
Discrete Mathematics and Theoretical Computer Science 3, 1999, 193–214

Polytypic Functions Over Nested Datatypes†

Ralf Hinze

Institut für Informatik III, Universität Bonn, Römerstraße 164, 53117 Bonn, Germany

received January 18, 1999, revised July 27, 1999, accepted September 14, 1999.

The theory and practice of polytypic programming is intimately connected with the initial algebra semantics of
datatypes. This is both a blessing and a curse. It is a blessing because the underlying theory is beautiful and well
developed. It is a curse because the initial algebra semantics is restricted to so-called regular datatypes. Recent work
by R. Bird and L. Meertens [3] on the semantics of non-regular or nested datatypes suggests that an extension to
general datatypes is not entirely straightforward. Here we propose an alternative that extends polytypism to arbitrary
datatypes, including nested datatypes and mutually recursive datatypes. The central idea is to use rational trees over a
suitable set of functor symbols as type arguments for polytypic functions. Besides covering a wider range of types the
approach is also simpler and technically less involving than previous ones. We present several examples of polytypic
functions, among others polytypic reduction and polytypic equality. The presentation assumes some background in
functional and in polytypic programming. A basic knowledge of monads is required for some of the examples.

Keywords: Functional programming, generic programming, nested datatypes, rational trees, reductions.

1 Introduction
A polytypic function is a function that is defined by induction on the structure of types. The archetypical
example of a polytypic function is size :: f a � Int, which counts the number of values of type a in a given
value of type f a. The function size can sensibly be defined for each polymorphic type and it is usually a
tiresome, routine matter to do so. A polytypic programming language allows to program size once and for
all times. The specialization of size to concrete instances of f is then handled automatically by the system.

Polytypic programming is usually based on the initial algebra semantics of datatypes. To illustrate,
consider the following definition of polymorphic lists.

data List a � 1 � a � List a

The meaning of List a is given by the initial Fa-algebra of the functor Fa
�
b ��� F

�
a � b ��� 1 � a � b. The

initial algebra can be seen as the least solution of the equation List a � F
�
a � List a � . The initial algebra

approach, however, has its limitations. It fails, for example, to give a meaning to so-called non-regular or
nested datatypes such as the type of perfectly balanced, binary leaf trees [9]

data Perfect a � a � Perfect
�
a � a �
	

†An extended abstract of this article appeared in the proceedings of the 3rd Latin-American Conference on Functional Program-
ming (CLaPF’99).

1365–8050 c
�

1999 Maison de l’Informatique et des Mathématiques Discrètes (MIMD), Paris, France

194 Ralf Hinze

Since the recursive call of Perfect on the right-hand side is not a copy of the declared type on the left-hand
side, the equation cannot be rewritten into the form Perfect a � G

�
a � Perfect a � for some G.

A way out of this dilemma is to consider initial algebras of higher-order functors [3]. If we lift coproduct� � � and product
� � � to functors,

�
F1 � F2 � T � F1 T � F2 T and

�
F1 � F2 � T � F1 T � F2 T, the above

type definitions can be rewritten as functor equations:

List � K1 � Id � List �
Perfect � Id � Perfect � � Id � Id � �

where KT is the constant functor, Id is the identity functor, and
� � � denotes functor composition. The

meaning of List and Perfect can now be defined as the initial algebra of the associated higher-order func-
tor. While this approach shares some of the elegance and ease of the first-order approach, it also has its
drawbacks. It appears that the associated fold-operations, which are at the heart of polytypic program-
ming, are limited in expressibility. The crucial point is that fold operates on natural transformations, ie it
takes polymorphic functions to polymorphic functions. For instance, the fold operator on Perfect takes a
function of type

�
a 	 a � f

�
a � a � � f a to a function of type

�
a 	 Perfect a � f a for some fixed f . This is,

however, too restrictive for many applications, for instance, for summing up a tree of integers. Therefore,
it is at least questionable whether initial algebras of higher-order functors can serve as a viable basis for
polytypism on nested datatypes.

Back to the first-order case. In a polytypic language the function size :: f a � Int is parametrised by the
functor f and is defined by induction on the structure of f . As an aside, since size is parametrised by a
functor, we will qualify size more precisely as a polyfunctorial function. The qualifier polytypic will be
used as a general term for functions that are parametrised by functors of arbitrary arity. Now, inspired by
the initial algebra semantics the structure of functors is usually given by the following grammar, see [15]
or [12].

B � KT � Fst � Snd � B � B � B � B � F � B
F � µB

The non-terminal B generates the language of bifunctors. By µB we denote the unary functor F given as
the least solution of the equation F a � B

�
a � F a � . The functor F � µB is also known as a type functor. This

representation entails that a non-recursive, polymorphic functor F is modelled by µB with B
�
a � b ��� F a,

whereas a non-polymorphic, recursive datatype induced by a functor F is modelled by µB with B
�
a � b � �

F b. Thus, µ
�
K1 � Fst � encodes the datatype Maybe and µ

�
K1 � Snd � encodes the datatype of Peano

numerals.
One can reasonably argue that the definition of unary functors via minimalization of bifunctors is not

the most direct way to go. An alternative that we explore in this article is to define functor expressions as
rational trees [6] over the following grammar of unary functors.

F � KT � Id � F � F � F � F � F � F

This approach is, of course, inspired by the way types are introduced in most functional programming
languages. Type definitions usually take the form of recursion equations. If we interpret these equations
purely syntactically, each equation defines a unique rational tree. Recall that a rational (or regular) tree
is an infinite tree that has only a finite number of subtrees. Fig. 1 displays the rational trees defined by
the type equations above. Note that the pictorial representation already employs the defining property of

Polytypic Functions Over Nested Datatypes 195

������� �
�
	 �

��

�
�� �

�
�� ��

�������������

Fig. 1: Types interpreted as rational trees.

rational trees. Since the set of subtrees is finite, we can always draw a rational tree as a finite tree with
additional back or cross edges.

The major difference to previous approaches lies in the use of infinite instead of finite trees as type
arguments for polytypic functions. This change is not as problematic as one might think at first sight. For
instance, we can still define polytypic functions recursively and prove polytypic properties inductively.
Of course, to make things work we must impose the usual conditions: functions must be continuous and
properties must be chain complete. In essence this means that the class of functors is itself modelled
by a non-strict datatype as opposed to an inductive datatype. We could even consider functors given by
arbitrary infinite trees. The focus on rational trees is, however, necessary for practical considerations. It
guarantees that the specialization of polytypic functions always terminates.

The rest of this article is organized as follows. Sec. 2 introduces rational trees and functor expressions.
Sec. 3 and Sec. 4 give several examples of polyfunctorial functions, among others a polytypic map and
polytypic reduction. We will see that nested datatypes add an interesting new dimension to polytypic
programming. For instance, efficiency becomes a concern: a straightforward implementation of size has
a quadratic running time for some nested datatypes. Improving its running time makes a nice example in
polytypic program derivation. Sec. 5 extends the approach to n-ary functors and presents further examples,
among others polytypic equality and a polytypic monadic map. This section requires a basic knowledge
of monads. Finally, Sec. 6 reviews related work and points out directions for future work.

