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Cubefree words with many squares

James Currie† and Narad Rampersad‡

Department of Mathematics and Statistics, University of Winnipeg
515 Portage Avenue, Winnipeg, Manitoba R3B 2E9 (Canada)
{j.currie,n.rampersad}@uwinnipeg.ca

received November 26, 2008, revised April 25, 2010, accepted April 28, 2010.

We construct infinite cubefree binary words containing exponentially many distinct squares of length n. We also
show that for every positive integer n, there is a cubefree binary square of length 2n.
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1 Introduction
A square is a non-empty word of the form xx, and a cube is a non-empty word of the form xxx. An
overlap is a word of the form axaxa, where a is a letter and x is a word (possibly empty). A word is
squarefree (resp. cubefree, overlap-free) if none of its factors are squares (resp. cubes, overlaps). For
further background material concerning combinatorics on words we refer the reader to [2].

It is well-known that there exist infinite squarefree words over a ternary alphabet and infinite overlap-
free words over a binary alphabet. Clearly, any overlap-free word is also cubefree. Any infinite cubefree
binary word must contain squares; however, Dekking [9] proved that there exists an infinite cubefree
binary word containing no squares xx where the length of x is greater than 3 (see also [14, 15]). In this
paper we consider instead the existence of infinite cubefree binary words with many distinct squares.

Most known constructions of infinite cubefree words involve the iteration of a morphism. In the early
80’s, Berstel [3] revitalized the study of the construction of words avoiding repetitions by the iteration of
morphisms. Words constructed in this manner are often refered to as infinite D0L words. Ehrenfeucht and
Rozenberg [10, 11, 12] proved several results concerning the factor complexity of infinite D0L words.
They showed that any squarefree or cubefree D0L word has O(n log n) factors of length n. Thus, an
infinite cubefree D0L word cannot have many distinct square factors. By constrast, we show here how to
construct infinite cubefree binary words containing exponentially many distinct squares of length n.

Other work related to the problems considered here include [1, 7, 8].
Let µ denote the Thue–Morse morphism: i.e., the morphism that maps 0 → 01 and 1 → 10. The

Thue–Morse word is the infinite word

t = 011010011001011010010110 · · ·
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obtained by iteratively applying µ to the word 0. The Thue–Morse word is well-known to be overlap-free,
and hence, a fortiori, cubefree [17]. The squares occurring in the Thue–Morse word were characterized
by Pansiot [13] and Brlek [5] as follows. Define sets A = {00, 11, 010010, 101101} and

A =
⋃
k≥0

µk(A).

The set A is the set of squares appearing in the Thue–Morse word.
Shelton and Soni [16] characterized the overlap-free squares (the result is also attributed to Thue by

Berstel [4]), as being the conjugates of the words in A. (A conjugate of x is a word y such that x = uv
and y = vu for some u, v.) Currie and Rampersad [7] showed that the conjugates of the words in A are
also precisely the 7/3-power-free squares. Thus, there are only 7/3-power-free squares of length 2nwhen
n is a power of 2, or 3 times a power of 2. By contrast, we show that there are cubefree binary squares
of length 2n for every positive integer n. We use this result to construct infinite cubefree binary words
containing exponentially many distinct squares.

2 Main results
The main results of this paper are the following two theorems.

Theorem 1 Let n be a positive integer. There exists a cubefree binary square of length 2n.

Theorem 2 There exists an infinite cubefree binary word containing exponentially many distinct squares
of length n.

We first establish some preliminary results.

Lemma 3 The Thue–Morse word contains a factor of the form x = 1001x′′ = x′1001 of every positive
even length n 6= 2, 6.

Proof: Aberkane and Currie [1, Lemma 4] proved that for every integer m ≥ 6, the Thue–Morse word
contains a factor of length m of the form 10y10. Then the Thue–Morse word also contains the factor
µ(10y10) = 1001µ(y)1001, which has length 2m. Finally, we observe that 10011001 and 1001101001
are factors of the Thue–Morse word of lengths 8 and 10 respectively. 2

Lemma 4 If y is overlap-free and ayb is a cube of period p, then p ≤ |ab|.

