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Decomposable graphs and
definitions with no quantifier alternation
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Let D(G) be the minimum quantifier depth of a first order sentence Φ that defines a graph G up to isomorphism in
terms of the adjacency and the equality relations. Let D0(G) be a variant of D(G) where we do not allow quantifier
alternations in Φ. Using large graphs decomposable in complement-connected components by a short sequence of
serial and parallel decompositions, we show examples of G on n vertices with D0(G) ≤ 2 log∗ n + O(1). On the
other hand, we prove a lower bound D0(G) ≥ log∗ n − log∗ log∗ n − O(1) for all G. Here log∗ n is equal to the
minimum number of iterations of the binary logarithm needed to bring n below 1.
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1 Introduction
Given a finite graph G, how succinctly can we describe it using first order logic and the laconic language
consisting of the adjacency and the equality relations? A first order sentence Φ defines G if Φ is true
precisely on graphs isomorphic to G. All natural succinctness measures of Φ are of interest: the length
L(Φ) (a standard encoding of Φ is supposed), the quantifier depth D(Φ) which is the maximum number
of nested quantifiers in Φ, and the width W (Φ) which is the number of variables used in Φ (different
occurrences of the same variable are not counted). All the three characteristics inherently arise in the
analysis of the computational problem of checking if a Φ is true on a given graph [3]. They give us a small
hierarchy of descriptive complexity measures for graphs: L(G) (resp. D(G), W (G)) is the minimum
L(Φ) (resp. D(Φ), W (Φ)) of a Φ defining G. These graph invariants will be referred to as the logical
length, depth, and width of G. We have W (G) ≤ D(G) ≤ L(G). The former number is of relevance
for graph isomorphism testing, see [2]. W (G) and D(G) admit a purely combinatorial characterization
in terms of the Ehrenfeucht game, see [2, 8].

We here address the logical depth of a graph. We focus on the following general question: How do
restrictions on logic affect the descriptive complexity of a graph? Call a first order sentence Φ to be
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a-alternation if it contains negations only in front of relation symbols and every sequence of nested quan-
tifiers in Φ has at most a quantifier alternations. Let Da(G) denote a variant of D(G) for a-alternation
defining sentences, so D(G) ≤ Da+1(G) ≤ Da(G). The logic of 0-alternation sentences is most restric-
tive and provably weaker than the unbounded first order logic. Whereas the problem of deciding if a first
order sentence is satisfiable by some graph is unsolvable, it becomes solvable if restricted to 0-alternation
sentences (the latter due to Ramsey’s logical work [7] founding the combinatorial Ramsey theory).

It is not hard to observe that D0(G) ≤ n + 1 where n denotes the number of vertices in G. This
bound is in general best possible as D(Kn) = n + 1. Nevertheless, it admits a non-obvious improvement
under a rather small restriction on the automorphism group of G. If the latter does not contain any
transposition of two vertices, then D1(G) ≤ (n + 5)/2, see [6]. No sublinear improvement is possible
because of the sequence of asymmetric graphs with W (G) = Ω(n) constructed in [2]. In [4] we prove
that D(G) = log2 n−Θ(log2 log2 n) and D0(G) ≤ (2 + o(1)) log2 n for almost all G.

After obtaining these worst-case and average-case results, we undertake a “best-case” analysis in [5].
We define the succinctness function q(n) = min {D(G) : G has order n} and show that its values may
be superrecursively small if compared to n: f(q(n)) ≥ n for no recursive f . A weaker but still surprising
succinctness result is also obtained for the fragment of first order logic with no quantifier alternation. Let
q0(n) = min {D0(G) : G has order n}.

Theorem 1 q0(n) ≤ 2 log∗ n + O(1) for infinitely many n.

In [5] this theorem is proved by considering G in a certain class of asymmetric trees and estimating
D0(G) in terms of the radius of a tree. We here reprove this result by showing the same definability
phenomenon in a different class of graphs. We consider G in a class of graphs with small complement-
connected induced subgraphs and estimate D0(G) in terms of the number of the serial and parallel de-
compositions [1] decomposing G in the complement-connected components.