2 Functor expressions
There are several ways to represent rational trees, see, for instance, [6, Sec. 4]. The most obvious and,
in fact, the most convenient way is to use systems of recursion equations. Let Σ ��� n � 0 Σn be a set of
function symbols and X be a set of variables, we denote by T

�
Σ � X � the set of first-order terms over Σ

and X . A system of recursion equations over Σ is of the form � x1 � t1 � 	 	 	 � xn � tn � with ti � T
�
Σ � X � ,

X ��� x1 � 	 	 	 � xn � , and xi � x j for i � j. The elements of X are termed recursion variables.
A system of recursion equations is in canonical form if the right-hand side of each equation is of the

form f
�
x1 � 	 	 	 � xn � where f � Σn is an n-ary function symbol and the xi are recursion variables. Each

system can be transformed into an equivalent system that is in canonical form. For instance, the system
� x � Id � x � � Id � Id � � has the canonical form � x � x1 � x2 � x1 � Id � x2 � x � x3 � x3 � Id � Id � . Note that
the canonicalization introduces additional recursion variables. Furthermore, we tacitly assume that an
equation of the form x � x is replaced by x � Ω where Ω is a new nullary function symbol representing
the ‘bottom’ tree.

It is well-known that each canonical system of recursion equations has a unique solution in the realm

196 Ralf Hinze

of rational trees. An unrestricted system has in general only a least solution. Each tree is, for instance, a
solution of the trivial system � x � x � .

Now, a functor tree is a rational tree over the following set of ‘functor’ symbols

F � KT � Id � F � F � F � F � F � F �
ie Σ � Σ0

� Σ2 with Σ0 �
� Kt � t � T � � � Id � and Σ2 �
� � � � � � � . We agree upon that
� � � binds more tightly

than
� � � , which in turn takes precedence over

� � � . For instance, F � G � H � H means F � � G � � H � H � � .
Let us consider some examples. Finite functor trees correspond to so-called polynomial functors.

∆ � Id � Id

Maybe � K1 � Id

The functor ∆ is called the diagonal or square functor, Maybe a is the type of optional values of type a.
Let us call a functor composition F � G non-trivial if neither F nor G equals the identity functor.‡ Pos-

sibly infinite functor trees where cycles only pass through the right-hand branches of non-trivial functor
compositions are known as regular functors.

List � K1 � Id � List

Tree � Id � ∆ � Tree

Rose � Id � List � Rose

The functor List corresponds to the ubiquitous datatype of polymorphic lists, Tree encompasses polymor-
phic, binary leaf trees, and Rose is the datatype of multi-way branching trees.

If cycles pass through the left-hand branches of non-trivial functor compositions (or through both
branches), we have non-regular functors.

Perfect � Id � Perfect � ∆
Nest � K1 � Id � Nest � ∆
Bush � K1 � Id � Bush � Bush

The meaning of these functor expressions becomes more intelligible if we unroll the definitions a few
steps and massage the result using the following laws.

KT � F � KT (1)

Id � F � F (2)

F � Id � F (3)�
F1 � F2 � � G � F1

� G � F2
� G (4)�

F1 � F2 � � G � F1
� G � F2

� G (5)�
F1

� F2 � � F3 � F1
� � F2

� F3 � (6)

Unrolling Perfect yields
Perfect � Id � � ∆ � � ∆2 � � ∆3 � � � � � � � �

‡ By ‘equal’ we mean semantic equality of functors, see below.

Polytypic Functions Over Nested Datatypes 197

where Fn is given by F0 � Id and Fn
�

1 � F � Fn. If we interpret ∆n as the type of perfectly balanced,
binary leaf trees of height n, we have that Perfect comprises perfect trees of arbitrary height.

The functor Nest has a similar reading.

Nest � K1 � Id � � K1 � ∆ � � K1 � ∆2 � � K1 � ∆3 � � � � � � �

If we compare Nest to

List � K1 � Id � � K1 � Id � � K1 � Id � � K1 � Id � � � � � � � �

we see that Nest comprises ‘lists’ whose i-th element is a perfect tree of height i. Alternatively, we may
view values of type Nest as node-oriented perfect trees, where the i-th list element describes the sequence
of labels at depth i.

Partially unrolling Bush yields

Bush � K1 � Id � � K1 � Bush � � K1 � Bush2 � � K1 � Bush3 � � � � � � � 	

Thus, Bush contains ‘lists’ whose i-th element is a member of Bushi. A truly bewildering form of recur-
sion.

Interestingly, the laws above can be used to eliminate functor composition from the definitions of regu-
lar functors. Consider the definition of rose trees, which contains the composition List � Rose. Introducing
a new functor for the composition, say, Forest we obtain

Rose
� � Id � Forest

Forest � K1 � Rose
� � Forest 	

Since both types, Rose and Rose
�

, have the same structure, they are equivalent from a polytypic perspec-
tive. This statement can be made precise if we interpret type equations as algebraic equations [6, Sec. 5.1].
Then, both Rose and Rose

�

indeed denote the same rational tree. This implies, in particular, that care must
be taken to ensure that polytypic functions behave the same on both definitions (see Sec. 3). As an aside,
note that mutually recursive definitions like the two above are covered by recursion equations in a natural
way.

3 Polytypic map

Our first example of a polytypic function is the function map, which describes the action of a functor on
arrows (ie functions). This is, of course, not a coincidence. As we shall see, map is an important building
block for virtually all polytypic functions.

To define map we make use of the following auxiliary functions which, as a matter of fact, establish

198 Ralf Hinze

� � � and
� � � as bifunctors.§

�
f1

�
f2 �
�
inl a1 � � f1 a1�

f1
�

f2 �
�
inr a2 � � f2 a2

f1 � f2 � �
inl � f1 � �

�
inr � f2 ��

f1 � f2 � a � �
f1 a � f2 a �

outl
�
a1 � a2 � � a1

outr
�
a1 � a2 � � a2

f1 � f2 � �
f1 � outl � �

�
f2 � outr �

The polytypic map is then given by the following definition.

map � f � ::
�
a � b � � �

f a � f b �
map � Kt � ϕ � id
map � Id � ϕ � ϕ
map � f � g � ϕ � map � f � ϕ � map � g � ϕ
map � f � g � ϕ � map � f � ϕ � map � g � ϕ
map � f � g � ϕ � map � f � � map � g � ϕ �

The first line specifies the type of map. The notation map � f � has been chosen to emphasize that map is
parametrised by a functor. Polytypic functions are always written using angle brackets, which makes it
easy to distinguish them from ordinary functions.

