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We examine how we can define several probability distributions on the set of Boolean functions on a fixed number of
variables, starting from a representation of Boolean expressions by trees. Analytic tools give us a systematic way to
prove the existence of probability distributions, the main challenge being the actual computation of the distributions.
We finally consider the relations between the probability of a Boolean function and its complexity.
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1 Introduction
Boolean functions are fundamental objects, both in Mathematics and Logic, and in Computer Science,
where they appear in various areas: conception of circuits, satisfiability problems with threshold phenom-
ena, constraint resolution, etc.

Mathematically, one of the simplest ways of representing and manipulating Boolean functions may
well be Boolean expressions, which are equivalent to tree representations for a suitable set of trees. It
is well known that many expressions can represent a single Boolean function, and a natural question is
to find an expression of smallest size. ¿From a Computer Science point of view, a major issue is the
understanding of the different representations for Boolean functions: binary decision diagrams, circuits,
tree representations, and of their properties, one of the most important being their size. The complexity
of a Boolean function is here relative to a representation, the usual notion of complexity being defined
for a circuit (directed graph) representation. The interested reader may refer for example to the book of
Wegener [38] for a general introduction to this subject.

In many studies on Boolean functions on a given number of Boolean variables, one assumes that all
these Boolean functions have the same probability; see for example Shannon’s result [31] about their
average complexity. However, consider for example the four functions True, False, x and x̄ on a single
Boolean variable x, and the associated Boolean expressions built on this variable, its negation, and the
restricted set of connectors {∧,∨} (And/Or trees) : A few experiments will suffice to notice that drawing
an expression -even quite large- at random will not give all four Boolean functions with equal probability.
This suggests that it might be worthwhile to study the probability distributions induced by expressions
(or tree representations) on the set of Boolean functions, and the relation between the probability of a
Boolean function and its complexity. One of the first studies on this subject is a paper by Paris et al. [28],
which aims at defining a “natural” probability distribution on Boolean expressions; then the existence of
a probability distribution on And/Or trees was established by Lefman and Savicky [20]; further results
were by Savicky and Woods [33, 34, 39]; recent works are [2, 3].

The appearance of Boolean functions in Logic, more precisely in propositional calculus, gives a special
role to the constant function True: Any proof of a formula from specific axioms can be rewritten as a
formula that is always true, i.e. a tautology. In other words, the probability of True is directly related to
the proportion of sentences that are provable in a specific logical system. This approach has been recently
illustrated in a series of papers by Zaionc et al., who have begun a systematic study of the density of truth
in different propositional systems [17, 18, 26, 24, 41, 42, 43].

In other words, the question: What is the probability that a random Boolean expression defines a
tautology (a Boolean function that is always true)? has lead us once again to ponder what is a random
Boolean expression, and to consider how this definition of randomness translates on the set of Boolean
functions

The plan of the paper is as follows. After recalling some basic definitions for Boolean functions and
expressions in Section 2, and considering the associated tree representations, we consider in Section 3
the special case of And/Or trees, or equivalently Boolean expressions in which the negation is restricted
to Boolean variables and the only other operators, ∧ and ∨, are non-commutative and binary. We show
on this example how the technics from Analysis of Algorithms can be used to prove the existence of
a probability distribution on the set of Boolean functions. We next recall the tools which are basic to
our approach (analytic combinatorics, mostly generating functions for the enumeration of various trees,
asymptotics, and the Drmota-Lalley-Woods theorem) in Section 4, before making precise how we can
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Fig. 1: Planar tree representation of the Boolean expression E = x ∧ (y ∨ z ∨ ȳ ∨ y) ∧ (ȳ ∨ t ∨ (x ∧ v̄) ∨ u)

define probability distributions on the set of Boolean functions in Section 5. We consider commutative
or associative operators in Section 6, before turning to tautologies in Section 7. We take a closer look
at the relationship between the probability of a Boolean function and its complexity in Section 8, while
Section 9 presents some open questions and possible extensions of the results presented in this paper.

2 Boolean expressions and trees representations
2.1 Boolean functions and expressions
We shall consider functions on a fixed number n of Boolean variables xi

f : {0, 1}n → {0, 1} (or {True, False}n → {True, False})

Let Bn be the set of Boolean functions on n variables; its cardinal is Card(Bn) = 22n

.

A Boolean expression is defined from literals (the xi or their negations x̄i) and a set of logical operators,
for example ¬, ∧, ∨, →, ↔, ⊕, ..., together with rules for building logical expressions : x1 ∧ x2 ∧ x̄3,
x2 ⊕ (x̄2 ∨ x3), (¬(x1 ∨ x2)) ↔ (x1 ∧ x3),...

2.2 Trees for Boolean expressions
We consider first, as an example, a function f defined by the following Boolean expression E on n = 5
variables and several formulae, or equivalently tree representations, for it.

E = x ∧ (y ∨ z ∨ ȳ ∨ y) ∧ (ȳ ∨ t ∨ (x ∧ v̄) ∨ u)

A representation of f by a plane tree of size (number of leaves) 10 is given in Fig. 1. Assuming that
the operators ∧ and ∨ are binary gives another representation of expression E (Fig. 2), by an And/Or tree
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with the same size (again, number of leaves). Finally, an expression equivalent to E and of minimal size
5 is x ∧ (ȳ ∨ t ∨ v̄ ∨ u), corresponding to the tree of Fig. 3.

The translation from a Boolean expression to a tree follows some simple rules :

• Internal nodes are labelled by logical operators.

• The arity of an internal node is the arity of the logical operator that labels it.

• External nodes (leaves) are labelled by the Boolean variables, or by their negations.

• An associative logical operator labels a node of any arity at least equal to 2; the operators labelling
its sons differ from the operator of the father.

• The commutativity of an operator translates on the tree : in such a case, the sons are unordered.

Different sets of rules give different kinds of trees: If all operators are commutative then the tree becomes
non-plane; if all operators are binary then the tree is also binary; if the operators are associative then the
nodes of the tree can have any arity, except 1.

A Boolean expression represents a single Boolean function but a Boolean function can be represented
by an infinite number of Boolean expressions, or equivalently of trees. Hence the definition of the com-
plexity of a Boolean function f , as the minimal size L(f) of an expression (a tree) representing f .

When the operators are non-commutative, i.e. when the trees are plane, the set of trees associated to a
given class of Boolean expressions is usually called a simple variety of trees. Such sets of plane trees were
studied for example by Meir and Moon [25]; see also Flajolet and Sedgewick [8, Ch. III.6] for a unifying
study.

3 And/Or trees
In this section, we assume that the logical operators are restricted to the non-commutative and non-
associative binary operators ∧ and ∨, and to the negation on Boolean variables. The underlying tree model
is called And/Or trees; see for example Lefman and Savicky [20]. We shall see how this model defines
a natural probability distributions on Boolean functions, and how computing this distribution amounts to
enumerating sets of trees. We refer the reader to [2] for detailed computations.

Consider Boolean expressions built on the operators ∧, ∨ and ¬, the Boolean variables and their nega-
tions, with the restrictions mentioned above. The associated trees are complete (no single node) binary
plane (Catalan) trees; the internal nodes are labelled with ∧ and ∨, and the leaves by the literals.

The size of a tree is the number of its leaves, which is also 1 plus the number of internal nodes, for a
complete binary tree.(i)

(i) We might choose another definition for the size, namely the number of internal nodes, or the total number of nodes. However,
such definitions of size depend on the specific tree representation (binary or with general arity) for the random Boolean expres-
sion E, whereas the number of leaves is the same for a binary tree representation of E or for a tree of unbounded arity. See the
example in Section 2.
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3.1 A natural probability distribution
Consider the set T of And/Or trees on n variables: We can partition it in 22n

subsets, each subset gathering
all the trees that compute a specific Boolean function. This partition in turn induces a natural probability
distribution on the set Bn of Boolean functions: the probability of a function f is proportional to the
number of trees that compute it.

Well... almost! The set T of And/Or trees is infinite, and so is the subset Tf of trees associated to a
specific Boolean function f . However, the set Tm of trees of fixed size m is finite, and so is the subset
Tf,m associated to f ; hence we can, quite naturally, define a probability Pm(f) that a tree of fixed size m
computes the Boolean function f , as the ratio of the cardinalities:

Pm(f) =
Card(Tf,m)
Card(Tm)

.

The next step is to let m tend to infinity, i.e. to consider the limit P (f) (if it exists) of the family of
distributions Pm(f):

P (f) = lim
m→+∞

Pm(f).