We also present a new result complementing Theorem 1.

Theorem 2 q0(n) ≥ log∗ n− log∗ log∗ n−O(1) for all n.

As a consequence, q0(n) ≤ f(q(n)) for no recursive f , which also shows a superrecursive gap between
the graph invariants D(G) and D0(G).

2 Definitions
We use the following notation: V (G) is the vertex set of a graph G; diam G is the diameter of G; G is the
complement of G; GtH is the disjoint union of graphs G and H; G ⊂ H means that G is isomorphic to
an induced subgraph of H (we will say that G is embeddable in H); G @ H means that G is isomorphic
to the union of some of the connected components of H .

We call G complement-connected if both G and G are connected. An inclusion-maximal complement-
connected induced subgraph of G will be called a complement-connected component of G or, for brevity,
cocomponent of G. Cocomponents have no common vertices and partition V (G).

The decomposition of G, denoted by Dec G, is the set of all connected components of G (this is a set
of graphs, not just isomorphism types). Furthermore, given i ≥ 0, we define the depth i decomposition of
G by Dec0 G = Dec G and Deci+1 G =

⋃
F∈Deci G Dec F . Note that Pi = {V (F ) : F ∈ Deci G} is a

partition of V (G) and that Pi+1 refines Pi. The depth i environment of a vertex v ∈ V (G), denoted by
Env i(v), is the F in Deci G containing v.
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We define the rank of a graph G, denoted by rk G, inductively as follows: (1) If G is complement-
connected, then rk G = 0. (2) If G is connected but not complement-connected, then rk G = rk G. (3)
If G is disconnected, then rk G = 1 + max {rk F : F ∈ Dec G}. In other terms, rk G is the smallest k
such that Pk+1 = Pk or such that Pk consists of V (F ) for all cocomponents F of G.

In the Ehrenfeucht game on two disjoint graphs G and H two players, Spoiler and Duplicator, alternat-
ingly select vertices of the graphs, one vertex per move. Spoiler starts and is always free to move in any
of G and H; Then Duplicator must choose a vertex in the other graph. Let xi ∈ V (G) and yi ∈ V (H)
denote the vertices selected by the players in the i-th round. Duplicator wins the k-round game if the
component-wise correspondence between x1, . . . , xk and y1, . . . , yk is a partial isomorphism from G to
H; Otherwise the winner is Spoiler. In the 0-alternation game Spoiler plays all the game in the same
graph he selects in the first round.

Assume G 6∼= H . Let D(G, H) (resp. D0(G, H)) denote the minimum D(Φ) over (resp. 0-alternation)
first order sentences Φ that are true on one of the graphs and false on the other. The Ehrenfeucht the-
orem relates D(G, H) and the length of the Ehrenfeucht game on G and H . We will use the fol-
lowing version of the theorem: D0(G, H) is equal to the minimum k such that Spoiler has a winning
strategy in the k-round 0-alternation Ehrenfeucht game on G and H . It is also useful to know that
D0(G) = max {D0(G, H) : H 6∼= G}.

We define the tower-function by Tower (0) = 1 and Tower (i) = 2Tower (i−1) for each subsequent i.

3 Upper bound: Proof of Theorem 1
Lemma 1 Consider the Ehrenfeucht game on graphs G and H . Let x, x′ ∈ V (G), y, y′ ∈ V (H) and
assume that the pairs x, y and x′, y′ are selected by the players in the same rounds. Furthermore, assume
that Env l(x) 6= Env l(x′), Env l(y) = Env l(y′), and diam Env i(y) ≤ 2 for every i ≤ l. Then Spoiler
can win in at most l + 1 rounds (l rounds if G is connected), playing all the time in H .

Proof: We proceed by induction on l. The base case is l = 0 if G is disconnected and l = 1 if G is
connected. If y and y′ are adjacent in Env l(y), Duplicator has already lost. Otherwise, Spoiler uses the
fact that diam Env l(y) = 2 and selects y′′ adjacent in Env l(y) to both y and y′. Duplicator cannot do so
with any x′′ because x and x′ are in different components of G if l = 0 or G if l = 1.