In general, a polyfunctorial function poly � f � :: τ
�
f � is given by a set of functions ds :: τ

�
f1 � � 	 	 	 �

τ
�
fn � � τ

�
s
�
f1 � 	 	 	 � fn � � , one for each functor symbol s � Σ. We usually define the functions implicitly

using equations of the form poly � s � f1 � 	 	 	 � fn ����� ds
�
poly � f1 � � 	 	 	 � poly � fn � � . Furthermore, we assume that

dΩ ��� for the ‘bottom’ tree Ω. In the example above we have, for instance, dId � id and d �
	 � � m1 � m2 ���
m1 � m2. This information is sufficient to define a unique function poly � f � for each functor expression f
[6, Prop. 2.4.2]. However, there is one further requirement. The polyfunctorial should be invariant with
respect to the functor equations (1), . . . , (6), ie

poly � KT � F � � poly � KT �
poly � Id � F � � poly � F �
poly � F � Id � � poly � F �

poly � � F1 � F2 � � G � � poly � F1
� G � F2

� G �
poly � � F1 � F2 � � G � � poly � F1

� G � F2
� G �

poly � � F1
� F2 � � F3 � � poly � F1

� � F2
� F3 ��� 	

If poly � f � violates one of these constraints, then it is sensitive to the form in which f is written, a situation
which is clearly undesirable. For instance, poly � Rose � and poly � Rose

� � should be identical since Rose and
Rose

�

define the same functor. It is immediate from its definition that map � f � satisfies these conditions.

§ Examples are given in a pidgin based on the functional programming language Haskell 98 [21]. We assume, however, that primitive
functions are non-curried, ie ���� has type Bool � Bool � Bool rather than Bool ��� Bool � Bool � .

Polytypic Functions Over Nested Datatypes 199

From the definition of map � f � we can derive specializations for different instances of f . Here is the
familiar definition of map on List.

map � List � ϕ � id � ϕ � map � List � ϕ

Note that the process of specialization always terminates since the ‘functor argument’ is given by a rational
tree, which has only a finite set of subtrees. Now, if we specialize map for non-regular functors something
interesting happens.

map � Perfect � ϕ � ϕ � map � Perfect � � ϕ � ϕ �
The type of map � Perfect � is

�
a � b � � �

Perfect a � Perfect b � . The recursive call on the right-hand
side, however, has type

�
∆ a � ∆ b � � �

Perfect
�
∆ a � � Perfect

�
∆ b � � , which is a substitution instance

of map � Perfect � ’s type. This means that map � Perfect � is a so-called polymorphically recursive function
[19]. It should be noted that the Hindley-Milner type system, which underlies most of today’s functional
programming languages, does not allow polymorphic recursion. Furthermore, a suitable extension of the
system has been shown to be undecidable [8]. The functional programming language Haskell [21] allows
polymorphic recursion only if an explicit type signature is provided for the function. We will assume
henceforth that polymorphic recursion is supported by the underlying programming language.

In general, the specialization of a polytypic function poly � f � for a given instance of f is defined as
follows. Assume that the functor is given by a canonical system of recursion equations. For each equation
f � s

�
f1 � 	 	 	 � fn � a function definition of the form poly � f � � ds

�
poly � f1 � � 	 	 	 � poly � fn � � is generated. It is

straightforward to generalize the process of specialization to arbitrary systems of recursion equations.
To prove properties of polytypic function we can employ the principle of fixpoint induction. If P is a

chain complete property of functor trees, it suffices to show

P
�
Ω �

P
�
Kt �

P
�
Id �

P
�
F � � P

�
G � ��� P

�
F � G �

P
�
F � � P

�
G � ��� P

�
F � G �

P
�
F � � P

�
G � ��� P

�
F � G � 	

Using a simple fixpoint induction we can prove, for instance, the following functorial properties of map � f � .
map � f � id � id

map � f � � ϕ � ψ � � map � f � ϕ � map � f � ψ

The proof for coproduct and product relies on the fact that
� � � and

� � � are themselves bifunctors.
�
f1 � f2 � �

�
g1 � g2 � � �

f1 � g1 � �
�
f2 � g2 � (7)�

f1 � f2 � �
�
g1 � g2 � � �

f1 � g1 ���
�
f2 � g2 � (8)

Only the proof of map � Ω � id � id requires a bit of fudging. We have that map � Ω � ϕ � λa � � so we
must in effect show that λa � � � id. This equation holds, however, since Ω accommodates only the
bottom element.

200 Ralf Hinze

4 Polytypic reduction
A reduction is a function of type f a � a that collapses a structure of values of type a into a single value of
type a. Because of its destructive nature reductions are also known as crushes. The archetypical example
of a reduction is the function that sums a structure of integers, for instance, a list or a tree of integers. It
is well-known that reductions can be defined completely generically for all regular functors [15]. In the
sequel we show how to generalize reductions to non-regular functors. The ability to define reductions
on nested datatypes is of some importance since it is not possible to sum a nested datatype using a fold.
Note that this implies that reductions are in a sense more general than folds. They are, however, also less
general since, for instance, mapping functions on regular functors can be defined using folds, but cannot
be expressed in the form of a crush. Thus, reductions [15] and folds [14] are different, incomparable
generalizations of the classic reduction operator

��� � on join-lists [5]. For a more detailed comparison we
refer the interested reader to [15].

To define a reduction we require two ingredients: a value e :: a and a binary operation op :: ∆ a � a.
Usually but not necessarily e is the neutral element of op.

reduce � f � :: a � �
∆ a � a � � �

f a � a �
reduce � f � e op � red � f �

where
red � Kt � � const e
red � Id � � id
red � f � g � � red � f � � red � g �
red � f � g � � op � � red � f ��� red � g � �
red � f � g � � red � f � � map � f � � red � g � �

The definition coincides with the one given by L. Meertens [15], the only difference is that the treatment
of recursion is implicit—the specialization automatically takes care of recursion—rather than explicit.
This alone suffices to define reduce � f � for all datatypes including nested datatypes such as Perfect.

The most interesting equation is probably the last one: to reduce a value of type f
�
g a � , the reduction

red � g � is first mapped on f to give a value of type f a, which is then reduced to a value of type a. To see
reduce � f � in action let us specialize the definition to the type of perfect trees (note that red � ∆ ��� op).

red � Perfect � � id
�

red � Perfect ��� map � Perfect � op

Assume that we want to reduce a perfect tree of height n. The function map � Perfect � op, which has
type Perfect

�
∆ a � � Perfect a, takes a tree of height i � 1 to a tree of height i, which is then reduced

by a recursive call to red � Perfect � . After n iterations we obtain the desired value of type a. What about
red � Perfect � ’s running time? Let us assume that op is a constant-time operation. The call map � Perfect � op
then takes time proportional to the size of the tree. Since the size of the tree is halved in each step, we
obtain a running time of

2n � 2n � 1 � � � � � 2 � 1 � Θ
�
2n � 	

Thus, the red � Perfect � takes time proportional to the size of the tree. Does this hold in general? Unfortu-
nately not, as the following example shows.