The first proof of the existence of the limiting distribution P was established by Lefman and Savicky [20],
who also gave bounds relating the probability P (f) of a Boolean function and the complexity L(f) of this
function. Their technics involved growing biased infinite trees, which were then pruned, and establishing
a Chernov bound:

1
4

(
1
8n

)L(f)+1

≤ P (f) ≤ e−cL(f)/n3
(1 + o(1)) (1)

The upper bound was later improved to e−cL(f)/n2
by Chauvin et al. [2], who presented in the same

paper an alternative proof of the existence of P , based on the enumeration of suitable sets of trees. This
alternative proof has the advantage of easily generalizing to other types of trees, i.e. to other kinds of
Boolean formulas.

It should be obvious that, in defining the distributions Pm, and consequently P , a major step will be
the computation of various cardinalities, starting with the enumeration of And/Or trees of fixed size. We
shall consider first the enumeration of T for general n, then turn to explicit enumeration of the subsets
Tf and computation of the probability distribution P on Bn, in the simple case of one Boolean variable
(n = 1), and finally give indications for the extension to larger n.

3.2 Enumerating And/Or trees
Here we first recall the enumeration of (unlabelled) Catalan trees of size m, then consider all possible
labellings to get the exact number of trees and its asymptotic equivalent.

3.2.1 Enumerating binary (Catalan) trees
A binary plane tree (ii) is either a single node, or a root with a left and a right subtree [8, pp. 15-16]:

C = • ⊕ (•, C, C). (2)

(ii) We consider here complete binary trees, i.e. trees without simple nodes.
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Let cm be the number of binary trees of size m, and C(z) their generating function:

C(z) =
∑
m≥1

cmzm.

The equation (2) on the set of trees translates readily into an equation on the generating function C(z):

C(z) = z + C(z)2.

Solving this quadratic equation gives two solutions; we recall that C(0) is well defined and equal to 0,
and obtain

C(z) =
1
2

(
1−

√
1− 4z

)
.

¿From it, we obtain the exact and asymptotic values of the cm, which are better known as Catalan numbers:

cm = [zm]C(z) = Cm−1 =
(2m− 2)!
m!(m− 1)!

∼ 4m−1

m
√

πm
.

¿From the algebraic (square-root) singularity of the generating function C(z) at z = 1/4, we can also
obtain directly the asymptotic expansion of cm. This approach relies on contour integration of analytic
functions and is developed in the transfert lemmas of Flajolet and Odlyzko [7]. A general presentation,
together with many examples of application in the analysis of algorithms, is given in [8, Ch. VI]; useful
pointers can also be found in [10, 13].

3.2.2 Labelling Catalan trees
To obtain an And/Or tree of size m, we choose a random Catalan tree of adequate size, then label its
m − 1 internal nodes by ∧ or ∨ and its m leaves by any of the 2n literals xi and x̄i. Each Catalan tree
of size m gives thus 2m−1 (2n)m = (4n)m/2 different And/Or trees, and each such tree can be obtained
from a unique Catalan tree. Hence the number of And/Or trees of size m is

1
2

(4n)m Cm−1.

We can also obtain this result by writing down the generating function T (z) =
∑

n tnzn enumerating
And/Or trees: such a tree is either one of the 2n literals, or a tree starting with a root labelled by ∧ and
two subtrees, or a tree with a root labelled by ∨ and two subtrees:

T = {x1} ⊕ ...⊕ {xn} ⊕ {x̄1} ⊕ ...⊕ {x̄n} ⊕ (∨, T , T )⊕ (∧, T , T ).

Hence T (z) satisfies a quadratic equation:

T (z) = 2nz + 2T (z)2.

Solving this equation gives

T (z) =
1
4

(
1−

√
1− 16nz

)
=

1
2

C(2nz).

Taking coefficients, we obtain anew

tn = [zn]T (z) =
1
2

(4n)m Cm−1.
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3.3 A simple case: n=1
Let T be the set of And/Or trees on a single Boolean variable; its generating function is

T (z) =
1−

√
1− 16z

4
,

and the number of And/Or trees of size m is

Tm = 22m+1 Cm. (3)

The function T (z) has a unique algebraic singularity at ρ = 1/16.

3.3.1 Computing the enumerating series Tf (z)

Let Tf be the set of trees that compute the Boolean function f , for f one of the four Boolean functions
on one variable: True, False, x and x̄. A tree of size 1 has a single leaf, which contains either x or
x̄. A tree of size at least 2 is built from one root, and two subtrees, each of which computes itself a
Boolean function. Considering all the possible subtrees and the Boolean functions they compute gives us
the following relations:

TTrue = (∧, TTrue, TTrue)⊕ (∨, Tx, Tx̄)⊕ (∨, Tx̄, Tx)
⊕(∨, TTrue, T )⊕ (∨, T , TTrue) \ (∨, TTrue, TTrue);

Tx = {x} ⊕ (∧, Tx, Tx)⊕ (∧, Tx, TTrue)⊕ (∧, TTrue, Tx)
⊕(∨, Tx, TFalse)⊕ (∨, TFalse, Tx)⊕ (∨, Tx, Tx).

By symmetry, similar equations hold for TFalse and Tx̄, and we check that Tx̄ = Tx and TFalse = TTrue.
The recurrence equations on the sets of trees translate at once into equations on the generating functions,
which satisfy an algebraic system:{

TTrue(z) = 2Tx(z)2 + 2TTrue(z)T (z);
Tx(z) = z + 2Tx(z)2 + 4Tx(z)TTrue(z).

Solving, we obtain

TTrue(z) =
1
8

(
2−

√
2 + 16z + 2

√
1− 16z

)
;

Tx(z) =
−1
8

(
1 +

√
1− 16z −

√
2 + 16z + 2

√
1− 16z

)
.

3.3.2 Computing the distribution P

The probability that an And/Or tree of size m computes the Boolean function f is

Pm(f) =
[zm]Tf (z)
[zm]T (z)

,
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where [zm]T (z) is the number of And/Or trees of size m, and [zm]Tf (z) is the number of those trees that
represent the function f .
We check easily that the functions Tx(z) and TTrue(z) have the same algebraic singularity ρ = 1/16,
which is also the singularity of T (z). By a transfert lemma [7]:

[zm]Tx(z) ∼ 22m+2

√
3− 1√

3
Cm−1.

Using the expression of [zm]T (z) given by (3), we obtain

Pm(x) ∼
√

3− 1√
3

.
m + 1
2m− 1

,

and it is easy to check that its limit exists for m → +∞:

Pm(x) →
√

3− 1
2
√

3
= P (x) = 0.2113...

A similar computation gives

Pm(True) → 1
2
√

3
= P (True) = 0.2886...

Recall that the complexity L(f) of the Boolean function f is here the number of leaves in an And/Or tree
representation, and that L(x) = 1, L(True) = 2. The average complexity of a random Boolean function,
for n = 1 and under the distribution P , is

IEP [L] = 2L(x)P (x) + 2L(True)P (True)

= 1 +
1√
3

= 1.577

For comparison purposes, we give below the average complexity under the uniform distribution on Boolean
functions: IEUnif [L] = (2L(x) + 2L(True))/4 = 1.5.

3.3.3 Two definitions of randomness
In the definition of the distribution P , we have considered the set Tm of trees of fixed size m, then assumed
that this size was going to infinity. Working with the uniform distribution on T≤m, the set of trees of size
smaller than or equal to m, gives the same limiting distribution P , although the intermediate distributions
Pm and P≤m do differ.(iii) But what happens if we build the tree by some branching process before
labelling its nodes, i.e. if the unlabelled plane binary tree is no longer drawn at random from the set of
Catalan trees of fixed size, but if its size itself is random? What if the tree is generated by a branching
process?

A critical Galton-Watson branching process and the distribution π induced on Bn.
We refer the reader to [23, 29] for introductory courses and background on branching processes, and

(iii) Technically, working with sizes at most equal to m amounts to multiplying the generating functions by 1/(1−z); this introduces
a polar singularity at z = 1 larger than the dominant singularity; hence the asymptotics are not modified.



10 Danièle Gardy

consider next how a tree generated in this way might represent a Boolean expression drawn at random.
We generate a random binary plane labelled tree, i.e. a random And/Or tree, as follows:

1. We start from the root; at each node the process either stops with probability 1/2, or gives two sons
with probability 1/2. The tree we obtain is a.s. finite.

2. We label independently each internal node by ∧ and ∨ (with uniform probability) and each leaf by
one of the 2n literals (again with uniform probability).

This gives a new probability distribution Pr(.) on the set T of finite And/Or trees; now the size of
a random tree is itself a random variable on IN. This distribution in turn induces another probability
distribution π(.) on Bn, which differs from P (.), as can be checked on numerical examples (see below
and Section 3.4):

π(f) =
∑

τ∈T ; τ represents f

Pr(τ).

