(i)}(y) \ne c^{(i)}(x_k)$, which is impossible because e_{k+1} is monochromatic for $c^{(i)}$. Hence j_0 does not exist, and (c) holds at iteration i + 1.

Thus $x_{k+1} \notin e_j$ for all j = 0, ..., k. Since the only color switch done during the *i*-th iteration concerns x_{k+1} , then (a) holds at iteration i + 1.

This achieves to prove the claim.

Now we are able to prove the validity of the algorithm.

- Suppose that H is a Sterboul hypergraph. Consider an iteration i, and let $\mathcal{P}^{(i)} = (x_k...x_0)$. If k = 1 then from (b) of the claim we have $x_1 \notin e_0$. If $k \ge 2$ then from (c) of the claim we also have $x_k \notin e_0$. This proves that we always have $e_0 \cap V_0 = \{x_0\}$.

If Error is returned, it means that at a given iteration i_0 , the algorithm found an edge e monochromatic for $c^{(i_0)}$ such that $e \setminus V_0^{(i_0)} = \emptyset$. Then e was also monochromatic for $c^{(0)}$, but e_0 was the only such edge,

so we have a contradiction because we have just seen that we must have $e_0 \cap V_0^{(i_0)} = \{x_0\}$. Thus if H is a Sterboul hypergraph, Error cannot be returned.

- Finally, if the bipartition obtained by the algorithm is not a bicoloration then we have some $e \in \mathcal{E}$ that is monochromatic. Consider i_0 the last iteration during which the algorithm dropped a vertex of e out of \mathcal{P} (i_0 exists or else e was monochromatic with $c^{(0)}$, but e_0 was the only such edge and e_0 is not monochromatic at the end of the algorithm), and let y_0 be that vertex. Then e was not monochromatic with $c^{(i_0)}$ or else the algorithm would have considered e during the iteration i_0 instead of dropping y_0 . But since no color switch concerning a vertex of e occurs afterwards (by choice of i_0), we have a contradiction. Thus the final bipartition is a bicoloration.

So the algorithm is correct and the theorem is proved.

We can slightly modify the algorithm so that it gives a Sterboul cycle instead of just returning Error when the hypergraph is not Sterboul (in order to have a certificate that the hypergraph is not Sterboul).

To do so we just have to check at each iteration that the properties of Claim 1 still hold. If not it means that the monochromatic edge considered intersects the path induced by the stack, and a Sterboul cycle can be easily found.

Our algorithm finds a bicoloration for Sterboul hypergraphs in polynomial time. However it cannot be used to recognize bicolorable hypergraphs (since a Sterboul hypergraph may be bicolorable) and neither to recognize Sterboul hypergraphs (since it may happen that it gives a bicoloration for a hypergraph that is not Sterboul).

The problem of recognizing bicolorable hypergraphs is well-known to be NP-complete [4]. But we leave the following question open: what is the complexity of recognizing Sterboul hypergraphs?

References

- [1] P. Duchet, *Hypergraphs*, in R. Graham, M. Grötschel, L. Lovász, editors, Handbook of Combinatorics (1995), chapter 7, 381-432.
- [2] J.-C. Fournier, M. Las Vergnas, *Une classe d'hypergraphes bichromatiques II*, Discrete Mathematics 7 (1974) 99-106.
- [3] J.-C. Fournier, M. Las Vergnas, *A class of bichromatic hypergraphs*, Annals of Discrete Mathematics 21 (1984) 21-27.
- [4] L. Lovász, Coverings and colorings of hypergraphs, Proc. 4th Southeastern Conference on Combinatorics, Graph Theory, and Computing, Utilitas Mathematica Publishing, Winnipeg (1973) 3-12.