Maybe � Nothing
�
K1 � � Just Id

Tower � End Id � Recurse
�
Tower � Maybe �

Polytypic Functions Over Nested Datatypes 201

We have added fancy names for the injection functions to make the examples more readable. Now, el-
ements of type Tower are either of the form Recursen � End

�
JustmNothing � � with m � n or of the form

Recursen � End
�
Justna � � . The reduction on Tower is given by the following equation.

red � Tower � � id
�

red � Tower � � map � Tower � � const e
�

id �
The crush of Recursen � End

�
Justna � � proceeds essentially as before: map � Tower � � const e

�
id � maps the

value Recursei � End
�
Justi

�
1a � � to Recursei � End

�
Justia � � , which is then reduced by a recursive call to

red � Tower � . The major difference to the preceding example is that in each step the size of the argument
is only decreased by a constant amount. Consequently, we have a total running time of

n � n � 1 � � � � � 2 � 1 � Θ
�
n2 � �

which shows that red � Tower � ’s running time is quadratic with respect to the size of its argument. In-
terestingly, the efficiency of reduce � f � is not a problem if f is a regular functor. In this case reduce � f �
always takes time linear to the size of the crushed structure. The argument roughly runs as follows: Re-
call that each regular functor has an equivalent, composition-free definition. If functor composition is not
used, red � f � clearly runs in linear time. The asymptotic running time of red � f � is, however, the same for
equivalent functor definitions.

Fortunately, it is straightforward to improve the efficiency of reduce � f � . We simply define a function
that combines a reduction with a map, ie we seek for a function redmap � f � that satisfies

redmap � f � ϕ � red � f � � map � f � ϕ �
red � f � � redmap � f � id 	

This idiom is, in fact, a very old one. It appears, for instance, in [5] where it is shown that each homo-
morphism on lists (ie each fold) can be expressed in this form. The derivation of redmap � f � is a simple
exercise in program calculation and proceeds almost mechanically. For the two base cases we have

redmap � Kt � ϕ � red � Kt ��� map � Kt � ϕ � const e � id � const e �
redmap � Id � ϕ � red � Id � � map � Id � ϕ � id � ϕ � ϕ 	

The derivation for coproducts and products rests on their properties as bifunctors, ie on equations (7)
and (8).

redmap � f � g � ϕ � red � f � g � � map � f � g � ϕ
� �

red � f � � red � g � � � � map � f � ϕ � map � g � ϕ �
� �

red � f � � map � f � ϕ � � � red � g � � map � g � ϕ �
� redmap � f � ϕ �

redmap � g � ϕ
redmap � f � g � ϕ � red � f � g � � map � f � g � ϕ

� op � � red � f ��� red � g � � � � map � f � ϕ � map � g � ϕ �
� op � � � red � f � � map � f � ϕ ��� � red � g � � map � g � ϕ � �
� op � � redmap � f � ϕ � redmap � g � ϕ �

And finally, for the composition of functors we obtain

redmap � f � g � ϕ � red � f � g ��� map � f � g � ϕ
� red � f ��� map � f � � red � g � � � map � f � � map � g � ϕ �
� red � f ��� map � f � � red � g � � map � g � ϕ �
� redmap � f � � redmap � g � ϕ � �

202 Ralf Hinze

sum � f � ::
�
Num n ��� f n � n

sum � f � � reduce � f � 0
� � �

and � f � :: f Bool � Bool
and � f � � reduce � f � True

� � �
minimum � f � ::

�
Bounded a � Ord a � � f a � a

minimum � f � � reduce � f � maxBound min

size � f � ::
�
Num n ��� f a � n

size � f � � reducemap � f � 0
� � � � const 1 �

all � f � ::
�
a � Bool � � �

f a � Bool �
all � f � p � reducemap � f � True

� � � p

flatten � f � :: f a � List a
flatten � f � � reducemap � f � ��� � � � � wrap where wrap a � �

a
�

Fig. 2: Examples of reductions.

which shows that we succeeded in eliminating the annoying call to map. Apart from improving the
efficiency of reduce � f � the synthesized function is also interesting in its own right since it captures a
common pattern of recursion.

reduce � f � e op � reducemap � f � e op id

reducemap � f � :: a � �
∆ a � a � � �

b � a � � �
f b � a �

reducemap � f � e op � redmap � f �
where
redmap � Kt � ϕ � const e
redmap � Id � ϕ � ϕ
redmap � f � g � ϕ � redmap � f � ϕ �

redmap � g � ϕ
redmap � f � g � ϕ � op � � redmap � f � ϕ � redmap � g � ϕ �
redmap � f � g � ϕ � redmap � f � � redmap � g � ϕ �

Let us again specialize the definition to the type of perfect trees.

redmap � Perfect � ϕ � ϕ �
redmap � Perfect � � op � � ϕ � ϕ � �

It is interesting if not revealing to contrast the two definitions of reductions on perfect trees. The first
one, red � Perfect � , essentially proceeds bottom-up. In each step the ‘nodes’ (ie pairs) on the lowest level
are reduced. This step is repeated until the root is reached. By contrast, redmap � Perfect � operates in two
stages: first a suitable reduction function is constructed, which then reduces the perfect tree in a single
top-down pass. Clearly, the latter procedure is more efficient than the former.

Fig. 2 lists some typical applications of reduce � f � and reducemap � f � . Further examples can be found,
for instance, in [15] or [11].

Polytypic Functions Over Nested Datatypes 203

Polytypic reduction satisfies a fusion law analogous to the fusion law for folds [15].

h � reducemap � f � e op ϕ � reducemap � f � e
�

op
�

ϕ
�

� � h � � ���
�

h � const e � const e
�

�
h � op � op

� � � h � h �
�

h � ϕ � ϕ
�

The law can be shown using a straightforward fixpoint induction, which is left as an exercise to the
reader. Instead we apply the fusion law to derive an efficient implementation of size � Perfect � . A simple
consequence of the fusion law is

reducemap � f � 0
� � � � const n � � mult n � reducemap � f � 0

� � � � const 1 � where mult a b � a � b 	

Now, we reason

size � Perfect � � reducemap � Perfect � 0
� � � � const 1 �

� const 1
�

reducemap � Perfect � 0
� � � � reducemap � ∆ � 0

� � � � const 1 � �
� const 1

�
reducemap � Perfect � 0

� � � � const 2 �
� const 1

�
mult 2 � size � Perfect � 	

Defined this way size � Perfect � runs in Θ
�
logn � time.

5 Extending the approach to n-ary functors

By now we have seen several examples of polyfunctorial functions, ie functions that are parametrised
by an unary functor. In this section we extend the approach from unary to n-ary functors. It is relatively
straightforward to extend functor expressions to the general case: An n-ary functor expression is a rational
tree over the following set of ‘functor’ symbols.

F
� n � � KT

� Pn
i

�
1 � i � n �

� F
� n � � F

� n �
� F

� n � � F
� n �

� F
� k � � � F � n �

1 � 	 	 	 � F � n �
k � �

1 � k �

The superscript in F
� n � denotes the arity of the functor. As before, KT denotes the n-ary constant functor.