Computation of π
Assuming that the generating functions Tf (z) and T (z) have a common algebraic singularity ρ, the prob-
ability π(f) of the Boolean function f can be computed from the values of these functions at ρ (see [2]
for the proof):

π(f) =
Tf (ρ)
T (ρ)

.

In our case (n = 1), the expressions obtained for the generating functions Tx(z) and TTrue(z) give readily

π(True) = TT rue(1/16)
T (1/16) =

2−
√

3
2

= 0.1339...

π(x) = Tx(1/16)
T (1/16) =

√
3− 1
2

= 0.3660...

The average complexity of a Boolean function under the distribution π is now

IEπ[L] = 2L(x)π(x) + 2L(True)π(True)

= 3−
√

3 = 1.268...

We recall that IEP [L] = 1.577; hence, on B1: IEπ[L] < IEUnif [L] < IEP [L].

3.3.4 Conditioning on the size, and pruning an infinite tree
We now have the probability distributions Pr on And/Or trees, the uniform distribution Um on And/Or
trees of fixed size m (which we have not yet used explicitly, but which was implicit in the definition of
Pm), and the distributions Pm, P and π on the set Bn of Boolean functions. How do these distributions
relate to each other, and to the distribution on biased trees used by Lefman and Savicky?

The probability distribution Pr on T induces the image distribution π on the set of Boolean functions.
The distribution Pr also induces the uniform distribution Um on the set of And/Or trees of size m, by
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conditioning on the size of the tree [23]. This uniform distribution on And/Or trees gives the image
distribution Pm on Boolean functions, and the sequence Pm has for limit P when m → +∞.

A biased tree can be viewed as a branching process, with two types of nodes, let’s call them black and
white, which follow the following branching rules [29]:

or

or   stop

The root is always a black node, and the tree becomes infinite, with a single infinite branch of black nodes,
on which are grafted subtrees of white nodes; those subtrees follow the distribution Pr on T defined in
Section 3.3.3.

The probability distribution Pr on T induces a distribution P̂ r on the set of biased trees. Lefman and
Savicky [20] define pruning of an infinite biased tree by the following rules:

• A set of conditions Lt on the Boolean variables x1, ..., xn is associated with each internal node t of
the tree.

• The root is assigned the empty set: Lroot = ∅.

• Let t be an internal node labelled with a set of conditions Lt: t = (operator, l, r), If both sons l and
r of t are internal nodes, then they are labelled by the same set of conditions as t: Ll = Lr = Lt.

• If t is an internal node t = (∧, l, r) where l is a leaf labelled by a litteral λ and r is an internal node,
then Lr = Lt ∪ {λ = True}. A symmetric rule holds for an internal node whose left son is an
internal node and the right son is a leaf.
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• If t is an internal node t = (∨, l, r) where l is a leaf labelled by a litteral λ and r is an internal node,
then Lr = Lt ∪ {λ = False}; the symmetric rule holds when the only leaf is the right son.

• When an internal node is assigned a contradictory set of rules, it is deleted.

A pruned tree is a.s. finite, see the proof in [20]. Let Pred be the probability distribution induced on these
pruned trees by P̂ r. The main result of Lefman and Savicky is that the image distribution of Pred on the
set of Boolean functions is precisely the distribution P which was defined as the limit of the distributions
Pm induced by the uniform distribution on trees of fixed size m.

The next drawing summarizes the relations between the different distributions on the various sets of trees:
Pr on the set of all (a.s. finite) trees, P̂ r on biased trees, Pred on (a.s. finite) pruned trees, the uniform
distribution Um on trees of fixed size m, and the distributions π, Pm and P on the set Bn of Boolean
functions [3].

P

P Pr Pr U
mred

m

P

sizebiaspruning

m infinity

image

image

image Trees

Boolean functions

3.4 Extention to larger n

3.4.1 Equations on the generating functions
Enumerating the subsets Tf of trees associated to each Boolean function f can be done in a systematic
way, and allows us first to write down equations on the subsets Tf , then to translate them into algebraic
equations on the generating functions Tf (z), for each f ∈ Bn:

Tf = 1{f literal} ⊕
∑

g,h:f=g∨h

(∨, Tg, Th)⊕
∑

g,h:f=g∧h

(∧, Tg, Ah).

This gives an equation on the g.f. Tf (z):

Tf (z) = z 1{f literal} +
∑

g,h:g∨h=f

Tg(z) Th(z) +
∑

g,h:g∧h=f

Tg(z) Th(z).

Writing an equation for each of the 22n

Boolean functions gives a quadratic system of size 22n

on their
generating functions.
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3.4.2 The case n = 2
For n = 2, the algebraic system is of size 16, which is already large for exact solving. Luckily, using
symmetry arguments we can reduce the system to an equivalent one of size 4. Taking into account the
following operations:

• permutation of Boolean variables,

• negation of a Boolean variable,

• negation of the whole Boolean expression,

allows us to define classes of Boolean functions which share the same generating functions. For n = 2,
there are only 4 different classes, which correspond to the Boolean functions True, x, x ∧ y, x ⊕ y, and
we obtain a system of 4 quadratic equations with 4 variables:

TTrue = 2TTrueT + 4T 2
x + 20T 2

x∧y + 2T 2
x⊕y + 16TxTx∧y + 8Tx∧yTx⊕y;

Tx = z + 2T 2
x + 4T 2

x∧y + 4TTrueTx + 8TxTx∧y;
Tx∧y = 2T 2

x + 8T 2
x∧y + 4TTrueTx∧y + 8TxTx∧y + 4TxTx⊕y + 4Tx∧yTx⊕y;

Tx⊕y = 4T 2
x∧y + 2T 2

x⊕y + 4TTrued + Tx∧yTx⊕y.

Recall that T (z) is the global generating function for all trees of T ; hence, taking into account symmetries:

T (z) = 2TTrue + 4Tx + 8Tx∧y + 2Tx⊕y.

The common singularity of the generating functions is ρ = 1/32. The algebraic system can be solved
explicitly; for example the generating function for True is:

TTrue(z) =
1
8

(
−2 +

√
τ2
1 (2 + τ1)− 32z +

√
τ2

)
,

with τ0 =
√

1− 32z, τ1 =
√

2 + 2τ0 and

τ2 = 10− 96z − 256z2 − 2τ3
1 + 32z(τ1 + τ0(2− τ1)).

¿From the generating functions, we obtain numerical values (which are the ratio of two numbers defined
by algebraic equations, i.e. of two algebraic numbers) for the probabilites of the Boolean functions; for
example:

P (True) =
−129 + 90

√
2 + 61

√
3− 38

√
6

6
√

2 (9− 4
√

2)
√√

3− 1
√

2
√

2 +
√

3
.

As before, we can also define the probability distribution π(.), and compute its exact values (again, we
obtain algebraic numbers) from the generating functions. Approximate values are given below for both
distributions:

P (True) = .209; π(True) = 0.0864;
P (x) = .0672; π(x) = 0.159;

P (x ∧ y) = .0385; π(x ∧ y) = 0.0234;
P (x ⊕ y) = .00229; π(x⊕ y) = 0.000635.

The average complexities for a Boolean function on 2 variables are

IEUnif = 2; IEP = 2 + 2/
√

3−
√

2 = 1.740; IEπ = 2 + 2
√

3 + 2
√

2 = 1.364.
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3.4.3 n = 3 and beyond
For n = 3, the algebraic system has size 256, and symmetries once again reduce its size: If we consider the
symmetries due to permutation of variables, negation of litterals and negation of the whole expression, we
obtain 14 classes of Boolean functions, the functions of each class sharing the same generating function.
Explicit resolution of the quadratic system (of size 14) has proved beyond our abilities, even with the help
of a Computer Algebra System, but the combination of a general theorem, due independently to Drmota,
to Lalley and to Woods (see Section 4.2), and of an iteration method allows us to obtain approximate
values for the probabilities. We refer the reader to [2] for details.

