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Improving the Gilbert-Varshamov bound for
q-ary codes
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Given positive integers q, n and d, denote by Aq(n, d) the maximum size of a q-ary code of length n and minimum
distance d. The famous Gilbert-Varshamov bound asserts that

Aq(n, d + 1) ≥ qn/Vq(n, d),

where Vq(n, d) =
Pd

i=0

`
n
i

´
(q − 1)i is the volume of a q-ary sphere of radius d.

Extending a recent work of Jiang and Vardy on binary codes, we show that for any positive constant α less than
(q − 1)/q there is a positive constant c such that for d ≤ αn, Aq(n, d + 1) ≥ c qn

Vq(n,d)
n. This confirms a conjecture

by Jiang and Vardy.

1 Introduction
Given a set Ω of q symbols, without loss of generality, let Ω = {0, 1, . . . , q − 1}. A q-ary word of length
n is a sequence x = (x1, . . . , xn), where xi ∈ Ω. The number of non-zero symbols in a word x is
the weight of x. Given two words x and y, the (Hamming) distance between x and y is the number of
coordinates i in which xi and yi are different. A set C of words is called a code with minimum distance d
if any two codewords in C have distance at least d. For a word x, the Hamming sphere of radius d centered
at x has volume

Vq(n, d) =
d∑

i=0

(
n

i

)
(q − 1)i.

Thanks to symmetry, the volume of the sphere does not depend on x.
For integers q, n and d, let Aq(n, d) denote the maximum size of a q-ary code of length n and minimum

distance d. Estimating Aq(n, d) is one of the most important problems in coding theory. The famous
Gilbert-Varshamov bound [4, 11] asserts that

Aq(n, d + 1) ≥ qn

Vq(n, d)
.
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This bound is used extensively in numerous contexts and has been generalized in many different settings
[7, 8, 6]. Improving upon the Gilbert-Varshamov bound asymptotically is a notoriously difficult task [8].
Tsfasman, Vlǎdut, and Zink [10] made a breakthrough for the case when q ≥ 49. More recently, Jiang
and Vardy [6] improved the Gilbert-Varshamov bound, for the case q = 2, for certain range of d:

Theorem 1.1 Let α be a constant satisfying 0 < α ≤ .4994. Then there is a positive constant c depending
on α such that the following holds. For d ≤ αn,

A2(n, d + 1) ≥ c
2n

V2(n, d)
log2 V2(n, d) (1)

If d ≥ α′n for some constant α′ > 0, then V2(n, d) is exponential in n. Thus, Theorem 1.1 improved
Gilbert-Varshamov bound by a factor linear in n. We can rewrite (1) in the following more pleasant form
(the constant c here, of course, would be different):

A2(n, d + 1) ≥ c
2n

V2(n, d)
n. (2)

Jiang and Vardy asked if one can get to α < 0.5 using a different method than computer simulations
as they did (the strange constant .4994 resulted from these simulations). They also conjectured that an
improvement similar to (2) can be achieved for q-ary codes, for any q ≥ 3.

The main result of this paper resolves both of these issues. For the binary case, our main theorem
(Theorem 1.2) extends the assumption α < 0.4994 in [6] to its natural limit α < 0.5. The proof of
Theorem 1.2 does not rely on computers, and reflects, in a clean way, the necessity of the assumption
α < (q − 1)/q.

Throughout the paper, asymptotic notations are used under the assumption that n goes to infinity. We
also emphasize the case when d is proportional to n, namely, d = αn for some positive constant α. This
case is of special interest in coding theory.

Theorem 1.2 Let q be a fixed positive integer and α be a constant satisfying 0 < α < q−1
q . There is a

positive constant c depending on q and α such that for d = αn,

Aq(n, d + 1) ≥ c
qn

Vq(n, d)
n (3)

In general, the constant α can take any value less than or equal to one. However, it is well known and
easy to show that for α ≥ (q − 1)/q, the volume Vq(n, d) is close to qn, namely, qn ≤ 2Vq(n, d). In this
case, the Gilbert-Varshamov bound gives no useful information. Thus, the value (q − 1)/q serves as a
natural threshold and we will assume α < (q − 1)/q.