The n-ary projection functor Pn
i is given by Pn

i

�
T � Ti for

�
T � �

T1 � 	 	 	 � Tn � . For n � 1 and n � 2 we
use the following more familiar names: Id � P1

1, Fst � P2
1, and Snd � P2

2. The coproduct and product
of n-ary functors are defined as usual:

�
F1 � F2 �

�
T � F1

�
T � F2

�
T and

�
F1 � F2 �

�
T � F1

�
T � F2

�
T . Finally,

F � � G1 � 	 	 	 � Gk � denotes the composition of the k-ary functor F with k n-ary functors:
�
F � � G1 � 	 	 	 � Gk � �

�
T �

F
�
G1

�
T � 	 	 	 � Gk

�
T � . We omit the parentheses when k � 1, ie we write F � F1 instead of F � � F1 � .

204 Ralf Hinze

From the definitions of KT, Pn
i ,
� � � , � � � , and

� � � we can easily derive the following laws.

KT � � F1 � 	 	 	 � Fn � � KT
Pn

i
� � F1 � 	 	 	 � Fn � � Fi

F � � Pn
1 � 	 	 	 � Pn

n � � F�
F1 � F2 � � � G1 � 	 	 	 � Gn � � F1

� � G1 � 	 	 	 � Gn � � F2
� � G1 � 	 	 	 � Gn ��

F1 � F2 � � � G1 � 	 	 	 � Gn � � F1
� � G1 � 	 	 	 � Gn ��� F2

� � G1 � 	 	 	 � Gn ��
F � � G1 � 	 	 	 � Gn � � � � H1 � 	 	 	 � Ho � � F � � G1

� � H1 � 	 	 	 � Ho � � 	 	 	 � Gm
� � H1 � 	 	 	 � Ho � �

For n � o � 1 we obtain the laws given in Sec. 2.
Coproduct and product are the simplest examples of bifunctors.

Coproduct � Fst � Snd

Product � Fst � Snd

It is easy to verify that Coproduct � � F1 � F2 � � F1 � F2 and Product � � F1 � F2 � � F1 � F2, which shows that
we could have added

� � � and
� � � as constants to F

� 2 � . The infix notation is, however, more convenient
to use.

External search trees make nice examples of bifunctors. An external search tree of type ST a b has
external nodes (ie leafs) labelled with values of type a and internal nodes (ie branches) labelled with
values of type b.

Branch � Fst � Snd � Fst

ST � Fst � Branch � � ST � Snd �
PST � Fst � PST � � Branch � Snd �

External search trees come in two flavours: ST is the standard textbook type while PST is the type of per-
fect external search trees. Note that ST is right recursive whereas PST is left recursive. The classification
of functors into polynomial, regular, and non-regular functors also carries over to the n-ary case. It is easy
to see that Branch is a polynomial, ST a regular, and PST a non-regular bifunctor.

5.1 Polytypic and polyfunctorial functions
Our first (and our last) example of a polytypic function that is indexed by a nullary functor is polytypic
equality. Besides implementing a fundamental operation the example also demonstrates the interaction
between polytypic and polyfunctorial functions. Note that the definition of equality is based upon the
approach taken in PolyLib [11]. In PolyLib, however, equality is parametrised by an unary functor. Now,
to be able to give the definitions in a point-free style, we make use of the auxiliary functions shown in
Fig. 3. The first cases of eq � t � are straightforward. We assume that the primitive types are 1, Int, and
Double and that suitable equality functions for Int and Double are predefined.

eq � t � :: t � t � Bool
eq � K1 � � const True
eq � KInt � � eqint
eq � KDouble � � eqdouble
eq � t1 � t2 � � ok

�
eq � t1 � � eq � t2 � � � couple

eq � t1 � t2 � � � � � � � eq � t1 ��� eq � t2 � ��� transpose

Polytypic Functions Over Nested Datatypes 205

�
p � f � g � a � if p a then f a else g a

couple
�
inl a1 � inl b1 � � Just

�
inl
�
a1 � b1 � �

couple
�
inl a1 � inr b2 � � Nothing

couple
�
inr a2 � inl b1 � � Nothing

couple
�
inr a2 � inr b2 � � Just

�
inr

�
a2 � b2 � �

transpose
� �

a1 � a2 � �
�
b1 � b2 � � � � �

a1 � b1 � �
�
a2 � b2 � �

ok ϕ Nothing � False
ok ϕ

�
Just a � � ϕ a

Fig. 3: Auxiliary functions for polytypic equality.

It remains to define eq � t � for the case that t is a composition of a k-ary functor with k nullary functors. To
keep the example manageable we confine ourselves to unary functors. How do we proceed if t takes the
form f u? Now, two elements of f u are equal if they have the same shape and the elements of type u at
corresponding positions are equal. To bring corresponding elements together we make use of an auxiliary,
polyfunctorial function called zip � f � . As the name indicates, zip � f � ::

�
f a � f b � � Maybe

�
f
�
a � b � � turns a

pair of structures into a structure of pairs. If the structures have not the same shape, zip � f � returns Nothing,
otherwise it yields Just z where z is the desired structure. Using zip � f � the last case of eq � t � can be defined
as

eq � f � u � � ok
�
all � f � � eq � u � � � � zip � f � �

which is more or less a translation of the english description above.
The auxiliary function zip � f � makes a nice example of polytypic, monadic programming. Before we

discuss its definition let us briefly review the basics of monads. For a more in-depth treatment we refer the
interested reader to P. Wadler’s papers [23, 24, 25], which also contain supplementary pointers to relevant
work. One can think of a monad as an abstract type for computations. In Haskell monads are captured by
the following class declaration.

class Monad m where
return :: a � m a� ��� � � :: m a � �

a � m b � � m b

The essential idea of monads is to distinguish between computations and values. This distinction is
reflected on the type level: an element of m a represents a computation that yields a value of type a. A
computation may involve, for instance, state, exceptions, or nondeterminism. The trivial computation that
immediately returns the value a is denoted by return a. The operator

� ��� � � , commonly called ‘bind’,
combines two computations: m ��� � k applies k to the result of the computation m.

The monadic operations must be related by the following so-called monad laws.

return a
��� � k � k a (9)

m
��� � return � m (10)�

m
��� � k � ��� ��� � m

��� � � λa � k a
��� ��� � (11)

206 Ralf Hinze

Roughly speaking return is the neutral element of
� ��� � � and

� ��� � � is associative. The monoidal structure
becomes more apparent if the laws are rephrased in terms of the monadic composition, see below.

Haskell supports monadic programming by providing a more readable, first-order syntax for
� ��� � � , the

so-called do-notation. The syntax and semantics of do-expressions are given by the following identities:

do � x � m;e � � m ��� � λx � do � e �
do � e � � e 	

Several datatypes have a computational content. For instance, the type Maybe can be used to model
exceptions: Just x represents a ‘normal’ or successful computation yielding the value x while Nothing
represents an exceptional or failing computation—zip � f � employs Maybe in this sense. The following
instance declaration shows how to define return and

� ��� � � for Maybe.

instance Monad Maybe where
return � Just

Nothing ��� � k � Nothing
Just a

��� � k � k a

Thus, m
��� � k can be seen as a strict postfix application: if m is an exception, the exception is propagated;

if m succeeds, then k is applied to the resulting value.
In the previous examples we have made heavy use of general combining forms such as

� � � , � � � , and� � � . The function zip � f � can be defined quite succinctly if we raise these combinators to procedures. A
procedure is by definition a function that maps values to computations, ie it is a function of type a � m b
where m is a monad.