Boolean Function P (f) π(f)

True 0.165 0.0642
l1 0.0314 0.0994
l1 ∧ l2 0.00995 0.00776
l1 ∧ l2 ∧ l3 0.00768 0.00282
(l1 ∧ l2) ∨ l3 0.00211 0.817 10−3

(l1 ∧ l2) ∨ (l̄1 ∧ l3) 0.287 10−3 0.880 10−4

l1 xor l2 0.192 10−3 0.673 10−4

(l1 xor l2) ∨ l3 0.157 10−3 0.314 10−4

(l1 ∧ (l2 ∨ l3)) ∨ (l2 ∧ l3) 0.149 10−3 0.321 10−4

(l1 ∧ l2 ∧ l3) ∨ (l̄1 ∧ l̄2) 0.962 10−4 0.220 10−4

(l1 ∧ l2 ∧ l3) ∨ (l̄1 ∧ l̄2 ∧ l̄3) 0.560 10−4 0.999 10−5

(l1 ∧ (l2 ∨ l3)) ∨ (l̄1 ∧ l̄2 ∧ l̄3) 0.217 10−4 0.370 10−5

(l1 ∧ (l2 xor l̄3)) ∨ (l̄1 ∧ (l2 ∨ l̄3)) 0.279 10−5 0.354 10−6

(l1 xor l2) xor l3 0.814 10−7 0.767 10−7

The average complexities of a Boolean function on three variables are

IEUnif = 4.336; IEP = 2.086; IEπ = 1.499.

For n = 4, the algebraic system has size 224
= 65536. How many classes of Boolean functions are they?

Can we still hope to solve (at least approximately) the system? What about n ≥ 5?

Results dating back from Harrison [12, 11] give some indications on these questions; e.g. the number of
equivalence classes of Boolean functions is given for the first few values of n in the table below.

n 1 2 3 4 5 6
|Bn| 2 16 256 65 536 4.2 109 1.8 1019

Nb. classes 2 4 14 222 616 126 2 1014

These results suggest that, although we might still (with substantial work) hope for approximate values
when n = 4, the extension to larger n is definitely out of our reach and we should turn to other tactics,
such as establishing bounds (see for example the bound (1) in Section 3.1 that comes from the initial
paper of Lefman and Savicky, and more generally Section 8), to get further information on the probability
distributions on Bn.
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4 Tools of our trade
Our approach relies on the following idea: Boolean expressions, or equivalently their tree representations,
define a language, for which we can write down generating functions; we then have at our disposal all
the tools of Analysis of Algorithms [35, 8], and we can (at least in theory) obtain asymptotic expressions
for the number of expressions of a given (large) size, then deduce from these asymptotic expressions the
limiting probability distributions P and π on Bn.

The main framework of our approach is that of context-free languages: the expressions associated
with plane trees define a context-free language; the corresponding enumerating functions are algebraic
and are defined by an algebraic system of equations. The existence of a solution for this type of system
results from a general theorem, due to Drmota [4], Lalley [19] and Woods [39], which also provides the
asymptotic evaluation of the coefficients. This asymptotic evaluation is the next-to final step in the proof
in the existence of the desired probability distribution.

In the case of non-plane trees, the functions are no longer algebraic (and the languages are no more
context-free), but Polya’s theory [30, 27] allows us to write down implicit equations on the generating
functions, and an adaptation of the theorem for algebraic systems helps us to prove again the existence of
a probability distribution.

4.1 Generating functions for enumeration
We consider here how to obtain generating functions for the enumeration of different classes of Boolean
expressions, or in other terms different families of trees. The framework here is symbolic combina-
torics, as exposed in the works of Flajolet and Sedgewick, for example in their forthcoming book Analytic
Combinatorics [8]. It provides a way of systematically translating the recursive definitions of trees into
equations on generating functions.

Let f(z) be the generating function for a sequence fn, where for example fn is the number of trees of
size |t| = n in a specific family T of trees : f(z) =

∑
n≥0 fnzn =

∑
t∈T z|t|. A recursive definition

of T translates into an equation on f(z), which can sometimes be solved explicitly, as for binary plane
trees. We refer the reader to [8, Ch. I] for a systematic exposition and many examples, including several
tree structures.

Once we have an expression for the generating function, we obtain the term fn = [zn]f(z) either
directly from a catalogue of coefficients, or by way of a transfert lemma [7]. See [8, p. 375] for a table of
commonly used functions and of their coefficients; for example the binomial formula for α ∈ IR is

[zm](1 + z)α =
1
m!

α(α− 1)...(α−m + 1).

The square-root cases α = ± 1/2 are specially useful for tree generating functions :

[zm]
√

1− z = −Cm−1

22m−1
; [zm]

1√
1− z

=
m + 1

4m
Cm.

A transfert lemma basically asserts that, under suitable regularity conditions, if the function f(z) can be
written as O((1− z)α) near its dominant singularity (wl.o.g. we assume this singularity is at 1), a similar
condition holds on the coefficients: [zm]f(z) = O([zm](1 − z)α). Hence, if we have an expansion
f(z) = f1(z) + O((1− z)α) near z = 1, and if f1 belongs to a class of functions for which we know the
coefficients, then [zm]f(z) = [zm]f1(z) + O([zm](1− z)α). See the book of Flajolet and Sedgewick [8,
Ch. VI-VII] for detailed results and many examples.
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4.2 The Drmota-Lalley-Woods theorem

In the mid-90s, the study of some problems involving the enumeration of families of plane trees or context-
free languages lead independently Drmota [4], Lalley [19] and Woods [39] to establish closely-related
results on the asymptotic behaviour of solutions of positive algebraic systems. Our presentation of these
results follows the unifying version given by Flajolet and Sedgewick in [8, pp. 446-451].

Theorem
Consider a non-linear polynomial system, defined by a set of equations

{yj = Φj(z, y1, ..., ym)}, 1 ≤ j ≤ m

and satisfying the following properties:

1. a-positivity: All the terms of the series Φj(−→y ) are ≥ 0.

2. a-proper: Φ is a contraction, i.e. satisfies a Lipschitz condition (K < 1)

d(Φ(y1, ..., ym),Φ(y
′

1, ..., y
′

m)) < K d((y1, ..., ym), (y
′

1, ..., y
′

m))

3. a-irreductibility: The dependency graph of the algebraic system is built on m vertices 1, 2, ... ,
m; there is an edge from a vertex k to a vertex j if yj appears in φk. The algebraic system is
a-irreducible if its dependency graph is strongly connected.

4. a-aperiodicity: z (not z2 or z3 or...) is the “right” variable
For each φj , there exist three monomials za, zb and zc s.t. b− a and c− a are relatively prime

Then

1. All the coordinates yj of the solution have the same radius of convergence ρ < ∞.

2. There exist functions hj , analytical around 0, s.t. (1 ≤ j ≤ m)

yj = hj

(√
1− z/ρ

)
(z → ρ−)

3. All the other dominant singularities are of the type ρ ω with ω a root of 1

4. If the system is a-aperiodic, then the yj have a single dominant singularity ρ, and coefficients have
full asymptotic expansion

[zn]yj(z) ∼ ρ−n

∑
k≥1

dkn−1−k/2

 .
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5 Back to the probability distributions on Bn

5.1 Randomness on trees
What we have established for And/Or trees in Section 3 can be mimicked for other kinds of Boolean
expressions and trees. We have seen in Section 2 that various sets of operators define various families
of trees; most notably, non-commutative operators define simple varieties of trees. Each definition of
Boolean expressions, or equivalently each family F of trees, leads to two distributions on the set Bn: πF
and PF .(iv) For PF (f), we consider trees built at random by drawing uniformly a tree of specified size m,
then compute the limiting ratio of the number of those trees that represent f to the total number of trees,
letting the size go to infinity. Concurrently, πF (f) is defined from trees built by a random Boltzmann
generation process [5, 6], where the size of the tree is itself a random variable. The precise definitions of
these two probability distributions are as follows:

1. Denote by Fm the subset of F , whose trees have the same size m, and by F(f) (resp. Fm(f))
the set of all trees (resp. trees of size m) that compute the Boolean function f . The probability
distribution PF is the limit of the probability distribution induced on Bn by the uniform distribution
on Fm:

PF (f) = lim
m→+∞

Card(Fm(f))
Card(Fm)

.

2. The probability distribution πF onBn is induced by the distribution obtained onF by building a tree
according to some branching process, for plane trees, or more generally by Boltzmann generation
process,(v) then labelling its nodes according to the set of Boolean variables and the set of operators :

πF (f) =
∑

τ∈F(f)

PrF (τ),

where PrF is the distribution on the (infinite) set of trees F that comes from drawing the trees
according to a Boltzmann process.

The extension of the definitions and results of Section 3.3.4 should be straightforward for plane trees. As
for And/Or trees, the probability distribution Pr on the set T of trees induces on one hand the image
distribution π on the set of Boolean functions, on the other hand the uniform distribution Um on the set
of trees of size m by conditioning on the size of the tree [23]; Um itself gives the image distribution Pm

on Boolean functions, which converges towards the distribution P when m → +∞. Then a branching
process can be used to define biased trees, according to the rules defining the Boolean expressions and
the operators under consideration; such biased trees can be seen as an infinite spine on which are grafted
finite trees according to a suitable rule, and the probability distribution Pr on (a.s.) finite trees accordingly
gives a distribution P̂ r on biased trees. To mimic the approach on And/Or trees, one would then need
to define pruning on the biased trees, according to the set of operators under consideration, and to prove
that the image distribution of the distribution on biased trees is indeed P . The relations between the

(iv) We use the notations πF and PF when considering different families of trees, or equivalently different sets of rules for building
Boolean expressions; when the context makes clear the family F , we use the simpler notations π and P .