2 Graph theoretic frame work
We recall a folklore in graph theory.

Proposition 2.1 Let G be a D-regular graph on n vertices. Then G contains an independent set of size
n/(D + 1).
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Given q, n and d, we follow [6] and define a graph G whose vertices are the q-ary words of length n and
two words are adjacent if their Hamming distance is at most d. It’s easy to see that G has qn vertices, the
degree of every vertex is D = Vq(n, d)− 1, and Aq(n, d + 1) is the independence number of G, denoted
by I(G). The Gilbert-Varshamov bound is simply the realization of Proposition 2.1 on this graph.

For a D-regular graph, each neighborhood has at most
(
D
2

)
edges. We say that such a graph is locally

sparse if in every neighborhood the number of edges is much less than
(
D
2

)
. In the extreme case when

the graph is triangle-free, i.e., when the number of edges in each neighborhood is zero, Proposition 2.1
was improved by a logarithmic factor by Ajtai, Komlós and Szemerédi in [1]. Namely, they obtained
I(G) ≥ cn log D/D. This result has been extended to locally sparse graphs (i.e. with few triangles) by
Shearer [9].

Lemma 2.2 (Shearer) For any positive constant ε ≤ 2 there is a positive constant c such that the follow-
ing holds. Let G be a D-regular graph on N vertices. Assume that each neighborhood in G contains at
most D2−ε edges. Then the independence number of G, denoted by I(G), satisfies:

I(G) ≥ c
N

D
lnD.

In order to prove Theorems 1.1 and 1.2, one needs to verify the hypothesis of Lemma 2.2 for G. Due
to symmetry, every neighborhood in G has the same number of edges. Thus, for convenience, we can
consider the neighborhood of the word consisting of only zeros. Let T be the number of edges in this
neighborhood and G0 be the graph spanned by these edges. Our goal is to show that there is a positive
constant ε such that

T ≤ D2−ε. (4)

It is not hard to give explicit formulae for T and D. Fixed q ≥ 2, we have

D = Vq(n, d)− 1 =
d∑

i=1

(
n

i

)
(q − 1)i,

T = Θ
( d∑

w=1

(
n

w

)
(q − 1)w

∑
{i,j,k}∈N

(
w

i

)(
w − i

k

)(
n− w

j

)
(q − 2)k(q − 1)j

)
,

where N is the set of all triples {i, j, k} that satisfies:

i + k ≤ w, j ≤ n− w, w − i + j ≤ d, and d(x, y) = i + j + k ≤ d

One can easily see the difficulty of dealing with these two variables directly, especially T . In fact, this
was the main hurdle for further improvement of [6].

Our approach is to translate (4) into simpler inequalities which we are able to prove using the following
notion. Let X and Y be two functions in n. We call X and Y polynomially equivalent and write X ∼ Y
if there are positive constants c1, c2 such that

n−c1X ≤ Y ≤ nc2X.
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We find new parameters T ′ ∼ T , D′ ∼ D where both T ′ and D′ are relatively simple. Since both T
and D are exponential functions in n, if we can show

T ′ ≤ D′2−δ, (5)

for a positive constant δ, then it follows that for all sufficiently large n, T ≤ D2−ε, where, say, ε = .999δ.
Finding D′ is easy. For T ′, we will apply a technique which can be viewed as a discrete analogue of

Lagrange’s multiplier. Once D′ and T ′ are determined, (5) becomes equivalent to a reasonable inequality
concerning entropy functions, which serve as good estimates of binomial coefficients. This inequality is
not obvious, but can be proved using the assumption α < (q−1)/q and an analytic argument. The readers
are invited to check the full version of the paper for the (rather technical) details.
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