�
h1
�

h2 � a � do � b � h2 a;h1 b ��
h1 � h2 �

�
a1 � a2 � � do � b1

� h1 a1;b2
� h2 a2;return

�
b1 � b2 � ��

h1 � h2 �
�
inl a1 � � do � b1

� h1 a1;return
�
inl b1 � ��

h1 � h2 �
�
inr a2 � � do � b2

� h2 a2;return
�
inr b2 � �

While the definitions for
� � � and

�
� � are inevitable, there is a choice to be made in the case of

�
� � . The

two computations h1 a1 and h2 a2 can be sequenced in two possible ways, either h1 a1 before h2 a2 or vice
versa. Fortunately, the two definitions coincide for m � Maybe.¶ From the definitions above we can easily
derive the following equations:

f
� �

g � h � � �
f
�

g � � h (12)

f
�

return � f (13)

return
�

f � f (14)

f
� �

g
�

h � � �
f
�

g � � h (15)�
f1 � f2 � �

�
g1 � g2 � � �

f1
�

g1 � �
�
f2
�

g2 � (16)�
f1 � f2 � �

�
g1 � g2 � � �

f1
�

g1 � �
�
f2
�

g2 � if m is commutative (17)

¶ We tacitly assume that computations do not diverge. Otherwise this property does not hold, take, for instance, h1 a1 � Nothing
and h2 a2 ��� .

Polytypic Functions Over Nested Datatypes 207

Note that equations (13), (14), and (15) are the monad laws stated in terms of the monadic composition� � � . These equations furthermore show that procedures (for a fixed m) form the morphisms of a category,
the so-called Kleisli category, where the identity is return and the composition is

� � � . The last equation
only holds for so-called commutative monads that satisfy

do � a1
� m1;a2

� m2;return
�
a1 � a2 � � � do � a2

� m2;a1
� m1;return

�
a1 � a2 � � 	

For instance, the identity monad, the Maybe monad, and reader monads all have this property. On the
other hand, the list monad, the state monads, and the IO monad are not commutative. This implies that� � � is not a bifunctor in the corresponding Kleisli category.

Now for the definition of zip � t � . The first case falls back on the equality of values. Thus, eq � t � and
zip � f � are mutually recursive functions, which is not surprising since F

� 0 � and F
� 1 � are mutually recursive

as well (we tacitly identify nullary functors, F
� 0 � , and types, T).

zip � f � :: f a � f b � Maybe
�
f
�
a � b � �

zip � Kt � � �
eq � t � � return � outl � const Nothing �

zip � Id � � return
zip � f � g � � �

zip � f � � zip � g � � � couple
zip � f � g � � �

zip � f � � zip � g � ��� transpose
zip � f � g � � mapM � f � � zip � g � � � zip � f �

The last case is again the most interesting one. To zip two values of type f
�
g a � and f

�
g b � we first

apply zip � f � , which yields a value of type Maybe
�
f
�
g a � g b � � . To obtain a value of the desired type,

Maybe
�
f
�
g
�
a � b � � � , we then map zip � g � on f . However, since we are working within a monad we

cannot use the ‘ordinary’ map operation as defined in Sec. 3. Instead we must employ a monadic map [7],
which is defined as follows (note that mapM � f � is termed mapl in [18]).

mapM � f � ::
�
Monad m ��� �

a � m b � � �
f a � m

�
f b � �

mapM � Kt � ϕ � return
mapM � Id � ϕ � ϕ
mapM � f � g � ϕ � mapM � f � ϕ � mapM � g � ϕ
mapM � f � g � ϕ � mapM � f � ϕ � mapM � g � ϕ
mapM � f � g � ϕ � mapM � f � � mapM � g � ϕ �

Abstractly speaking, mapM � f � defines the action on arrows in the Kleisli category induced by m. If we
specialize m to Id, the identity monad, we obtain the ‘ordinary’ map operation. Since mapM � f � is the
morphism part of a functor, it satisfies the following two functorial laws.

mapM � f � return � return

mapM � f � � ϕ � ψ � � mapM � f � ϕ � mapM � f � ψ if m is commutative

Since the proof of the last law employs equation (17), it is restricted to commutative monads, as well. The
monadic map is surprisingly versatile. It may be used, for example, to thread a monad through a structure,
see [11].

thread � f � ::
�
Monad m ��� f

�
m a � � m

�
f a �

thread � f � � mapM � f � id

208 Ralf Hinze

What about the running time of zip � f � ? From the last equation of zip � f � we are lead to suspect that zip � f �
suffers from the same problems as reduce � f � . And this indeed is the case. Consider the specialization of
zip � f � to Tower (note that zip � Maybe � � couple).

zip � Tower � � �
return � mapM � Tower � couple

�
zip � Tower � � � couple

It is not hard to see that zipping
�
Recursen � End

�
Justna � � � Recursen � End

�
Justnb � � � takes Θ

�
n2 � time.

However, we can easily improve the efficiency by combining a monadic map with a zip.

zipWith � f � ϕ � mapM � f � ϕ � zip � f �
zip � f � � zipWith � f � return

The derivation of zipWith � f � is again a simple exercise in program calculation. It pays off that we have
defined zip � f � in terms of the admittedly abstract operators on procedures.

zipWith � Kt � ϕ � mapM � Kt � ϕ � zip � Kt ��� return
�

zip � Kt ��� zip � Kt �
zipWith � Id � ϕ � mapM � Id � ϕ � zip � Id ��� ϕ � return � ϕ
zipWith � f � g � ϕ � mapM � f � g � ϕ � zip � f � g �

� �
mapM � f � ϕ � mapM � g � ϕ � � � zip � f � � zip � g � � � couple

� �
mapM � f � ϕ � zip � f � � mapM � g � ϕ � zip � g � � � couple

� �
zipWith � f � ϕ � zipWith � g � ϕ � � couple

The derivation for products and compositions relies on the commutativity of Maybe.

zipWith � f � g � ϕ � mapM � f � g � ϕ � zip � f � g �
� �

mapM � f � ϕ � mapM � g � ϕ � � � zip � f � � zip � g � ��� transpose
� �

mapM � f � ϕ � zip � f � � mapM � g � ϕ � zip � g � � � transpose
� �

zipWith � f � ϕ � zipWith � g � ϕ � � transpose
zipWith � f � g � ϕ � mapM � f � g � ϕ � zip � f � g �

� mapM � f � � mapM � g � ϕ � � mapM � f � � zip � g � � � zip � f �
� mapM � f � � mapM � g � ϕ � zip � g � � � zip � f �
� zipWith � f � � zipWith � g � ϕ �

Putting things together we obtain

zip � f � � zipWith � f � return

zipWith � f � ::
�
a � b � Maybe c � � �

f a � f b � Maybe
�
f c � �

zipWith � Kt � ϕ � �
eq � t � � return � outl � const Nothing �

zipWith � Id � ϕ � ϕ
zipWith � f � g � ϕ � �

zipWith � f � ϕ � zipWith � g � ϕ � � couple
zipWith � f � g � ϕ � �

zipWith � f � ϕ � zipWith � g � ϕ ��� transpose
zipWith � f � g � ϕ � zipWith � f � � zipWith � g � ϕ � 	

Interestingly, the two definitions of zip � f � are equivalent for arbitrary monads, not just for Maybe. To see
why this is the case note that zip � f � and zipWith � f � are related by

zip � f � g � � zipWith � f � � zip � g � � 	
Setting g � Id yields the desired result.