(v) Branching processes cannot be used to define plane trees.
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different probability distributions are summarized below; an open question is to complete this diagram as
in Section 3.3.4.

P

Pr Pr U
m

m

sizebias

image image

P

infinitym

Trees

Boolean functions

For non-plane trees, the situation is somewhat different: the definitions and relations for the probability
distributions Pr, Um, Pm P and π are relatively straightforward, but biased trees cannot be defined by
branching processes, and pruning of such trees remains an open question.

P

Pr U
m

m

size

image image

P

infinitym

Trees

Boolean functions

5.2 Computing the probability distributions P and π

As for And/Or trees, the key to the proof of existence of the distributions πF and PF in the general
case is the existence of a limit for the ratio of trees that compute F , relatively to the total number of
trees. The existence of these limits and their computation requires either the exact computation of the
values at the dominant singularity, or the asymptotic evaluation of coefficients, of the generating functions
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TF (z), enumerating the family F by size, and TF (f)(z), enumerating those trees of F that compute the
Boolean function f . The global enumerating function TF (f) can usually be computed explicitly, and the
functions TF (f) are defined by an algebraic (or implicit) system; the conditions of the Drmota-Lalley-
Woods theorem (for algebraic functions) or of extensions thereof (for implicit functions) are generally
easy to check, and one can conclude that there exists a solution (Tf1 , ..., Tf2p ) to the system of equations,
and that the Tf have the same common single dominant singularity ρ as the global g.f. T (z).

To sum up, applying analytic combinatorics and singularity analysis to the proof of existence and
computation of probabilities for Boolean functions usually leads to the following steps:

• Write down the equations defining the sets of Boolean expressions, or equivalently the set T of
trees under consideration, and the sets Tf of the trees computing the Boolean functions.

• Translate these equations into (algebraic or implicit) equations on the generating functions T (z)
enumerating all trees, and Tf (z) enumerating those trees that compute f .

• Solve the system of equations if possible; if not, apply the Drmota-Lalley-Woods theorem or its
extensions, to prove that the functions T (z) and Tf (z) have a common smallest algebraic singularity
ρ (square root for most families of trees).

• Compute T (ρ) and the Tf (ρ) and obtain for each Boolean function f

π(f) =
Tf (ρ)
T (ρ)

.

• Find the expansion of T (z) and of the Tf (z) around ρ:

T (z) = T (ρ)− β
√

1− z/ρ + o(1− z/ρ);

Tf (z) = Tf (ρ)− βf

√
1− z/ρ + o(1− z/ρ).

• Apply a transfert lemma to get the number of trees of size m:

[zm]T (z) = −β ρ−m[zm]
√

1− z (1 + o(1)),

and the number of trees of size m that compute a Boolean function f :

[zm]Tf (z) = −βf ρ−m[zm]
√

1− z (1 + o(1)).

• Write down the probability P (f) of the Boolean function f , as the ratio of the number of expres-
sions that compute this function, to the total number of expressions, and conclude to the existence
of the probability distribution P :

P (f) = lim
m→+∞

[zm]T (z)
[zm]Tf (z)

=
βf

β
.
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6 Commutative or associative operators
We consider in this section the effect of the commutativity and associativity of logical operators on the
probability distributions of Boolean functions. As we shall see, this leads to variations on the underlying
tree model. The approach by enumeration of trees and analytic combinatorics allows us to treat these
variations in a systematic way, although the generating functions become quite involved and the challenge
of obtaining numerical results becomes even harder than for And/Or trees. The existence of the limiting
probability distribution P (f) was established by Woods in [39] for planar trees of general arity and nodes
labelled by ∧ and ∨. In the following subsections, we show how we can write down the equations on the
generating functions, then try and solve them explicitly for n = 1. We refer the reader to [3] for detailed
results and proofs.

6.1 Commutativity, and non-plane trees
Non-plane trees appear when we consider commutative operators:

• We can define the distribution P exactly in the same way as for And/Or trees, as the limit of the
ratio of trees of “large” size that represent a specific Boolean function;

• The distribution π can also be extended, by considering Boltzmann generation of random non-plane
trees [6].

We can write down equations on the generating functions Tf associated to each Boolean function f .
These equations are no longer algebraic, but can still be solved, or at least give sufficient information on
the generating functions for an asymptotic study which allows us to define the probability distributions P
and π, and to compute at least a few numerical values.
We examine what happens in the commutative case for binary operators ∧ and ∨ in the following subsec-
tions, beginning with the case n = 1, then considering how we can extend our approach for general n.

6.1.1 Binary non-plane trees
We assume in this part that the logical binary operators ∨ and ∧ are now commutative: the underly-
ing binary trees are no longer plane. The generating function A(z) for such trees satisfies a functional
equation :

A(z) = z +
1
2

(
A(z2) + A(z)2

)
. (4)

This equation dates back to Polya [30]; see also the presentation of [8, p. 66-68]. To solve it, we consider
it as a quadratic equation on A(z), with a “perturbation” A(z2). This gives

A(z) = 1−
√

1− 2z −A(z2). (5)

Now substitute 1−
√

1− 2z2 −A(z4) to A(z2), and iterate: We get

A(z) = 1−

√
−2z +

√
−2z2 + ... +

√
1− 2z2p −A(z2p+1).

Equation (5) shows that the function A(z) has an algebraic (square-root) singularity at its radius of con-
vergence ρ, which is defined by the equation 1 − 2z − A(z2) = 0. With the equation (4) this simplifies
into A(ρ) = 1, an equation that can be solved numerically to obtain ρ = 0.4026975037....
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The asymptotic expansion of the coefficients [zn]A(z) is obtained by considering the expansion of A(z)
for z “close” to the dominant singularity ρ. A transfer lemma gives [8, p. 433]

Am ∼ λ

m
√

m

(
1
ρ

)m

,

where the constant can be computed : λ = 0.3187766259...

6.1.2 Enumerating labelled non-plane trees
The generating function for all trees on n variables satisfies the implicit equation

F (z) = 2nz + F (z)2 + F (z2).

Again, considering it as a perturbed quadratic equation and iterating gives an expression for F (z):

F (z) =
1
2

(
1−

√
1− 8nz − 4F (z2)

)
=

1
2

1−

√
−1− 8nz + 2

√
... + 2

√
1− 8nz2p − 4F (z2p+1)

 .

6.1.3 The case n = 1

In this part, we give explicit formulae for the generating functions and numerical values for the probabili-
ties. The generating function enumerating all trees satisfies the equation

F (z) = 2z + F (z)2 + F (z2).

Solving gives

F (z) =
1

2

0@1−

s
−1− 8z + 2

r
... + 2

q
−1− 8z2p − 4F (z2p+1)

1A
= 2z + 6z2 + 24z3 + 138z4 + 840z5 + 5616z6 + 39168z7 + 283566z8 + 2105688z9 + O(z10).

The singularity is defined by the equation 1−8τ−4F (τ2) = 0, which can be simplified into F (τ) = 1/2,
and gives τ = 0.1119665176...
The equations on the generating functions for True and x, simplified by symmetries, become

ATrue(z) = ATrue(z)F (z) + Ax(z)2 + ATrue(z2);
Ax(z) = z + (F (z)−Ax(z))Ax(z) + Ax(z2).

Solving for the generating function Ax gives an expression in terms of the global generating function
F (z):

Ax(z) =
1
2

−1 + F (z) +

√√√√
−1− F 2(z) + 2

√
.... + 2

√
−1− F 2(z2p) + 2

√
v(z2p+1)

 .
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The real positive singularities of Ax(z) are τ and the terms τ1/2p

; the dominant singularity is algebraic
at τ . A(z) has an asymptotic expansion near ρ of the form

Ax(z) = αx − βx

√
1− z/τ + O(z − τ),

which gives an asymptotic expansion for its coefficients

[zm]Ax(z) ∼ βx

2m
√

πm

(
1
τ

)m

.

The numerical probabilities can be computed explicitly, e.g.

Pnon−planar(x) =
1
2
− 1√

3− 16ATrue(τ2)
.

Numerically:

Pnon−planar(True) = 0.2888; Pnon−planar(x) = 0.2112;
πnon−planar(True) = 0.1344; πnon−planar(x) = 0.3656.

