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Classical Combinatory Logic

Karim Nour1†

1 LAMA - Equipe de logique , Université de Savoie , F-73376 Le Bourget du Lac, France

Combinatory logic shows that bound variables can be eliminated without loss of expressiveness. It has applications
both in the foundations of mathematics and in the implementation of functional programming languages. The original
combinatory calculus corresponds to minimal implicative logic written in a system “à la Hilbert”. We present in this
paper a combinatory logic which corresponds to propositional classical logic. This system is equivalent to the system
λSym

Prop of Barbanera and Berardi.
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1 Introduction
Combinatory logic started with a paper by Schönfinkel (1924). The aim was an elimination of bound
variables. He proved that it is possible to reduce the logic to a language consisting of one constructor
(the application) and some primitive constants. This work was continued by Curry and Feys (1958)
who introduced the syntax of the terms of combinatory logic. At about the same time, Church (1941)
introduced the lambda-calculus as a new way to study the concept of rule. Originally his purpose was
to provide a foundation for mathematics. Combinatory logic and lambda-calculus, in their type-free
version, generate essentially the same algebraic and logic structures. The original combinatory calculus
corresponds to minimal implicative logic presented in a system “à la Hilbert”. The codings between
combinatory logic and simply typed calculus preserve types. Research on combinatory logic has been
continued essentially by Curry’s students, Hindley and Seldin (1986).

Since it has been understood that the Curry-Howard isomorphism relating proofs and programs can be
extended to classical logic, various systems have been introduced: the λc-calculus (Krivine (1994)), the
λexn-calculus (DeGroote (1995)), the λµ-calculus (Parigot (1992)), the λSym-calculus (Barbanera and
Berardi (1994)), the λ∆-calculus (Rehof and Sorensen (1994)), the λµµ̃-calculus (Curien and Herbelin
(2000)), the dual calculus (Wadler (2005)) ... All these calculi are based on logical systems presented
either in natural deduction or in sequent calculus.

We wish to define a combinatory calculus which corresponds to classical logic presented “à la Hilbert”.
There are two ways to define such a calculus:

- Add new combinators for the axioms which define classical logic over minimal logic and give the
corresponding reduction rules.

- Code by combinators an existing calculus based on classical logic.
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The first way gives a very “artificial” solution. The reduction rules for the new combinators are rather
complicated. For the second way, it is necessary to choose a system such that the reduction rules erase the
abstractors (i.e. the right-hant side of the reduction rules should not introduce new abstractions). One of
these calculi is the λSym-calculus of Barbanera and Berardi.

We present in this paper the λSym-calculus and the new combinatory calculus CCL. We also explain
how to encode each calculus into the other.

The paper is organized as follows. In section 2, we give the syntax of the terms and the reduction rules
of the system λSym

Prop. We introduce, in section 3, the syntax of the terms and the reduction rules of the
system CCL. We encode, in section 4, the system λSym

Prop into the system CCL and we encode, in section
5, the system CCL into the system λSym

Prop. We conclude with some future work.

2 The system λSymProp

Definition 1 1. We have two sets of base types A = {a, b, ...} and A⊥ = {a⊥, b⊥, ...}.

2. The set of m-types is defined by the following grammar:

A ::= A | A⊥ | A ∧A | A ∨A

3. The set of types is defined by the following grammar:

C ::= A |⊥

4. We define the negation A⊥ of an m-type as follows:

• (a)⊥ = a⊥

• (a⊥)⊥ = a

• (A ∧B)⊥ = A⊥ ∨B⊥

• (A ∨B)⊥ = A⊥ ∧B⊥

Lemma 2 For all m-type A, A⊥⊥ = A.

Proof: By induction on A. 2

Definition 3 1. The terms of the system λSym
Prop (called λs-terms) are defined (in the natural deduction

style) by the following rules:

Γ, x : A ` x : A

Γ ` u : A Γ ` v : B
Γ ` 〈u, v〉 : A ∧B

Γ ` t : A
Γ ` σ1(t) : A ∨B

Γ ` t : B
Γ ` σ2(t) : A ∨B

Γ, x : A ` t :⊥
Γ ` λx.t : A⊥

Γ ` u : A⊥ Γ ` v : A
Γ ` u ? v :⊥
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We write Γ `λs t : A, if we can type the λs-term t by the type A using the set of declaration of
variables Γ.

2. The reduction rules are the following:

(λx.u) ? v →β u[x := v]
v ? (λx.u) →β⊥ u[x := v]
λx.(u ? x) →η u (1)
λx.(x ? u) →η⊥ u (1)

〈u, v〉 ? σ1(w) →π1 u ? w
〈u, v〉 ? σ2(w) →π2 v ? w
σ1(w) ? 〈u, v〉 →π⊥1

w ? u

σ2(w) ? 〈u, v〉 →π⊥2
w ? v

u[x := v] →triv v (2)

(1) if x 6∈ Fv(u)

(2) if u and v are λs-terms with type ⊥, x occurs only one time in u and u 6= x. In this case
v = v1 ? v2 and λy.x is a sub-term of u.