Polytypic Functions Over Nested Datatypes 209

5.2 Polybifunctorial functions

The definition of polybifunctorial functions contains little surprise. The main difference to polyfunctorial
functions is that we must consider two projection functors, Fst and Snd, instead of one. Here is the
definition of bimap � f � , which describes the action of a bifunctor on arrows.

bimap � f � ::
�
a1
� b1 � �

�
a2
� b2 � �

�
f a1 a2

� f b1 b2 �
bimap � Kt � ϕ1 ϕ2 � id
bimap � Fst � ϕ1 ϕ2 � ϕ1

bimap � Snd � ϕ1 ϕ2 � ϕ2

bimap � f � g � ϕ1 ϕ2 � bimap � f � ϕ1 ϕ2 � bimap � g � ϕ1 ϕ2

bimap � f � g � ϕ1 ϕ2 � bimap � f � ϕ1 ϕ2 � bimap � g � ϕ1 ϕ2

bimap � f � g � ϕ1 ϕ2 � map � f � � bimap � g � ϕ1 ϕ2 �
bimap � f � � g1 � g2 � � ϕ1 ϕ2 � bimap � f � � bimap � g1 � ϕ1 ϕ2 �

�
bimap � g2 � ϕ1 ϕ2 �

Note the interplay of map � f � and bimap � f � . For reasons of symmetry the following equation should be
added to the definition of map � f � .

map � f � � g1 � g2 � � ϕ � bimap � f � � map � g1 � ϕ � � map � g2 � ϕ �
The example of map � f � illustrates a problem inherent with all polytypic definitions. If an unary functor,
say, f is defined in terms of a ternary functor, then map � f � is undefined. The reason is simply that the
relevant case f � � g1 � g2 � g3 � is missing in map � f � ’s definition. Moreover, since f � � g1 � 	 	 	 � gk � is an element
of F

� n � for all k
�

1, we cannot define map � f � exhaustively. Clearly, further research is required here.
The generalization of polytypic reductions to binary functors is left as an exercise to the reader. Note

that, in general, a reduction is a function of type f a 	 	 	 a � a.

6 Related and future work
The impetus for writing this article came while reading the article “Nested Datatypes” by R. Bird and
L. Meertens [3]. The authors state that “It is possible to define reductions completely generically for all
regular types [. . .], but we do not know at present whether the same can be done for nested datatypes.”
We have shown that the answer to this question is in the affirmative. Moreover, the solution presented is
surprisingly simple. To define a polytypic function it suffices to specify its action on polynomial functors.
The extension to (mutually) recursive datatypes—which is uniquely defined—is then handled automati-
cally by the system. This does not only simplify matters for the generic programmer, it also removes some
of the redundancy present in the classical approach. In the polytypic programming language PolyP [10],
for instance, the user must supply definitions for both polynomial and type functors. There is, however,
no guarantee that the corresponding functions behave in related ways.

Very recently, R. Bird and R. Paterson [4] introduced so-called generalised folds, which overcome some
of the problems mentioned in the introduction to this article. Generalised folds, which can be constructed
systematically for each first-order polymorphic datatype, possess a uniqueness property analogous to that
of ordinary folds. Their work is largely complementary to ours. While generalised folds are more general
than the reductions defined in Sec. 4, it is not clear how to define functions like sum generically using
generalised folds.

210 Ralf Hinze

An obvious disadvantage of our approach is that it is not possible to define general recursion schemes
like cata- and anamorphisms (ie folds and unfolds) [16]. The reason is simply that type recursion is left
implicit rather than made explicit. The situation can be saved, however, by introducing an operation on
functors that maps a type functor to its base functor. Inventing a notation we define F

� � B for F � µB
(the operation

�
- � �

corresponds to the type constructor FunctorOf used in PolyP). Of course, F
�

is only
defined if F is a regular functor. Given two functions in :: t

�

t � t and out :: t � t
�

t we can now define

cata � t � ::
�
t

�

a � a � � �
t � a �

cata � t � ϕ � ϕ � map � t � � � cata � t � ϕ � � out

ana � t � ::
�
a � t

�

a � � �
a � t �

ana � t � ψ � in � map � t � � � ana � t � ψ � � ψ 	
Ironically, hylomorphisms can be defined without any additions since their type does not involve type
functors.

hylo � f � ::
�
f a � a � � �

b � f b � � �
b � a �

hylo � f � ϕ ψ � ϕ � map � f � � hylo � f � ϕ ψ � � ψ

Polytypic functions are values that depend on types. For that reason they cannot be expressed in lan-
guages such as Haskell or Standard ML. The question naturally arises as to whether polytypic definitions
can be easily added to languages that incorporate dependent types such as Cayenne [2]. Now, since poly-
typic functions perform pattern matching on types, this would entail the addition of a typecase [1]. A
typecase was, however, left out of Cayenne by design and the consequences of adding such a construct to
the language are unclear (personal communication with L. Augustsson). The transformational approach
taken here—to specialize a polytypic function for each given instance—appears to be simpler and also
more efficient since the repeated matching of the type argument (which is statically known at compile
time) is avoided.

Directions for future work suggest themselves. It remains to broaden the approach to include exponen-
tials and higher-order polymorphism [13]. The former extension should be fairly straightforward, see [22]
or [17]. The latter extension is far more challenging. To illustrate, consider the following generalization
of rose trees.

data GRose f a � Node a
�
f
�
GRose f a � �

This datatype is used, for instance, to extend an implementation of collections (sequences or priority
queues) with an efficient operation for combining two collections (catenate or meld), see [20]. From a
categorical point of view we could interpret GRose as a higher-order functor of type Fun

�
C � � Fun

�
C � ,

where Fun
�
C � is the category that has as objects functors of type C � C and as arrows natural trans-

formations between them. Equating natural transformations and polymorphic functions it follows that
GRose’s map functional has the type

� �
a 	 f a � g a � � � �

a 	GRose f a � GRose g a � . Unfortunately, this
is a rank-2 type, which is not legal Haskell. An alternative view is to interpret GRose as a higher-order
functor of type Cat

�
C � � Cat

�
C � , where Cat

�
C � is the category that has as the only object the cat-

egory C and as arrows functors of type C � C. This suggests to define a higher-order map of type� �
a 	 � b 	 � a � b � � �

f a � f b � � � � �
a 	 �

b 	 � a � b � � �
GRose f a � GRose f b � � . Both maps are clearly

useful: The first operates on the base collection f of the ‘bootstrapped’ collection GRose f while the sec-
ond operates on the elements contained in a collection. However, it is far from clear how to define these
maps generically for all higher-order datatypes.

