Connected τ -critical hypergraphs of minimal size

Matěj Stehlík

Instituto de Matemáticas, UNAM, Circuito Exterior, 04510 México, D.F., Mexico

A hypergraph \mathscr{H} is τ -critical if $\tau(\mathscr{H} - E) < \tau(\mathscr{H})$ for every edge $E \in \mathscr{H}$, where $\tau(\mathscr{H})$ denotes the transversal number of \mathscr{H} . It can be shown that a connected τ -critical hypergraph \mathscr{H} has at least $2\tau(\mathscr{H}) - 1$ edges; this generalises a classical theorem of Gallai on χ -vertex-critical graphs with connected complements. In this paper we study connected τ -critical hypergraphs \mathscr{H} with exactly $2\tau(\mathscr{H}) - 1$ edges. We prove that such hypergraphs have at least $2\tau(\mathscr{H}) - 1$ vertices, and characterise those with $2\tau(\mathscr{H}) - 1$ vertices using a directed odd ear decomposition of an associated digraph. Using Seymour's characterisation of χ -critical 3-chromatic square hypergraphs, we also show that a connected square hypergraph \mathscr{H} with fewer than $2\tau(\mathscr{H})$ edges is τ -critical if and only if it is χ -critical 3-chromatic. Finally, we deduce some new results on χ -vertex-critical graphs with connected complements.

Keywords: τ -critical hypergraph, χ -critical 3-chromatic hypergraph

1 Introduction

A hypergraph \mathscr{H} is a finite set of finite non-empty sets called the *edges* of \mathscr{H} . The *vertices* of \mathscr{H} are the elements of the set $V(\mathscr{H}) = \bigcup_{E \in \mathscr{H}} E$. A set $T \subseteq V(\mathscr{H})$ is a *transversal* (also *vertex cover* or *blocking set*) of \mathscr{H} if $T \cap E \neq \emptyset$ for every $E \in \mathscr{H}$. The smallest cardinality of a transversal of \mathscr{H} is the *transversal number* $\tau(\mathscr{H})$. A *k-colouring* of a hypergraph \mathscr{H} is an assignment of at most *k* colours to $V(\mathscr{H})$ such that no edge is monochromatic. The chromatic number $\chi(\mathscr{H})$ is the smallest *k* such that \mathscr{H} admits a *k*-colouring. A hypergraph \mathscr{H} is τ -critical (resp. χ -critical) if $\tau(\mathscr{H} - E) < \tau(\mathscr{H})$ (resp. $\chi(\mathscr{H} - E) < \chi(\mathscr{H})$) for every $E \in \mathscr{H}$.

A number of authors have studied τ -critical hypergraphs; see for example [1, 2, 3]. It is trivial to verify that a hypergraph is τ -critical if and only if all its components are τ -critical. So what can be said about *connected* τ -critical hypergraphs? In particular, it seems natural to ask what is the minimal possible number of edges in a connected τ -critical hypergraph.

We first present a sharp lower bound on the number of edges in a connected τ -critical hypergraph, and then investigate the cases where equality is attained. We exhibit a surprising connection with χ -critical 3-chromatic square hypergraphs studied by Seymour [7], and show how our results relate to the work of Gallai [4] on χ -vertex-critical graphs with connected complements.

2 Main results

The following two results were proved in [9]. (A hypergraph is a *star* if all its edges have a common vertex.)

1365-8050 © 2005 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France

Theorem 1 If \mathscr{H} is a connected τ -critical hypergraph, then for every $E \in \mathscr{H}$ the edges of $\mathscr{H} - E$ can be partitioned into $\tau(\mathscr{H}) - 1$ stars of size at least two.

Corollary 2 If \mathscr{H} is a connected τ -critical hypergraph, then $|\mathscr{H}| \ge 2\tau(\mathscr{H}) - 1$.

The bound in Corollary 2 is sharp, as can be seen by considering odd cycles. Hypergraphs attaining equality in Corollary 2 are called *minimal* connected τ -critical hypergraphs. We might hope that such hypergraphs would be of an analysable form. Indeed, since a partition into 2-stars of a hypergraph corresponds to a matching of its line graph, Theorem 1 implies the following useful result. (A graph G factor-critical if G - x has a perfect matching, for every $x \in V(G)$.)

Corollary 3 If \mathcal{H} is a minimal connected τ -critical hypergraph, then $L(\mathcal{H})$ is factor-critical.

Lovász [5] proved that every factor-critical graph has an *odd ear decomposition*: it can be built up from a single vertex by successively attaching the end vertices of odd paths. So by Corollary 3 the line graph of a minimal connected τ -critical hypergraph has an odd ear decomposition. This fact can be used to prove the following two results.

Theorem 4 If \mathcal{H} is a minimal connected τ -critical hypergraph, then \mathcal{H} has a system of distinct representatives.

Corollary 5 If \mathcal{H} is a minimal connected τ -critical hypergraph, then $|V(\mathcal{H})| \ge |\mathcal{H}|$.

Again, considering odd cycles shows that the bound in Corollary 5 is sharp. A hypergraph with an equal number of edges and vertices is said to be *square*. As might be expected, the minimal connected τ -critical hypergraphs which are square have particularly nice properties. Indeed, they can be characterised in terms of an odd ear decomposition of an associated digraph.