3. We denote by → the one of previous rules. The transitive (resp. reflexive and transitive) closure of
→ is denoted by →+ (resp. →∗).

4. We denote the λs-terms by small letters like t, u, v, ....

Remark 4 The reduction →∗ is not confluent. For example (λx.(y ? z)) ? (λx′.(y′ ? z′)) reduces both to
y ? z and to y′ ? z′.

Theorem 5 (Subject reduction) If Γ `λs
u : A and u→∗ v, then Γ `λs

v : A.

Proof: It is enough to check that every reduction rule preseves the type. 2

Theorem 6 (Strong normalization) Every λs-term is strongly normalizing.

Proof: See Barbanera and Berardi (1994). 2

Remark 7 Barbanera and Berardi (1994) proved the strong normalization of the λSym
Prop-calculus by using

candidates of reducibility but, unlike the usual construction (for example for Girard’s system F ), the
definition of the interpretation of a type needs a rather complex fix-point operation. This proof is highly
non arithmetical. P. Battyanyi recently gave an arithmetical proof of this result by using the methods
developed in David and Nour (2005b) to show the strong normalization of systems λµµ′- calculus and
λµµ̃-calculus.
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3 The system CCL
Definition 8 1. We use the same types as in section 2. The terms of the system CCL (called c-terms)

are defined (in the Hilbert style) by the following rules:

Γ, x : A ` x : A

Γ ` K : A⊥ ∨ (B ∨A)

Γ ` S : (A ∧ (B ∧ C⊥)) ∨ ((A ∧B⊥) ∨ (A⊥ ∨ C))

Γ ` C : (A ∧B) ∨ ((A ∧B⊥) ∨A⊥)

Γ ` P : A⊥ ∨ (B⊥ ∨ (A ∧B))

Γ ` Q1 : A⊥ ∨ (A ∨B) Γ ` Q2 : B⊥ ∨ (A ∨B)

Γ ` U : A⊥ ∨B Γ ` V : A
Γ ` (U V ) : B

Γ ` U : A⊥ Γ ` V : A
Γ ` U ? V :⊥

Note that the typed rules does not change the set of declaration of variables. We write Γ `c T : A,
if we can type the c-term U by the type A using the set a declaration of variables Γ.

2. Let U,U1, U2, ..., Un be c-terms. We write (U U1 U2 ... Un)
instead of (...((U U1) U2) ... Un).

3. The reduction rules are the following:

(K U V ) .K U
(S U V W ) .S ((U W ) (V W ))

(C U V ) ? W .Cr (U W ) ? (V W )
W ? (C U V ) .Cl

(U W ) ? (V W )
(C (K U) I) .er U (3)
(C I (K U)) .el

U (3)
(P U V ) ? (Q1 W ) .pq1 U ?W
(P U V ) ? (Q2 W ) .pq2 V ?W
(Q1 W ) ? (P U V ) .qp1 W ? U
(Q2 W ) ? (P U V ) .qp2 W ? V

W [x := (C (K U) (K V ))] .simp U ? V (4)

(3) where I = (S K K).

(4) if W is a c-term with type ⊥.
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4. We denote by . the one of previous rules. The transitive (resp. reflexive and transitive) closure of .
is denoted by .+ (resp. .∗).

5. We denote the c-terms by capital letters like T,U, V, ....

Remark 9 1. We have `C I : A⊥ ∨A and, for all c-term T , (I T ) .∗ T .

2. The reduction .∗ is not confluent. For example (C (K y) (K z)) ? (C (K y′) (K z′)) reduces
both to y ? z and to y′ ? z′.

Theorem 10 (subject reduction) If Γ `c U : A and U .∗ V , then Γ `c V : A.

Proof: It is enough to check that every reduction rule preserves the type. 2

Definition 11 1. A c-term is said to be pre-term iff it does not contain the symbol ?.

2. A c-term T is said to be star-term iff T = U ? V for some pre-terms U, V .

Lemma 12 1. If A is an m-type and Γ `c T : A, then T is a pre-term.

2. If Γ `c T :⊥, then T is a star-term.

Proof: Easy. 2

Corollary 13 A c-term is either a pre-term or a star-term.

Proof: By lemma 12. 2

4 The encoding of λSymProp into CCL

Definition 14 The function φ : λSym
Prop → CCL is defined as follows:

• φ(x) = x

• φ(λx.t) = lx(φ(t))

• φ(u ? v) = φ(u) ? φ(v)

• φ(〈u, v〉) = (P φ(u) φ(v))

• φ(σ1(t)) = (Q1 φ(t))

• φ(σ2(t)) = (Q2 φ(t))

where

• lx(x) = I

• lx(T ) = (K T ) if T is a pre-term and x 6∈ V ar(T )
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• lx((U V )) = (S lx(U) lx(V )) if x ∈ V ar((U V ))

• lx(U ? V ) = (C lx(U) lx(V ))

Lemma 15 Let A and B be m-types.

1. If Γ, x : A `c T : B, then Γ `c lx(T ) : A⊥ ∨B.

2. If Γ, x : A `c T :⊥, then Γ `c lx(T ) : A⊥.

Proof: 1. By induction on T .
2. Use 1. 2

Theorem 16 If Γ `λs t : A, then Γ `c φ(t) : A.