Polytypic Functions Over Nested Datatypes 211

Acknowledgements
Thanks are due to Richard Bird for his helpful comments on an earlier draft of this article. I am also
grateful to Philip Wadler and two anonymous referees for suggesting numerous improvements regarding
contents and presentation.

References
[1] M. Abadi, L. Cardelli, B. Pierce, and D. Rémy. Dynamic typing in polymorphic languages. Journal

of Functional Programming, 5(1):111–130, January 1995.

[2] Lennart Augustsson. Cayenne – a language with dependent types. SIGPLAN Notices, 34(1):239–
250, January 1999.

[3] Richard Bird and Lambert Meertens. Nested datatypes. In J. Jeuring, editor, Fourth International
Conference on Mathematics of Program Construction, MPC’98, Marstrand, Sweden, volume 1422
of Lecture Notes in Computer Science, pages 52–67. Springer-Verlag, June 1998.

[4] Richard Bird and Ross Paterson. Generalised folds for nested datatypes. Formal Aspects of Com-
puting, 1999. To appear.

[5] Richard S. Bird. Lectures on constructive functional programming. In Manfred Broy, editor, Con-
structive Methods in Computer Science. Springer-Verlag, 1988.

[6] Bruno Courcelle. Fundamental properties of infinite trees. Theoretical Computer Science, 25(2):95–
169, March 1983.

[7] M.M. Fokkinga. Monadic maps and folds for arbitrary datatypes. Technical Report Memoranda
Informatica 94-28, University of Twente, June 1994.

[8] Fritz Henglein. Type inference with polymorphic recursion. ACM Transactions on Programming
Languages and Systems, 15(2):253–289, April 1993.

[9] Ralf Hinze. Functional Pearl: Perfect trees and bit-reversal permutations. Journal of Functional
Programming, 1999. To appear.

[10] Patrik Jansson and Johan Jeuring. PolyP—a polytypic programming language extension. In Confer-
ence Record 24th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL’97, Paris, France, pages 470–482. ACM-Press, January 1997.

[11] Patrik Jansson and Johan Jeuring. PolyLib—A library of polytypic functions. In Roland Back-
house and Tim Sheard, editors, Informal Proceedings Workshop on Generic Programming, WGP’98,
Marstrand, Sweden. Department of Computing Science, Chalmers University of Technology and
Göteborg University, June 1998.

[12] Johan Jeuring and Patrik Jansson. Polytypic programming. In J. Launchbury, E. Meijer, and
T. Sheard, editors, Tutorial Text 2nd International School on Advanced Functional Programming,
Olympia, WA, USA, volume 1129 of Lecture Notes in Computer Science, pages 68–114. Springer-
Verlag, 1996.

212 Ralf Hinze

[13] Mark P. Jones. Functional programming with overloading and higher-order polymorphism. In First
International Spring School on Advanced Functional Programming Techniques, volume 925 of Lec-
ture Notes in Computer Science, pages 97–136. Springer-Verlag, 1995.

[14] Grant Malcolm. Data structures and program transformation. Science of Computer Programming,
14(2–3):255–280, 1990.

[15] Lambert Meertens. Calculate polytypically! In H. Kuchen and S.D. Swierstra, editors, Proceedings
8th International Symposium on Programming Languages: Implementations, Logics, and Programs,
PLILP’96, Aachen, Germany, volume 1140 of Lecture Notes in Computer Science, pages 1–16.
Springer-Verlag, September 1996.

[16] E. Meijer, M. Fokkinga, and R. Paterson. Functional programming with bananas, lenses, envelopes
and barbed wire. In 5th ACM Conference on Functional Programming Languages and Computer
Architecture, FPCA’91, Cambridge, MA, USA, volume 523 of Lecture Notes in Computer Science,
pages 124–144. Springer-Verlag, 1991.

[17] Erik Meijer and Graham Hutton. Bananas in space: Extending fold and unfold to exponential types.
In Conference Record 7th ACM SIGPLAN/SIGARCH and IFIP WG 2.8 International Conference on
Functional Programming Languages and Computer Architecture, FPCA’95, La Jolla, San Diego,
CA, USA, pages 324–333. ACM-Press, June 1995.

[18] Erik Meijer and Johan Jeuring. Merging monads and folds for functional programming. In J. Jeur-
ing and E. Meijer, editors, 1st International Spring School on Advanced Functional Programming
Techniques, Båstad, Sweden, volume 925 of Lecture Notes in Computer Science, pages 228–266.
Springer-Verlag, Berlin, 1995.

[19] Alan Mycroft. Polymorphic type schemes and recursive definitions. In M. Paul and B. Robinet,
editors, Proceedings of the International Symposium on Programming, 6th Colloquium, Toulouse,
France, volume 167 of Lecture Notes in Computer Science, pages 217–228, 1984.

[20] Chris Okasaki. Purely Functional Data Structures. Cambridge University Press, 1998.

[21] Simon Peyton Jones [editor], John Hughes [editor], Lennart Augustsson, Dave Barton, Brian Bou-
tel, Warren Burton, Simon Fraser, Joseph Fasel, Kevin Hammond, Ralf Hinze, Paul Hudak, Thomas
Johnsson, Mark Jones, John Launchbury, Erik Meijer, John Peterson, Alastair Reid, Colin Runci-
man, and Philip Wadler. Haskell 98 — A non-strict, purely functional language. Available from
http://www.haskell.org/onlinereport/. February 1999.

[22] Tim Sheard and Leonidas Fegaras. A fold for all seasons. In Proceedings 6th ACM SIG-
PLAN/SIGARCH International Conference on Functional Programming Languages and Computer
Architecture, FPCA’93, Copenhagen, Denmark, pages 233–242. ACM-Press, June 1993.

[23] Philip Wadler. Comprehending monads. In Proceedings of the 1990 ACM Conference on LISP and
Functional Programming, Nice, pages 61–78. ACM-Press, June 1990.

[24] Philip Wadler. The essence of functional programming. In Proceedings of the 19th Annual ACM
Symposium on Principles of Programming Languages, Sante Fe, New Mexico, pages 1–14, January
1992.

Polytypic Functions Over Nested Datatypes 213

[25] Philip Wadler. Monads for functional programming. In J. Jeuring and E. Meijer, editors, Advanced
Functional Programming, Proceedings of the Båstad Spring School, number 925 in Lecture Notes
in Computer Science. Springer-Verlag, May 1995.

