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Miroslava Cimráková1 and Veerle Fack1

1Research Group on Combinatorial Algorithms and Algorithmic Graph Theory, Department of Applied Mathematics
and Computer Science, Ghent University, Krijgslaan 281–S9, B–9000 Ghent, Belgium.
E-mail: Miroslava.Cajkova@Ugent.be, Veerle.Fack@Ugent.be

The generalized quadrangle Q(4, q) arising from the parabolic quadric in PG(4, q) always has an ovoid. It is not
known whether a minimal blocking set of size smaller than q2 + q (which is not an ovoid) exists in Q(4, q), q odd.
We present results on smallest blocking sets in Q(4, q), q odd, obtained by a computer search. For q = 5, 7, 9, 11 we
found minimal blocking sets of size q2 + q − 2 and we discuss their structure. By an exhaustive search we excluded
the existence of a minimal blocking set of size q2 + 3 in Q(4, 7).
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1 Preliminaries
A (finite) generalized quadrangle (GQ) is an incidence structure S = (P,B, I) in which P and B are
disjoint (nonempty) sets of objects called points and lines (respectively), and for which I is a symmetric
point-line incidence relation satisfying the following axioms:

(i) each point is incident with 1 + t lines (t ≥ 1) and two distinct points are incident with at most one
line;

(ii) each line is incident with 1 + s points (s ≥ 1) and two distinct lines are incident with at most one
point;

(iii) if x is a point and L is a line not incident with x, then there is a unique pair (y, M) ∈ P × B for
which x I M I y I L .

We call the pair (s, t) the order of this GQ(s, t). We denote collinear points x and y by x ∼ y, and
concurrent lines L and M by L ∼ M . For x ∈ P put x⊥ = {y ∈ P || y ∼ x} and note that x ∈ x⊥.
If A ⊂ P , A “perp” is defined by A⊥ = ∩{x⊥ || x ∈ A}. For the theory of generalized quadrangles, we
refer to [1].

An ovoid of S is a set O of points of S such that each line of S is incident with a unique point of O.
An ovoid of a GQ(s, t) has size st + 1. A partial ovoid is a set O of points of S such that each line of S
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is incident with at most one point of O. A partial ovoid is called maximal when it is not contained in a
larger partial ovoid.

A blocking set of S is a set B of points of S such that each line of S is incident with at least one point of
B. A blocking set B is minimal when no proper subset of it is still a blocking set. Necessarily |B| ≥ st+1,
while equality holds if B is an ovoid.

Let B be a blocking set of size st + 1 + r. We call r the excess of the blocking set. A line of S is called
a multiple line if it contains at least two points of B. The excess of a line is the number of points of B it
contains, minus one.

Two subspaces are skew if they have no point in common. A line is called a transversal of a set of
pairwise skew subspaces if it intersects each subspace in exactly one point.

Let P be a 3-dimensional projective space. A non-empty set R of pairwise skew lines of P is called a
regulus if:

1. Through each point of each line of R there is a transversal of R.

2. Through each point of a transversal of R there is a line of R.

If P has finite order q then any regulus consists of exactly q + 1 lines. The set R′ of all transversals of
a regulus R is itself a regulus, called the opposite regulus of R. Let us call grid a regulus and its opposite
regulus.

2 Small minimal blocking sets of Q(4, q)

Here we will consider the classical generalized quadrangle of order (q, q) (with q a power of a prime)
arising from the non-singular 4-dimensional parabolic quadric Q(4, q). It is known that Q(4, q) always
has an ovoid.

It is easy to see that the following construction gives a minimal blocking set of size q2 + q: take a point
x of Q(4, q) and all lines through this point, then all q(q + 1) points on these lines (except x) form a
minimal blocking set of size q2 + q. Our aim is to find a minimal blocking set of size smaller than q2 + q,
which is not an ovoid.

Considering minimal blocking sets of Q(4, q), q even, the following result is known.

Theorem 2.1 (Eisfeld et al. [2]) Let B be a blocking set of the quadric Q(4, q), q even. If q ≥ 32 and
|B| ≤ q2 + 1 +

√
q, then B contains an ovoid of Q(4, q). If q = 4, 8, 16 and |B| ≤ q2 + 1 + q+4

6 , then B
contains an ovoid of Q(4, q).

No similar result is known for q odd. It is even not known, whether or not Q(4, q), q odd, has a minimal
blocking set of cardinality q2 + 2. In [3], the authors were able to solve this problem when q is an odd
prime.