Proof: Otherwise deleting a and b removes less than a full period from ayb, leaving an overlap. 2

Lemma 5 If z is a factor of yyy where |y| = p and |z| ≤ p + 1, then there are two occurrences of z in
yyy.

Proof: Certainly if z is a factor of yy it occurs twice in yyy. If z is a factor of yyy but not of yy, then z
must span the central y of yyy and a bit more on both ends, giving z a length of p+ 2 or more. 2

Theorem 6 Let x be a factor of the Thue–Morse word of the form x = 1001x′′ = x′1001. Then the word
x0x0 is cubefree.
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Remark 1 Word 01010 occurs exactly once in x0x0. (Note that this word is an overlap, and hence not a
factor of the Thue–Morse word.)

Proof of Theorem 6: Suppose yyy is a cube in x0x0 with |y| = p > 0.

Case 1: Period p ≥ 4.
By Lemma 5 and Remark 1, word 01010 is not a factor of yyy. We have two possibilities:

(a) Cube yyy is a factor of x′100101. This is impossible by Lemma 4, since x′1001 is overlap-
free, |01| = 2, and p ≥ 4 > 2.

(b) Cube yyy is a factor of 101001x′′0. This is again impossible by Lemma 4, since 1001x′′ is
overlap-free.

Case 2: Period p ≤ 3.
If 01010 is a factor of yyy, then one of 001010 and 010100 is a factor. However, neither of these
has period 1, 2 or 3; this is impossible. We conclude that 01010 is not a factor of yyy. This gives
a similar case breakdown as in Case 1.

(a) Cube yyy is a factor of x′100101.

(i) Cube yyy is a suffix of x′100101. In this case, p ≤ 2 by Lemma 4, since x′1001 is
overlap-free. However, the longest suffix of x′100101 of period 1 or 2 is 0101, which
is cubefree.

(ii) Cube yyy is a suffix of x′10010. This forces p = 1, which is impossible.

(b) Cube yyy is a factor of 101001x′′0.

(i) Cube yyy is a prefix of 101001x′′0 or of 01001x′′0. If x′′ is the empty word, then
x0x0 = 1001010010 is clearly cubefree, so let us assume that |x′′| ≥ 4. Since |yyy| =
3p ≤ 9 ≤ |01001x′′|, yyy is a factor of 101001x′′. This is symmetrical to Case 2a.

(ii) Cube yyy is a factor of 1001x′′0 = x0. This is impossible by Case 2a.
2

Theorem 7 Let x be a factor of the Thue–Morse word of the form x = 1001x′′ = x′1001. Then the word
x101100x101100 is cubefree.

Remark 2 Word 00100 occurs exactly once in x101100x101100. Word 11011 occurs exactly twice.

Proof of Theorem 7: Suppose yyy is a cube in x101100x101100 with |y| = p > 0.

Case 1: Period p ≥ 4.
By Lemma 5 and Remark 2, word 00100 is not a factor of yyy. We have two possibilities:

(a) Cube yyy is a factor of x10110010.
Word x10110010 contains 11011 as a factor exactly once. By Lemma 5 and Remark 2, there
are two possibilities:

(i) Cube yyy is contained in x101.
In this case, p ≤ 3 by Lemma 4, since x is overlap-free. This is a contradiction.
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(ii) Cube yyy is contained in 10110010.
This is clearly impossible.

(b) Cube yyy is a factor of 0x101100.
Again, word 0x101100 contains 11011 as a factor exactly once. Therefore, either yyy is
contained in 101100 or in 0x101. The first alternative evidently is impossible, while the
second is ruled out by Lemma 4.