Proof: By induction on the typing. Use lemma 15. 2

Lemma 17 1. If U is a pre-term, then (lx(U)V ) .∗ U [x := V ].

2. If U is a star-term, then lx(U) ? V .∗ U [x := V ] and V ? lx(U) .∗ U [x := V ].

Proof: 1. By induction on U .
2. Use 1. 2

Lemma 18 1. If V is a pre-term and x 6∈ V ar(V ), then lx(U [y := V ]) = lx(U)[y := V ].

2. φ(u[y := v]) = φ(u)[y := φ(v)].

Proof: 1. By induction on U .
2. By induction on u. Use 1. 2

Remark 19 As in λ-calculus, we do not have, in general, if u → v, then φ(u) .+ φ(v). The problem
comes from the β-reductions “under a lambda”.

Definition 20 We write u→ω v if v is obtained by reducing in u a redex which is not within the scope of
a λ-abstraction.

Theorem 21 If u→ω v, then φ(u) .+ φ(v).

Proof: By induction on u. Use lemmas 17 and 18. 2
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5 The encoding of CCL into λSymProp

Notation 22 Let πit denote the λs-term λx.(t ? σi(x)) where i ∈ {1, 2} and x 6∈ Fv(t). For each
i1, ..., in ∈ {1, 2}, let πi1...int denote the λs-term πi1 ...πint.

Lemma 23 1. π1〈u, v〉 →∗ u and π2〈u, v〉 →∗ v.

2. If Γ `λs t : A ∧B, then Γ `λs π1t : A and Γ `λs π2t : B.

Proof: Easy. 2

Notation 24 Let [u, v] denote the λs-term λx.(u ? 〈v, x〉) where x 6∈ Fv(u) ∪ Fv(v).

Lemma 25 1. [λx.u, v] →∗ λy.u[x := 〈v, z〉].

2. If Γ `λs u : A⊥ ∨B and Γ′ `λs v : A, then Γ,Γ′ `λs [u, v] : B.

Proof: Easy. 2

Definition 26 The function ψ : CCL → λSym
Prop is defined as follows:

• ψ(x) = x

• ψ(K) = λx.(π1x ? π22x)

• ψ(S) = λx.([[π1x, π122x], [π12x, π122x]] ? π222x)

• ψ(C) = λx.([π1x, π22x] ? [π12x, π22x])

• ψ(P) = λx.(〈π1x, π12x〉 ? π22x)

• ψ(Q1) = λx.(σ1(π1x) ? π2x)

• ψ(Q2) = λx.(σ2(π1x) ? π2x)

• ψ((U V )) = [ψ(U), ψ(V )]

• ψ(U ? V ) = ψ(U) ? ψ(V )

Theorem 27 If Γ `c U : A, then Γ `λs ψ(U) : A.

Proof: Use lemmas 23 and 25. 2

Lemma 28 ψ(U [x := V ]) = ψ(U)[x := ψ(V )].

Proof: By induction on U . 2

Theorem 29 If U . V , then ψ(U) →+ ψ(V ).
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Proof: The following are easy to check:
[[ψ(K), u], v] →+ u

[[[ψ(S), u], v], w] →+ [[u,w], [v, w]]
[ψ(I), u] →+ u

[[ψ(C), u], v] ? w →+ [u,w] ? [v, w]
w ? [[C, u], v] →+ [u,w] ? [v, w]

[[ψ(C), [ψ(K), u]], ψ(I)] →+ u
[[ψ(C), ψ(I)], [ψ(K), u]] →+ u

[[ψ(P), u], v] ? [ψ(Q1), w] →+ u ? w
[[ψ(P), u], v] ? [ψ(Q2), w] →+ v ? w
[ψ(Q1), w] ? [[ψ(P), u], v] →+ w ? u
[ψ(Q2), w] ? [[ψ(P), u], v] →+ w ? v

[[ψ(C), [ψ(K), u]], [ψ(K), u]] →+ λz.(u ? v)
For the reduction rule .simp, we use lemma 28. 2

Theorem 30 (Strong normalization) Every c-term is strongly normalizing.

Proof: By theorems 29 and 6. 2

6 Future work
Although the strong normalization of the system CCL follows from the one of the system λSym

Prop (see
theorem 30), R. David and I aim to prove directly this property. We wish to deduce a simpler proof of
the strong normalization of the system λSym

Prop. For that, it is necessary to show a notion stronger than the
strong normalization because the coding, presented in section 4, does not simulate all reductions. The
verifications we made for the ordinary combinatory logic are very promizing.

In the original combinatory logic the reduction rules of K and S do not allow β-reduction to be fully
simulated (the problem comes from the β-reductions “under a lambda”). Nevertheless, by adding an
extensionality rule to combinatory logic (i.e. ∀x {(F x) = (Gx)} ⇒ F = G) one obtains an equational
theory that corresponds exactly to βη-equivalence. The question is “Is there anything similar for CCL?”.
This question is not an easy one because CCL is not confluent. Consequently, a weaker notion than
extensionality would be needed.

Acknowledgements
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