Assume that l ≥ 1. Let 0 ≤ m ≤ l be the minimum number such that x′ /∈ Envm(x). If m < l, Spoiler
wins in the next m + 1 ≤ l moves by induction. If m = l, Spoiler uses the same trick as in the base case
and forces Duplicator to make a move x′′ outside Env l−1(x). By the induction hypothesis, Spoiler needs
l extra moves to win. 2

As long as Duplicator avoids meeting the conditions of Lemma 1 (in particular, selects x′ ∈ Env l(x)
whenever Spoiler selects y′ ∈ Env l(y)), we will say that she bewares of the environment threat.

Let rk G = k. We call G uniform if Deck−1 G contains no complement-connected graph, that is, every
cocomponent appears in Deck G and no earlier. We call G inclusion-free if the following two conditions
are true for every i < k: (1) For any K ∈ Deci G, K contains no isomorphic connected components. (2)
If two elements K and M of Deci G are non-isomorphic, then neither K @ M nor M @ K.

Lemma 2 (Main Lemma) Let G be a uniform inclusion-free graph. Suppose that every cocomponent of
G has exactly c vertices. Then D0(G) ≤ 2 rk G + c + 1.
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Proof: Let rk G = k. Fix a graph H 6∼= G. We will design a strategy allowing Spoiler to win the 0-
alternation Ehrenfeucht game on G and H in at most 2k + c + 1 moves. Since D0(G) = D0(G), without
loss of generality we will assume that G is connected. Since the case of k = 0 is trivial, we will also
assume that k ≥ 1.

Case 1: H has a cocomponent C non-embeddable in any cocomponent of G. If C has no more than
c vertices, Spoiler selects all C. Otherwise he selects c + 1 vertices spanning a complement-connected
subgraph in C (it is not hard to show that this is always possible). If Duplicator’s response A is within
a cocomponent of G, then C 6∼= A by the assumption. Otherwise A is not complement-connected and
Duplicator loses anyway.

In the sequel we will assume that Duplicator bewares of the environment threat during all game.
Case 2: G ⊂ H or there are l ≤ k and A ∈ Decl G properly embeddable in some B ∈ Decl H , and

not Case 1. Spoiler plays in H . If G ⊂ H , set A = G, B = H , and l = 0. Let H0 be a copy of A in
B. At the first move Spoiler selects an arbitrary y0 ∈ V (B) \ V (H0). Denote Duplicator’s response in G
by x0 and set G0 = Env l(x0). From now on Spoiler plays in H0. Since we are not in Case 1, B is not a
cocomponent of H and hence diam B ≤ 2. Since Duplicator is supposed to beware of the environment
threat, from now on she is forced to play in G0.

Subcase 2.1: G0 6∼= H0. Assume that l < k (the case of l = k will be covered by the last phase of
the strategy). Since G0 and H0 are non-isomorphic copies of elements of Decl G and G is inclusion-free,
Spoiler is able to make his next choice y1 in some H1 ∈ Dec H0 absent in Dec G0. Denote Duplicator’s
response in G0 by x1 and set G1 = Env l+1(x1). Note that G1 and H1 are non-isomorphic copies of
elements of Decl+1 G. Playing in the same fashion in the subsequent k − l − 1 rounds, Spoiler finally
achieves the players’ moves in some non-isomorphic Gk−l ∈ Deck G and Hk−l, the latter being a copy of
an element of Deck G. Both the graphs have c vertices. Now Spoiler selects the c− 1 remaining vertices
of Hk−l and wins whatever Duplicator’s response is.

Subcase 2.2: G0
∼= H0. Though the graphs are isomorphic, the crucial fact is that G0, unlike H0,

contains a selected vertex. By the definition of an inclusion-free graph, every automorphism of A ∼=
G0

∼= H0 takes each cocomponent onto itself. Therefore every isomorphism between G0 and H0 matches
cocomponents of these graphs in the same way. Let Y be the counterpart of Envk(x0) in H0 with respect
to this matching. In the second round Spoiler selects an arbitrary y1 in Y . Denote Duplicator’s answer by
x1. If x1 ∈ Envk(x0), Spoiler selects all Y and wins. Otherwise there is m ≤ rk A such that Envm(x1)
in G0 and Envm(y1) in H0 are non-isomorphic. This allows Spoiler to apply the strategy of Subcase 2.1.