Case 2: Period p ≤ 3.
If 00100 is a factor of yyy, then we must have p = 3, since 00100 does not have period 1 or
2. However, in x101100x101100, the maximal factor of period 3 containing 00100 is 1001001,
which is not a cube. We conclude that 00100 is not a factor of yyy. This gives a similar case
breakdown to Case 1:

(a) Cube yyy is a factor of x10110010.
By Lemma 4 the word x10 must be cubefree. Therefore, yyy must be a suffix of one of these
words:

w8 = x′100110110010
w7 = x′10011011001
w6 = x′1001101100
w5 = x′100110110
w4 = x′10011011
w3 = x′1001101

None of the wn ends in a cube of period 1, 2 or 3. (In the case of words w4, w3, the longest
suffixes of period 3 have lengths 6 and 5 respectively.) It follows that yyy is not a suffix of
any of the wn, and this case does not occur.

(b) Cube yyy is a factor of 0x101100.
Since |yyy| = 3p ≤ 9 ≤ |0x|, yyy is a factor of 0x or of x101100. The first possibility was
ruled out in the proof of Theorem 6, and the second in Case 2a.

2

Theorems 6 and 7 together establish Theorem 1. Next we show that the number of cubefree binary
squares of length n grows exponentially.

Proposition 8 There exist exponentially many cubefree binary squares of length n.

Proof: Let m be a positive integer and let xx be a cubefree binary square of length 2m over {0, 1}.
Suppose that 0 occurs at least as often as 1 in x. Construct a new cubefree square yy over {0, 1, 2}, where
y is obtained from x by arbitrarily replacing some of the 0’s in x by 2’s. There are at least 2m/2 such
squares yy of length 2m.

Let h be the morphism

0 → 001011
1 → 001101
2 → 011001.
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Brandenburg [6, Theorem 6] showed that h maps cubefree words to cubefree words. Moreover, since h
is uniform and injective, the set of words h(yy) consists of at least 2m/2 cubefree squares of length 12m.
Asymptotically, we thus have exponentially many cubefree binary squares of length n, as required. 2

We now prove Theorem 2.

Proof of Theorem 2: In the proof of Proposition 8 we showed that there are at least 2m/2 cubefree binary
squares of length 12m for every positive integer m. Let S therefore be any set of cubefree squares over
{0, 1}where S contains at least 2m/2 words of length 12m for every positive integerm. Let x = x1x2 · · ·
be any infinite cubefree binary word over {2, 3}. Construct a word

w = x1S1x2S2 · · · ,

where the set of Si’s is equal to the set S, so that w is cubefree and contains exponentially many distinct
squares of length n. Let g be the morphism

0 → 001001101
1 → 001010011
2 → 001101011
3 → 011001011.

Brandenburg [6, Theorem 6] showed that g maps cubefree words to cubefree words. Thus, g(w) is
cubefree and, by the uniformity and injectivity of g, contains exponentially many distinct squares of
length n. 2

Note that Theorem 2 implies that existence of an infinite cubefree binary word with exponential factor
complexity—i.e., with exponentially many factors of length n. Similarly, one can easily construct an
infinite squarefree word over {0, 1, 2} with exponential factor complexity.

Proposition 9 There exists an infinite squarefree word over {0, 1, 2} with exponential factor complexity.

Proof: Let w be any infinite squarefree word over {0, 1, 2} and let x be any infinite word over {3, 4} with
2n factors of length n for every positive n. Let y be the word obtained by forming the perfect shuffle of w
and x: that is, if w = w0w1w2 · · · and x = x0x1x2 · · · , then define y = w0x0w1x1w2x2 · · · . Clearly, y
is a squarefree word with exponential factor complexity. Let f be the morphism

0 → 010201202101210212
1 → 010201202102010212
2 → 010201202120121012
3 → 010201210201021012
4 → 010201210212021012.

Brandenburg [6, Theorem 4] showed that f maps squarefree words to squarefree words. The uniformity
and injectivity of f implies that f(y) is a squarefree word with exponential factor complexity, as required.

2
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