With any digraph D we can associate the hypergraph $\mathscr{H}_D = \{\{x\} \cup N^+(x) \mid x \in V(D)\}$ where $N^+(x)$ denotes the set of outneighbours of x in D. Note that \mathscr{H}_D is square and has a system of distinct representatives. Conversely, if \mathscr{H} is a square hypergraph with a system of distinct representatives $f : \mathscr{H} \to V(\mathscr{H})$, then $\mathscr{H} = \mathscr{H}_D$, where D is the digraph with vertex set $V(\mathscr{H})$ and arc set $\{(x, y) \mid x \in V(\mathscr{H}), y \in f^{-1}(x) \setminus \{x\}\}$.

A directed odd ear with respect to a digraph D consists of a directed odd path such that the two end vertices are in V(D) but no internal vertices belong to V(D). A directed odd ear decomposition of a digraph D is a sequence D_0, \ldots, D_p of digraphs such that D_0 is a single vertex, $D_p = D$, and for $i = 1, \ldots, p, D_i$ is obtained from D_{i-1} by adding a directed odd ear joining two not necessarily distinct vertices of D_{i-1} .

Seymour [7] proved that a square hypergraph \mathscr{H} is χ -critical 3-chromatic if and only if $\mathscr{H} = \mathscr{H}_D$, where D is a strongly connected digraph with no directed even circuits. The following result can be proved using Seymour's theorem, Corollary 3 and Theorem 4. The *absorption number* $\beta(D)$ of a digraph D is the minimal size of a set $S \subseteq V(D)$ such that every $x \in V(D) \setminus S$ has an outneighbour in S.

Theorem 6 For any square hypergraph \mathcal{H} , the following conditions are equivalent:

- 1. \mathscr{H} is minimal connected τ -critical;
- 2. \mathcal{H} is χ -critical 3-chromatic and $|\mathcal{H}| < 2\tau(\mathcal{H})$;
- 3. $\mathscr{H} = \mathscr{H}_D$, where D has a directed odd ear decomposition, contains no directed even circuits and $|V(D)| < 2\beta(D)$.

Connected τ -critical hypergraphs of minimal size

Fig. 1: $\mathscr{H} = \mathscr{H}_D$, where D has a directed odd ear decomposition and contains no directed even circuits; the associated square hypergraph \mathscr{H}_D is minimal connected τ -critical by Theorem 6.

Let \mathscr{H}^* denote the vertex-edge dual of \mathscr{H} . The following result can be proved using Corollary 5 and Theorem 6.

Corollary 7 If \mathcal{H} is a minimal connected τ -critical hypergraph, then so is \mathcal{H}^* if and only if \mathcal{H} is square.

3 Application to χ -vertex-critical graphs

A hypergraph has the *Helly property* if all its intersecting partial hypergraphs are stars. There is a useful link between the chromatic number of graphs and the transversal number of Helly hypergraphs. Namely, given a graph G, let $\mathscr{A}(G)$ be the hypergraph formed with the maximal independent sets of G, and denote its dual by $\mathscr{A}^*(G)$. It is not difficult to check that $\mathscr{A}^*(G)$ has the Helly property and $\chi(G) = \tau(\mathscr{A}^*(G))$. A graph G is χ -vertex-critical if $\chi(G-x) < \chi(G)$, for every vertex $x \in V(G)$; note that a graph G is χ -vertex-critical if $\mathscr{A}^*(G)$ is τ -critical. Hence the restriction to Helly hypergraphs of Corollary 2 is equivalent to the following classical result of Gallai [4], also proved in [6, 8].

Theorem 8 (Gallai 1963) A χ -vertex-critical graph G with a connected complement has at least $2\chi(G) - 1$ vertices.

The restriction to Helly hypergraphs of Corollary 5 is equivalent to the following result.

Theorem 9 A χ -vertex-critical graph G with a connected complement and $2\chi(G) - 1$ vertices has at least $2\chi(G) - 1$ maximal independent sets.

Finally, Theorem 6 implies the following.

Theorem 10 If G is a graph with a connected complement, $2\chi(G) - 1$ vertices and $2\chi(G) - 1$ maximal independent sets, then G is χ -vertex-critical if and only if $\mathscr{A}^*(G)$ is a χ -critical 3-chromatic Helly hypergraph.

References

[1] C. Berge. Hypergraphs: Combinatorics of Finite Sets. Elsevier, Amsterdam, 1989.

- [2] P. Duchet. Hypergraphs. In R. L. Graham, M. Grötschel, and L. Lovász, editors, Handbook of Combinatorics, pages 381–432. North-Holland, New York, 1995.
- [3] P. Frankl. Extremal set systems. In R. L. Graham, M. Grötschel, and L. Lovász, editors, *Handbook of Combinatorics*, pages 1293–1329. North-Holland, New York, 1995.
- [4] T. Gallai. Kritische Graphen II. Magyar Tud. Akad. Kutató Int. Közl., 8:373-395, 1963.
- [5] L. Lovász. A note on factor-critical graphs. Studia Sci. Math. Hungar., 7:279–280, 1972.
- [6] M. Molloy. Chromatic neighborhood sets. J. Graph Theory, 31:303-311, 1999.
- [7] P. D. Seymour. On the two-colouring of hypergraphs. Quart. J. Math. Oxford, 25(3):303-312, 1974.
- [8] M. Stehlík. Critical graphs with connected complements. J. Combin. Theory Ser. B, 89:189–194, 2003.
- [9] M. Stehlík. Minimal connected τ -critical hypergraphs. Submitted, .