Case 3: Neither Case 1 nor Case 2. Spoiler plays in G0 = G. His first move x0 is arbitrary. Denote
Duplicator’s response in H by y0 and set H0 = Env0(y0). Since we are not in Case 2, G0 6⊂ H0. As G0

is inclusion-free, G0 has a connected component G1 with no isomorphic copy in H0. Spoiler selects x1

arbitrarily in G1. Let Duplicator respond with y1 somewhere in H0 and denote H1 = Env1(y1). Thus
G1 6∼= H1 and G1 6⊂ H1, the latter again because we are not in Case 2. In the next round Spoiler again
selects a vertex in a component G2 of G1 absent in H1. Continuing in the same fashion, Spoiler finally
forces playing the game on some Gm ∈ Decm G0 and Hm ∈ Decm H0 with Gm 6⊂ Hm under one of
the two terminal conditions: (1) m < k and Hm (or its complement) is a cocomponent of H . (2) m = k.
In the first case note that, as we are not in Case 1, Hm is embeddable in some cocomponent of G (or
its complement) and hence has at most c vertices. Therefore it suffices for Spoiler to select altogether
c + 1 vertices in Gm to win (recall the assumption that Duplicator bewares of the environment threat and
hence cannot move outside Hm). In the second case Gm is a cocomponent of G and hence has c vertices.
Spoiler selects all Gm. Since Duplicator’s response must be complement-connected, she is forced to play
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within a cocomponent of Hm and hence loses.
Length of the game. The above strategy allows Spoiler to win in at most k+c moves under the condition

that Duplicator bewares of the environment threat. If Duplicator ignores this threat, Spoiler needs k + 1
additional moves according to Lemma 1. 2

Let R0 consist of all complement-connected graphs of order 5. Assume that Ri−1 is already specified.
Fix Fi to be the family of all b|Ri−1|/2c-element subsets of Ri−1. Define Ri to be the set of the comple-
ments of

⊔
G∈S G for all S in Fi. Note that Ri consists of inclusion-free uniform graphs of rank i whose

cocomponents all have 5 vertices. All graphs in Ri have the same order; Denote it by Ni. Let Mi = |Ri|.
By the construction,

Mi+1 =
(

Mi

bMi/2c

)
=

√
2 + o(1)

πMi
2Mi and Ni+1 = bMi/2cNi > Mi.

A simple estimation shows that Ni ≥ Tower (i−O(1)). To complete the proof of Theorem 1, choose Gi

in Ri. Using Main Lemma, we obtain q0(Ni) ≤ D0(Gi) ≤ 2i + 6 ≤ 2 log∗ Ni + O(1).

4 Lower bound: Proof-sketch of Theorem 2
Let La(G) denote the minimum length of an a-alternation sentence defining G.

Lemma 3 La(G) ≤ Tower (Da(G) + log∗ Da(G) + O(1)).

An analog of this lemma for L(G) and D(G) appears in [5] but its proof does not work under restrictions
on the alternation number. The proof of Lemma 3 will appear in the full version.

Given n, denote k = q0(n) and fix a graph G on n vertices such that D0(G) = k. By Lemma 3,
G is definable by a 0-alternation Φ of length at most Tower (k + log∗ k + O(1)). Using the standard
reduction, we convert Φ to an equivalent prenex ∃∗∀∗-sentence Ψ (i.e. existential quantifiers in Ψ all
precede universal quantifiers). Since the reduction does not increase the total number of quantifiers,
D(Ψ) ≤ L(Φ). It is well known and easy to prove that, if a prenex ∃∗∀∗-sentence Ψ is true on some
structure, then it is true on some structure of order at most D(Ψ). Since the Ψ is true only on G, we have
n ≤ D(Ψ) ≤ L(Φ) ≤ Tower (k + log∗ k + O(1)), which proves the theorem.
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