Theorem 2.2 (De Beule, Metsch [3]) If q is an odd prime, then Q(4, q) does not have a minimal blocking
set of size q2 + 2.

In [4] the authors performed a computer search to exclude the existence of a minimal blocking set of
Q(4, 7) of size q2 + 3 satisfying a special property:
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Lemma 2.3 (De Beule, Hoogewijs, Storme [4]) There is no minimal blocking set B of size q2 + 3 on
Q(4, 7) such that there is one point of Q(4, 7) with q + 1 lines on it being blocked by exactly three points
of B.

S. De Winter [7] constructed a minimal blocking set B of size 28 = q2 + q − 2 of Q(4, 5). Now
the following question occurs: Are there any other generalized quadrangles Q(4, q) having a minimal
blocking set of size q2 + q − 2?

3 Search algorithms

A first class of algorithms are exhaustive algorithms, where we use a standard backtracking algorithm
which tries to extend a “partial blocking set” (which is not a blocking set yet) by adding the points of a
set A of remaining allowed points in a systematic way. When reaching a point where the set A is empty,
a new minimal blocking set has been found.

In order to avoid going through every single “partial blocking set” of the generalized quadrangle, we
use pruning strategies based on specific properties of the generalized quadrangle Q(4, q) given in [2] and
[5].

Another class of algorithms are heuristic algorithms, which turn out to be effective for exploring the
spectrum of sizes for which minimal blocking sets exist.

A simple greedy algorithm builds a minimal blocking set step by step, by removing points from a set
of all points, until this set is a minimal blocking set. Several strategies are possible for choosing a point
to be removed in each step. For instance, removing a point that leaves the largest number of points in the
allowed set, will tend to build small minimal blocking sets. Starting from a minimal blocking set obtained
by one of the above approaches, a simple restart strategy adds some of the points and again removes
points until the blocking set is minimal. Both the adding and the removing can be done either randomly
or following one of the above heuristics.

4 Results
Using the exhaustive algorithm described in Section 3, we obtain the following result:

Lemma 4.1 There is no minimal blocking set B of size q2 + 3 on Q(4, 7).

Using the heuristic strategies from Section 3 we obtain minimal blocking sets of size q2 + q − 2 (i.e.
with excess r = q− 3) for q = 5, 7, 9, 11. Hence, for small values of q, minimal blocking sets (which are
not ovoids) of size smaller than q2 + q do exist.

We now investigate the structure of these blocking sets. This is also done by a computer search. We
focus on the multiple lines of the blocking sets and the way, in which they are structured. The case q = 9
is different and we will mention it separately.

For q = 5, 7, 11 we observed that, for the blocking sets found, all multiple lines have excess one, which
means that the multiple lines contain two points of the blocking set.

Already S. De Winter noticed that for q = 5 all multiple lines form a grid. We observed that also for
q = 7, 11 grids are formed by the multiple lines; moreover, more than one grid appears (see Table 1). For
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# all multiple lines r # grids
Q(4, 5) 12 2 1
Q(4, 7) 32 4 2
Q(4, 11) 96 8 4

Tab. 1: Structure of blocking sets

these cases the number of multiple lines is 2(q + 1)(q− 3)/2 and the number of grids formed by multiple
lines is (q − 3)/2.

Further, for q = 7, 11 there are q + 1 points of B common to all grids.

Finally we observed that it is possible to obtain a maximal partial ovoid of size q2−1 by removing these
q + 1 common points and adding two points of the “perp” of this set. In Q(4, 5) are there 4 possibilities
of obtaining such a maximal partial ovoid by removing q + 1 points.

For q = 9 we observed that, for the maximal blocking sets found, all multiple lines have excess three.
The blocking set found has 20 multiple lines and we checked that they form a grid.

As mentioned in [6] we found by exhaustive search that no maximal partial ovoids of size q2 − 1 exist
in Q(4, 9) .

To finish this paper we want to mention our current effort. We try to find a blocking set of size q2+q−2
for larger q, especially for q = 13. If we suppose that this blocking set would be of the same structure,
it should contain 5 grids with 14 points in the intersection. So far we have found no blocking set of the
given size by our (not exhaustive!) computer search. We expect that no blocking set of Q(4, 13) of size
q2 + q − 2 exists.
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[6] M. Cimráková, S. De Winter, V. Fack, L. Storme. On the smallest maximal partial ovoids and
spreads of the generalized quadrangles W (q) and Q(4, q). J. Comb. Theory A, submitted, 2005.

[7] S. De Winter. Private communication.