Commutativity has no effect on the number of leaves; hence the average complexities of a random Boolean
function are IEUnif [L] = 1.5, IEP [L] = 1.557 and IEπ[L] = 1.268.

6.1.4 Commutativity for general n
The approach we have used for the special case n = 1 can be generalized to any number n of Boolean
variables. We first write down a system of 22n

functional equations. To prove the existence of a solution,
we have to consider an extension of the Drmota-Lalley-Woods theorem to a non-algebraic system of
functional equations [4, 39]. Then we can prove that all the generating functions have the same singularity,
and that the distributions πnon−planar and Pnon−planar exist.

6.2 Associativity, and trees of general arity
Let’s consider the Boolean function x1 ∧ x2 ∧ x3 ∧ (x1 ∨ x2), represented by the Boolean expression
(x1 ∧ x2) ∧ (x3 ∧ (x1 ∨ x2)): The associated And/Or tree is

x3

x1 x2

x1 x2

Assume now that the operator ∧ is associative : The tree representing the expression is no longer binary;
it becomes
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x3x1

x1 x2

x2

6.2.1 Tree model for associative operators
We are again dealing with plane trees; here each internal node has at least two sons, but there is no upper
bound on the number of sons. These trees are labelled at the root by ∧ or ∨, then at successive levels by
alternating ∧ and ∨ for internal nodes, and at the leaves by literals.
As usual, two probability distributions can be defined on Bn from this set of trees:

• Assume all trees of size m are equally likely, then let m → +∞. Let Passoc be the limiting
distribution.

• Consider a critical branching process (we are dealing with plane trees) where every node can have
any number of sons, except maybe 1, then label the (a.s. finite) trees we obtain. The distribution
of the number of sons follows a geometric distribution; conditioning by the size of the tree gives
the uniform distribution on the set of trees of fixed size n [23]. Let πassoc be the corresponding
distribution.

6.2.2 The case n = 1

The set S of plane trees such that all internal nodes have arity at least 2, satisfies the recurrence equation

S = • ⊕ (•,S,S)⊕ (•,S,S,S)⊕ ...

which gives on the generating function for all (unlabelled) trees

S(z) = z +
∑
l≥2

Sl(z) = z +
S2(z)

1− S(z)
;

hence

S(z) =
1
2

(
1 + z −

√
1− 6z + z2

)
.

This is the generating function for Schröder numbers, with a singularity at ρ = 3−2
√

2 = 0.171572876....
We have [8, p. 76, p. 430]

Sm = [zm]S(z) =
1
n

n−2∑
k=0

(
n− 2

k

)(
2n− k − 2

n− 1

)
∼ 1

4n
√

πn
(3− 2

√
2)−n+1/2.

Consider now these trees, where the root is labelled by ∧ or ∨, and the leaves are labelled by x or x̄. Their
generating function is

T (z) = 2S(2z)− 2z =
1
2

(
1− 2z −

√
1− 12z + 4z2

)
.



24 Danièle Gardy

Hence the number of trees of size m representing Boolean expressions with associative operators ∧ and
∨ is

[zm]T (z) = 2[zm]S(2z) = 2m+1Sm.

To write down the equations on the trees that represent a Boolean function f , we have to consider the op-
erator at the root of the tree. This leads us to consider two generating functions: T∧f and T∨f , enumerating
the trees that compute f according to the label of their root.
Symmetry again allows us to consider only the generating functions for True and x:

TTrue = T∧True + T∨True;
Tx = T∧x + T∨x .

The functions T∧x , T∨x , T∧True, T∨True satisfy

T∧x =
1

1− (z + T∨x + T∨True)
− 1

1− T∨True

− (z + T∨x );

T∨x =
1

1− (z + T∧x + T∨True)
− 1

1− T∨True

− (z + T∧x ).

T∧True =
(T∨True)

2

1− T∨True

;

T∨True =
1

1− (2z + T∧)
− T∧True −

1
1− (z + T∧x + T∨True)

− 1
1− (z + T∨x + T∨True)

+
1

1− T∨True

.

This system is algebraic, and can be solved exactly. For example

f∧x =
−5− 39z + 14z2 + (−7 + z)λ + λ

√
Q1 + Q2λ

16(3− z)
,

with λ =
√

1− 12z + 4z2 and

Q1 = 514− 2744z − 3048z2 + 8768z3 − 4000z4 + 128z5 + 128z6;
Q2 = 510− 340z − 2096z2 + 1696z3 − 160z4 − 64z5.

The common algebraic singularity for all the generating functions appears at ρ = (3− 2
√

2)/2. Asymp-
totic expansion around ρ gives the probabilities for True and x:

Passoc(True) = 4
√

2− 23

4
+

555− 733
√

2

904

q
22− 4

√
2 = .235;

Passoc(x) =
25

4
− 4

√
2 +

733
√

2− 555

904

q
22− 4

√
2 = .265;

πassoc(True) =
3

2
−
√

2

4
− 1

4

q
22− 4

√
2 = .136;

πassoc(x) =

√
2

4
− 1 +

1

4

q
22− 4

√
2 = .364.
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The number of leaves is the same for a binary tree and for the associated tree of general arity: associativity
does not modify the complexity of a Boolean function. The average complexities are here IEUnif [L] =
1.5, IEP [L] = 1.470 and IEπ[L] = 1.272.

6.2.3 Associativity for general n
We can write down a system of 22n+1 algebraic equations: two equations for each Boolean function,
according to the label at the root of the tree. We obtain an algebraic system of size 22n+1. The next
step is to apply the Drmota-Lalley-Woods theorem, and deduce from it, once again, first the existence of
a common algebraic singularity ρ for all the generating functions, then the existence of the distributions
πassoc and Passoc. As the equivalence classes for Boolean functions are still valid, we have hope to solve
the algebraic system and to obtain numerical results for n = 2, 3.

6.3 Some challenging questions
We first summarize the numerical results we were able to obtain for n = 1.

Binary tree General arity (associativity)
Planar tree Pplanar(x) = 0.21132... Passoc(x) = 0.2649...

Pplanar(True) = 0.2886... Passoc(True) = 0.2350...
πplanar(x) = 0.3660... πassoc(x) = 0.3642...
πplanar(True) = 0.1339... πassoc(True) = 0.1358...

Non planar tree Pnon−planar(x) = 0.21119...
(commutativity) Pnon−planar(True) = 0.2888...

πnon−planar(x) = 0.3656...
πnon−planar(True) = 0.1343...

These results ought to be completed at least for n = 1 or n = 2; see [3] for further numerical results. In
their present state, they suggest the following questions and extensions :

• Commutativity seems to have a negligible effect on the probability distributions P and π. Can we
prove it?

• Associativity seems to have a greater effect on the P distributions than on the π distributions. Can
we quantify it? Can we prove that, on the opposite, the effect of commutativity on the π distributions
is minimal?

• We should be able to write down the general system for operators that are both commutative and
associative (corresponding to reduced expressions [34]), and to compute the numerical values of
πcomm−assoc and Pcomm−assoc for n ≤ 3.

7 The probability of tautologies
Among Boolean functions, tautologies have a special status. One of the first papers to try and define a
“natural” probability distribution on the set of Boolean functions was written in 1994 by Paris et al. [28],
and centered on the probability of a tautology. Then Zaionc et al. began a systematic study of different
logical systems, again giving a special place to tautologies. We present below, first the logical systems
studied up to now and exact results, which unfortunately seem to be available for only a small number n of
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Boolean variables, then another approach, which aims at obtaining bounds in a systematic way when exact
results are unattainable. These bounds have been established only for And/Or trees, but our approach can
be extended to other families of trees and expressions, and should allow us to obtain further results.

7.1 Propositional logic: the different systems
A few years ago, a group of polish researchers in logic began a systematic study on the probability of
a tautology (or in their terms the density of truth) in several logical systems, with the aim of comparing
versions of propositional logic together and with intuitionistic logic.

The simplest logical system is the propositional calculus with a single connector of implication. The
results are presented in the papers [26, 41] by Moczurad, Tyszkiewicz and Zaionc for the version without
negation, and in the paper [42] of Zaionc for the extension to expressions built with the connectors of
implication and negation. In our framework, the logics with a single connector (either implication or
equivalence; see the results of Matecki [24] below) correspond to the classical Catalan trees, the logic of
implication and negation corresponds to unary-binary trees,

The probability that an expression, built on a single Boolean variable (n = 1) and the connector →
(implication) but without negation, is a tautology is P (True) = 1/2 +

√
5/10 ∼ 0.7236; for n variables

P (True) belongs to the interval [(4n+1)/(2n+1)2, (3n+1)/(n+1)2]. Explicit results are also given for
expressions built on the negation and implication connectors on a single Boolean variable: P (True) =
0, 4232..., P (False) = 0, 1632..., P (x) = 0, 2154... and P (x̄) = 0, 1980.... It is worth mentioning that,
in such a system, the probability of a Boolean function f differs from that of its negation f̄ .

Other papers of Zaionc, again for the logic of implication, consider a subset of tautologies: simple
tautologies [40, 43]. When the single connector is the implication →, Boolean expressions can be written
in an equivalent form as (τ1 ∧ τ2 ∧ .... ∧ τp) → α: the τi are called the premises, and the number of
premises is simply the length of the right-most path in the underlying binary tree. Expressions for which
∃i : τi = α are obvious tautologies; they are called simple tautologies. Of course, {Simple Tautologies} ⊂
{Tautologies}, and Zaionc proves that

P (Simple tautologies) =
4n + 1

(2n + 1)2
< P (True).

The paper also examines what happens when one takes into consideration the number p of premises,
and finally investigates the ratio of simple tautologies, when considering expressions with p premises
(and again for fixed n): when p grows to infinity, almost all the expressions with p premises become
tautologies.

The case of the single connector ↔ (equivalence), without negations either on the expressions or on
the Boolean variables, is studied by Matecki in [24]. Constraints due to the equivalence operator require
that the size of an expression representing a tautology is always even, and the probability P (True) that a
Boolean expression of even size is a tautology, is asymptotically equal to 1/2n−1. Again the underlying
structure is that of Catalan trees.

Kostrzycka and Zaionc [17, 18] extend the results on propositional logic to intuitionistic logic, in the
case of a single Boolean variable (n = 1) and two operators → and ¬ ((implication and negation).
The focus here is no longer strictly on the probability of True, but rather on the relative probability of
provable sentences in the intuitionistic logic versus tautologies of classical logic. Therefore the papers
[17, 18] answered, for a single variable, the question: How big is an intutionistic fragment of the classical
logic?



Random Boolean expressions 27

Kostrzycka investigates also other non classical logics, including modal and Grzegorczyck logic, in
order to compute and compare the asymptotic density of provable and true sentences for n = 1 [14, 15,
16].

7.2 Lower bounds for And/Or trees
Consider the probabilities PAnd/Or and πAnd/Or of a tautology for And/Or trees. For small n, we have
explicit results (cf. Section 3) :

• For n = 1, PAnd/Or(True) = 0.288 and πAnd/Or(True) = 0.134;

• For n = 2, PAnd/Or(True) = 0.209 and πAnd/Or(True) = 0.086;

• For n = 3, PAnd/Or(True) = 0.165 and πAnd/Or(True) = 0.064.

For general n, we have seen that we cannot compute the generating functions and the probabilities asso-
ciated to any Boolean function f . But can we obtain some results for a specific function, namely True?
The results presented below come from [9], where one can find detailed proofs and extensions.

The set of And/Or trees TTrue that represent tautologies can be written as

TTrue = ⊕f 6=True,False{(∨, TTrue, Tf )⊕ (∨, Tf , TTrue)}
⊕f,g 6=True,False;f∨g=True(∨, Tf , Tg)
⊕(∨, TFalse, TTrue) ⊕ (∨, TTrue, TFalse)

⊕(∨, TTrue, TTrue)⊕ (∧, TTrue, TTrue)

This translates on the generating functions as

TTrue =
∑

f,g 6=True,False;f∨g=True

TfTg + 2T . TTrue,

where T (z) = (1−
√

1− 16nz)/4 is the global generating function for And/Or trees. Unfortunately, this
equation cannot be solved exactly. So let’s try a simpler equation!

To this effect, we shall try to find a subset of the trees that represent True, simple enough that the
(in)equation on generating functions can be solved explicitly and give numerical results, but large enough
that this numerical results still provide meaningful information.

Define a subset ETrue ⊂ TTrue by

ETrue = ⊕l literal(∨, l, l̄)
⊕f 6=True{⊕(∨, ETrue, Tf )⊕ (∨, Tf , ETrue)}
⊕(∨, ETrue, ETrue)⊕ (∧, ETrue, ETrue).

Let φTrue be the generating function for ETrue:

φTrue(z) =
∑

l literal

(g.f. for l)2 + 2T (z) φTrue(z)

= 2nz2 + 2T (z) .φTrue(z).

Hence φTrue(z) = 2nz2/(1− 2T ) = zT (z). We have ETrue ⊂ TTrue; then
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• [zm]TTrue(z) ≥ [zm]φTrue(z) and, asymptotically:

P (f) = lim
m→∞

[zm]TTrue(z)
[zm]T (z)

≥ lim
m→∞

[zm]φTrue(z)
[zm]T (z)

.

• TTrue(x) ≥ φTrue(x) for any real positive x, including the algebraic singularity ρ, hence

π(f) =
TTrue(ρ)

T (ρ)
≥ φTrue(ρ)

T (ρ)
;

We get readily a common lower bound 1/16n for both P (True) and π(True).

7.3 Probability distributions for tautologies

We summarize below the few results already obtained for a number n of Boolean variables and the prob-
ability of True:

• For the uniform distribution on Bn [31]:

Prob(True) = 1/22n

.

• With a single equivalence connector [24]:

P (True) ∼ 1
2n

.

• With a single implication connector and variables without negations [26, 43]:

1
n

(1 + o(1)) ≤ P (True) ≤ 3
n

(1 + o(1))

• With the connectors ∧ and ∨ and negation on the variables [9]:

P (True) ≥ 1
16n

; π(True) ≥ 1
16n

.

Thus, tautologies have widely varying probabilities. The smallest known probability (up to now) appears
when all the Boolean functions have the same probability, and the probability of tautologies is at least
exponentially larger, or even doubly exponentially larger, when we consider the probability distributions
defined from various Boolean expressions. It would certainly be worthwhile to characterize the logical
systems and sets of operators according to the probability of tautologies they induce on the set of Boolean
functions.
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8 Bounds, complexity and probabilities
We now turn to closer examination of the relations between the complexity of a Boolean function and
its probability. We have seen that computing the probability of a function often amounts to knowing
the number of trees that represent this function; a dual approach was investigated in [34] by Savicky
and Woods, who consider the number of Boolean functions of given (low) complexity under the model
of And/Or trees. They show that the number of distinct Boolean functions, of complexity at most l, is
polynomial in the number of Boolean variables: it is equal to b(n, l)l, with b(n, l) ∼ cn for large n, with
c an explicit constant. This results holds as soon as l ≤ 2n/nβ(n), where β(n) → +∞ for large n, i.e.
far from the maximal complexity (which is of order 2n/ log n); it is valid, among others, for functions of
polynomial complexity.

We present in the following subsections, first an extension of the approach that allowed us to obtain
bounds on the probability of a tautology, then a comparison of the two probability distributions P and π
for the specific case of And/Or trees, and finally some simulation results that suggest further extensions.

8.1 And/Or trees, and lower bounds
We have seen in Section 3.4 that numerical values, even for quite small values of n, are hard to obtain
exactly with our tools. Can we get lower bounds for any Boolean function f , as we did in Section 7 for
tautologies?

First results were obtained by Lefmann and Savicky [20], who proved by a probabilistic technic that,
for And/Or trees:

P (f) ≥ 1
4

(
1
8n

)L(f)+1

.

Let us sketch here an alternative approach, using our favorite tools, i.e. generating functions [9]. Mim-
icking what we did for tautologies, we shall define a subset Ef of the set Tf of the And/Or trees that
represent f .

Assume we know Mf , the set of minimal trees that represent f , L(f) (the size of those minimal trees)
and Card(Mf ) = k(f). Define Ef ⊂ Tf by

Ef = Mf ⊕ (∧, Ef , Ef )⊕ (∨, Ef , Ef )⊕ (∨, Ef , EFalse)
⊕(∨, EFalse, Ef )⊕ (∧, ETrue, Ef )⊕ (∧, Ef , ETrue).

The generating function φf of Ef satisfies the equation

φf = k(f)zL(f) + 2φ2
f + 4φfφTrue.

This equation can be solved explicitly:

φf (z) =
1
4

(
1− 4φTrue(z)−

√
1− 4φTrue(z)− 8k(f) zL(f)

)
.

The generating function φf has a square-root singularity ρ:

φf (z) = αf − βf

√
1− z/ρ + O(1− z/ρ).
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Hence
π(f) ≥ 4αf ; P (f) ≥ 4βf .

The constants αf and βf can be written as (simple) functions of k(f) and L(f). Asymptotically:

π(f) ≥ 4k(f)
(16n)L(f)

; P (f) ≥ 4k(f)
(16n)L(f)+1

.

How close to the exact values are these lower bounds? We give below numerical results for tautologies
and for literals, in some cases for which we also know the exact values of the probabilities, i.e. for n ≤ 3.

For tautologies, the bound of Lefman and Savicky is P (f) ≥ 1/(2048n3), and the bound we have
obtained in Section 7, and which is valid both for P and for π, is 1/(16n). Numerically,

π(True) Lower bound P (True)
n = 1 0.134 0.0625 0.288
n = 2 0.086 0.0312 0.209
n = 3 0.064 0.0156 0.165

On these few results, the bound on π(True) seems closer to the actual value than the bound on P (True).
For literals, Lefmann and Savický’s bound gives P (x) ≥ 1/(256n2); our approach with k(x) =

L(x) = 1 gives again an improvment: P (x) ≥ 1/(64n2); π(x) ≥ 1/(4n).

π(x) Lower bound P (x) Lower bound
n = 1 0.366 0.322 0.211 0.0327
n = 2 0.159 0.139 0.067 0.0052
n = 3 0.099 0.089 0.031 0.0021

Again, the bound on π(x) is not too bad, but the bound on P (x) is far away from the actual value.

8.2 Comparing the distributions PF et πF

The numerical results obtained for And/Or trees in Section 3 show that, at least for small n, “usually”
πAnd/Or(f) < PAnd/Or(f), except for literals. But the situation becomes more complex when n grows
large: literals are no more the only functions which have a larger probability under π than under P . It is
possible to prove that, for a read-once function f , i.e. a function that can be represented by an expression
where no variable appears twice, P (f) < π(f) when n is “large enough” [9, Th. 8]. This is to be
contrasted to the result for tautologies: for all n, P (True) > π(True) [9, Th. 7]. At this point, we know
of no further results relative to the comparison of PAnd/Or(f) and πAnd/Or(f), for functions which are
neither constants nor read-once functions.

An intuitive feeling of these results may come from the following ideas: The probability distribution
πAnd/Or takes into account trees of any finite size, and should be biased towards those Boolean functions
that can be represented with the “smallest” trees, i.e. which have smallest complexity, such as read-once
functions, while the probability distribution PAnd/Or is less biased, being defined from the distribution of
“very large” trees. If this heuristic holds, then we should expect similar results for other families F of
trees. Anyway, it should be definitely worthwhile to study different families of trees, as well as subsets of
Boolean functions larger than read-once functions.
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8.3 Simulation results
When do the first k levels of the tree determine the Boolean function? Simulation results [37] indicate
that experimentally, the first levels of tree give a good indication on the Boolean function it computes. For
example, we considered two “heads” (shape and labelling of the first levels) H1 = (t1 ∨ t2) ∧ (t3 ∨ t4)
and H2 = (t1 ∧ t2) ∧ (t3 ∧ t4), and computed experimentally the conditional probabilities P (f/Hi)
obtained by simulation on trees with either of these heads, for two Boolean variables: n = 2. We give
below the probabilities obtained by simulation; for comparison purposes we also recall the probabilities
computed in the unbiased case (cf. Section 3). In the table below, the probabilities are cumulated on
classes of functions with equal probability, and the sum of the probabilities left in blank for the last line is
less than 0.0002.

Boolean function True False l l1 ∨ l2 l1 ∧ l2 l1 ⊕ l2
Unbiased prob. P (f) 0.209 0.209 0.269 0.154 0.154 0.005

Cond. prob. P (f/H1) 0.115 0.04 0.37 0.27 0.17 0.035
Cond. prob. P (f/H2) 0.78 < 0.03 0.19

We see that the probabilities vary widely, according to the head. Conditionning by H1 multiplies roughly
by 7 the probability of the exclusive or (the function l1⊕l2) and decreases the probabilities of the constants,
while the probabilities of literals and of conjunctions or disjunctions, although modified, stay roughly in
the same range of values. With the head H2, things become quite contrasted: the probability of the
constant function False dominates all other probabilities; the probability that the Boolean function is
a conjunction of two literals (or a single literal) is still significant, but the probabilities of disjunctions
or of exclusive or become negligible. Such results suggest the following questions on the probability
distributions, when conditioned by the head of the tree:

• For a specific Boolean function f , can we define heads such that the trees with these heads compute
f with “high” probability?

• If we consider all trees with a fixed head H , what of the conditional probability distributions π(./H)
and P (./H)?

9 Extensions and open questions
The maximum complexity for a Boolean function on n variables is 2n. Under the uniform distribution on
the set Bn of Boolean functions on n variables, “almost all” functions have complexity 2n/ log n, close
to the maximal complexity; see the classical results of [31, 21, 22] and the simple counting argument for
trees in [8, p. 74]. Of course, the uniform distribution is not the only one that can be defined on Bn; in
fact we have shown in this paper that it is possible to give a precise definition for two distributions PF
and πF , for any family F of trees that correspond to a valid set of rules for Boolean expressions.

At this point, we should mention here another approach, aiming in a similar vein at the definition of a
limiting probability distributions on Bn but growing trees according to a specific set of rules, that leads
to widely different distributions. This approach, initiated by Valiant [36], then by Savicky [32, 33], and
generalized recently by Brosky and Pippenger [1], considers trees built recursively from trees of smaller
height chosen, not at random among all possible trees, but among all trees of equal height. Starting from
leaves, such a regularity condition ensures that the trees are well balanced, with all the leaves at the same
level, and (for binary trees) all the internal nodes present. A probability distribution is defined for each
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family of trees of given height h, and it is possible to show that this sequence of distributions has a limit
for h → +∞. The technics involve a discrete Fourier transform and the fixed point method. Up to now,
the limiting distributions obtained from such trees are quite different from ours: they are either uniform
(or oscillate between two uniform distributions on complementary subsets of Bn), or a Dirac distribution
that gives the weight 1 to a threshold function, or a uniform distribution on slice functions.(vi)

Pondering the properties of specific probability distributions and the relationships between different
distributions, a wide range of questions appears:

• What if the logical operators (or the Boolean variables) have non-uniform probabilities? Our frame-
work gives us the existence of the limiting distributions, but can we compute them numerically?
compare them with those for uniform operators?

• What of the conditional probability distribution defined by any specific head?

• What is the influence of the family F of trees, i.e. of the set of rules for building Boolean expres-
sions? Can we compare the probabilities PF (resp. πF ) for different families F?

• What of the relation between complexity and probability? Can we obtain bounds such as the one
established by Lefmann and Savicky, or the lower bounds presented in Section 8, for any probability
distribution? Can we improve on these bounds, which are obviously not tight on the numerical
examples we computed?

• What is the probability of a function with low complexity, such as a read-once function?

• We know the probability of tautologies for a few type of trees; what of other types of Boolean
expressions? Can we classify the different sets of rules for Boolean expressions, according to the
probability of a tautology (doubly exponential, exponential, of order 1/n,...)?

• What becomes the average complexity of a random Boolean function under a specific probability
distribution when the number of variables becomes large? Does it remain equal to 2n/ log n, as for
the uniform distribution, is it still of exponential order αn for some α < 2, or can it even become
sub-exponential?
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[20] H. Lefmann and P. Savický. Some typical properties of large And/Or Boolean formulas. Random
Structures and Algorithms, 10:337–351, 1997.

[21] O. B. Lupanov. Complexity of formula realization of functions of logical algebra. Problemy Kiber-
netiki, 3:61-80, 1960. English translation: Problems of Cybernetics, Pergamon Press, 3:782–811,
1962.

[22] O. B. Lupanov. On the realization of functions of logical algebra by formulae of finite classes
(formulae of limited depth) in the basis ∧, ∨, ¬. Problemy Kibernetiki, 6:5-14, 1961. English
translation: Problems of Cybernetics, Pergamon Press, 6:1–14, 1965.

[23] J.-F. Marckert. Mouvement brownien et arbre continu. Notes for a graduate course. Available on the
web at the site http://www.labri.fr/perso/marckert/papers.html, 2003.

[24] G. Matecki. Asymptotic density for equivalence. Electronic Notes in Theoretical Computer Science,
140:81–91, 2005.

[25] A. Meir and J. W. Moon. On the altitude of nodes in random trees. Canadian Journal of Mathemat-
ics, 30:997–1015, 1978.

[26] M. Moczurad, J. Tyszkiewicz, and M. Zaionc. Statistical properties of simple types. Mathematical
Structures in Computer Science, 10(5):575–594, 2000.

[27] R. Otter. The number of trees. Annals of Mathematics, 49(3):583–599, 1948.
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